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AXIOMS FOR SEQUENTIAL CONVERGENCE

GONÇALO GUTIERRES AND DIRK HOFMANN

Abstract: It is of general knowledge that those (ultra)filter convergence relations
coming from a topology can be characterized by two natural axioms. However, the
situation changes considerable when moving to sequential spaces. In case of unique
limit points J. Kisyński [Kis60] obtained a result for sequential convergence similar
to the one for ultrafilters, but the general case seems more difficult to deal with.
Finally, the problem was solved by V. Koutnik [Kou85].

In this paper we present an alternative approach to this problem. Our goal is
to find a characterization more related to the case of ultrafilter convergence. We
extend then the result to characterize sequential convergence relations corresponding
to Fréchet topologies, as well to those corresponding to pretopological spaces.
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Introduction

The development of topology was from the beginning linked to the search
of a good notion of convergence. Traditionally, convergence means sequential
convergence, but it became soon clear that sequences are not adequate for the
purpose of general topology. Therefore the further development of topology
was based on other concepts like open set, closure operator or neighbor-
hood system. Eventually, the concept of convergence was reintroduced into
topology: using generalized sequences (nets) by Moore and Smith [SM22]
and, later, (ultra)filters by Cartan [Car37b, Car37a]. This rises the question
how to characterize abstractly those (ultra)filter (resp. net) convergence re-
lations coming from a topology. The answer is known since the fifties (see
[Kow54], for instance). Subsequently, the formulation of such axioms on an
ultrafilter convergence relation was considerable streamlined, eventually one
obtains a system of two simple axioms (see [Bar70, Wyl96]). In fact, Barr
[Bar70] describes topological spaces as relational algebras for the ultrafilter
monad. The theory of relational algebras gained recently renewed interest
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(see [CT03, CHT04, Sea05]), and was used to study uniformly various im-
portant categories of topology (see [CH04, CH05, Hof05b], for instance).

Though sequences do not suffice for topological spaces in general, the class
of spaces where sequences do suffice still includes many important spaces,
and therefore enjoys attention of many authors (see [Dud64, Bro74]). Nat-
urally, we have the same question as above: How can we characterize those
sequential convergence relations coming from a topology? An answer to this
question seems to be much harder to find then in the case of ultrafilters.
Eventually, the problem was solved by V. Koutnik [Kou85], but his new ax-
iom (B) is far away from the simplicity of the “ultrafilter axioms”. Moreover,
it is desirable to have a description closer to Barr’s relational algebras, since
it allows us to apply techniques developed in this setting to sequential spaces.
To fulfil the latter requirement, we must first of all know what the sequential
monad is.

The relationship between various basic concepts of topology can be most
elegantly expressed via Galois correspondences, which is the starting point
for this work. Our principal interest is then the study of the correspondence
between open sets on one side and sequential convergence relations on the
other. The fixed objects of this correspondence are sequential topologies∗ on
the “open set side”, whereby finding a description of the fixed elements on
the convergence side answers exactly the question above. In case of unique
convergence points, J. Kisyński [Kis60] gave a nice answer in form of three
simple axioms (1), (2) and (3) (see 2.1), but this does not extend to the
general case. Guided by our experience from the work with ultrafilters, in
Section 2 we introduce diagonal sequences of sequences of sequences, which
equips the “sequence functor” with the structure of a weak form of a monad.
This allows us to introduce co-Kleisli composition for convergence relations
– as it was done in [HT04] for the ultrafilter monad – and to formulate a
new axiom (4) which corresponds to the second axiom (idempotency) in the
topological case (see 2.3). But even (1),. . . ,(4) do not suffice to describe se-
quential convergence, as we show in 2.4. This counter example indicates that
(1),. . . ,(4) are not strong enough to deal with certain sequences of sequences
(and sequences of sequences of sequences, and so on). We respond to this
difficulty by lifting axiom (3) to “higher order” sequences. This indeed leads

∗Recall that a topological space X is a sequential space if a subset A of X is open whenever each
sequence (xn)n∈N with (xn)n∈N → x ∈ A eventually belongs to A. A sequential space is a Fréchet

space if the sequential closure induced by the topology is idempotent.
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us to the desired characterization (Theorem 3.3). En passant we show that
(1),. . . ,(4) together with the “transitivity axiom” (5) describe Fréchet spaces
(Theorem 2.5).

1. Motivation

1.1. Galois correspondences. Let T : Set → Set be a functor which
preserves monomorphisms. In particular, T i is a monomorphism for every
inclusion map i : A →֒ X. Hence we may think of TA as a subset of TX and
consequently write x ∈ TA for an element x of TX in the image of T i. Let
now X be a set and a : TX −→7 X be a relation. Given x ∈ TX and x ∈ X,
we think of xax as x converges to x, and consequently write x → x. A subset
A ⊆ X of X is called a-open if

∀x ∈ TX ∀x ∈ X (x → x & x ∈ A) ⇒ x ∈ TA.

The empty set as well as X are a-open, and so are arbitrary unions of a-open
subsets. The fact that T (A ∩ B) = TA ∩ TB for all subsets A,B of X with
A ∩ B 6= ∅ (see [Man02] for a hint) implies that also finite intersections of
a-open subsets are a-open, hence the collection T (a) of all a-open subsets
of X is actually a topology on X. Conversely, for each subset τ ⊆ PX
(being a topology or not) of the powerset PX of X we define a relation
C(τ) : TX −→7 X by putting

x → x :⇐⇒ ∀A ⊆ X (A ∈ τ & x ∈ A) ⇒ x ∈ TA

for each x ∈ TX and x ∈ X. We have constructed a pair of functions

{τ ⊆ PX}
C

//

{a : TX −→7 X}
T

oo

which are easily seen to be order-reversing and satisfy τ ⊆ T C(τ) and a ⊆
CT (a). In general, a pair of order-reversing functions ϕ : X → Y and ψ :
Y → X between ordered sets† X and Y satisfying the inequalities idX ≤ ψϕ
and idY ≤ ϕψ is called Galois correspondence. The maps ϕ and ψ can be
restricted to order-reversing isomorphisms between the subsets

Fixψϕ = {x ∈ X | x = ψϕ(x)} and Fixϕψ = {y ∈ Y | y = ϕψ(y)}.

Note that Fixψϕ is equal to the image of ψ and, likewise, Fixϕψ = imφ. We
saw already that each element of FixT C is a topology on X.

†Sets equipped with a reflexive and transitive relation ≤. Note that we do not require anti-
symmetry.
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1.2. Examples. We obtain the simplest example of such a situation by
choosing T = Id : Set → Set. Then C associates to each subset τ of PX its
specialization order defined by

x→ y :⇐⇒ ∀A ⊆ X (A ∈ τ & y ∈ A) ⇒ x ∈ A.

Here C(τ) is indeed an order relation on X and each order relation on X
is obtained that way. Therefore FixCT is the set of all order relations on
X. Turning to the topological side, the elements of FixT C are exactly those
topologies on X which are determined by their specialization order. It is
well-known that these spaces are exactly the Alexandroff spaces. Recall that
a topology is Alexandroff if it is closed under arbitrary intersections.

The ultrafilter functor U : Set → Set assigns to each set X the set UX of all
ultrafilters on X and to each function f : X → Y the function Uf : UX →
UY which takes an ultrafilter x ∈ UX to the (ultra)filter generated by its f -
image {f [A] | A ∈ x}. It is easy to see that U preserves monomorphisms. Of
course, FixT C consists now of all topologies onX, while an elegant description
of FixCT requires further notation.

Our principal interest is the study of the correspondence obtained from a
sequential functor S : Set → Set. There are various ways to define S. By
technical reasons we choose SX = XN/ ∼ the set of all sequences on X
modulo the equivalence relation

(xn)n∈N ∼ (yn)n∈N :⇐⇒ {n ∈ N | xn 6= yn} is finite,

and Sf [(xn)n∈N] = [(f(xn))n∈N]. The relation C(τ) : SX −→7 X for τ ⊆ PX
is now the expected one: [(xn)n∈N] → x if and only if (xn)n∈N belongs eventu-
ally to each A ∈ τ with x ∈ A. It is clear that this condition does not depend
on the particular representant (xn)n∈N. To simplify notation, in the sequel
we will just write (xn)n∈N, rather than [(xn)n∈N], with the understanding that
we mean the equivalence class. From the considerations above we see that
the elements of FixT C are exactly the sequential topologies on X.

We write (yn)n∈N 4 (xn)n∈N to indicate that (yn)n∈N is a subsequence of
(xn)n∈N. A little bit of care is needed here since we are talking about equiv-
alence classes of sequences. We say that (yn)n∈N is a subsequence of (xn)n∈N

if it is so beginning from some order. In other words, (yn)n∈N is equivalent
to a subsequence of (xn)n∈N in the usual sense.

1.3. The category of relations. The category Rel has sets as objects, and
a morphism from X to Y is a relation r : X −→7 Y . Composition is given by
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relational composition:

x(s · r)z :⇐⇒ ∃y ∈ Y xry & yrz

for relations r : X −→7 Y and s : Y −→7 Z and elements x ∈ X and z ∈ Z.
Then the identity arrow idX : X −→7 X is the equality relation on X. In
contrast to Set, there is a non-trivial order on Rel(X, Y ) given by inclusion.
Each map f : X → Y can be seen as the relation xfy ⇐⇒ f(x) = y, and
relational composition of two functions coincides with ordinary composition.
The transpose r◦ : Y −→7 X of a relation r : X −→7 Y is defined by yr◦x :⇐⇒
xry. Of course, the transpose f ◦ of a Set-map f : X → Y is just its inverse
image relation. We remark that each f : X → Y satisfies the inequalities
idX ≤ f ◦ · f and f · f ◦ ≤ idY , i.e. f is left adjoint to f ◦. Returning to our
examples, we have that a relation a : X −→7 X belongs to FixCT for the
identity functor (that is, a is an order relation) if and only if it satisfies

idX ≤ a and a · a ≤ a.

This result cannot be extended directly to functors different from the iden-
tity since in general we cannot compose relations a : TX −→7 X and
b : TX −→7 X. However, some adicional structure on T allows to define
a useful composition.

1.4. Monads and co-Kleisli composition. Recall that a monad T =
(T, e,m) on Set consists of a functor T : Set → Set together with natural
transformations e : Id → T (unit) and m : TT → T (multiplication) such
that the diagrams

T 3
mT

//

Tm
��

T 2

m
��

T 2
m

// T

T
eT

//

1T   A
AA

AA
AA

A T 2

m
��

T
Te
oo

1T~~}}
}}

}}
}}

T

commute. The identity monad consisting of the identity functor and identity
transformations is a trivial example of a monad. But also the ultrafilter func-
tor U can be made into a monad U = (U, e,m). The natural transformations
e : Id → U and m : U 2 → U are given by

eX(x) =
�
x = {A ⊆ X | x ∈ A} and mX(X) = {A ⊆ X | X ∈ U 2A},
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for all sets X, X ∈ U 2X and x ∈ X. Every relation r : X −→7 Y gives a
relation Tr : TX −→7 TY defined by

x(Tr)y :⇐⇒ ∃w ∈ T (Gr) (TπX(w) = x & TπY (w) = y),

where Gr ⊆ X × Y is the graph of r. For later use we describe explicitly
the extension S : Rel → Rel of the sequential functor S. For a relation
r : X −→7 Y and sequences (xn)n∈N ∈ SX and (yn)n∈N ∈ SY , we have
(xn)n∈N(Sr)(yn)n∈N if and only if xnryn for almost all n ∈ N. For an arbitrary
functor T : Set → Set we obtain only T (s ·r) ≤ Ts ·Tr for relations r : X −→

7 Y and s : Y −→7 Z, however, in case T = Id, U or S we have equality. The
natural transformations e and m become op-lax, that is, for every relation
r : X −→7 Y we have the inequalities

eY · r ≤ Tr · eX , mY · TTr ≤ Tr ·mX .

X
eX

//

_r
��

≤

TX
_Tr
��

Y eY

// TY

TTX
mX

//

_TTr
��

≤

TX
_Tr
��

TTY mY

// TY

In our examples T = Id and T = U we have even mY · TTr = Tr ·mX .
Let a : TX −→7 X and b : TX → X be relations. We define the co-Kleisli

composition of b and a as

b ∗ a := b · Ta ·m◦
X .

TX

_ a

��

TX

_ b

��

TX
�

m◦
X
//

v
66

66
66

66
6

b∗a

��
66

66
66

66
6

TTX
_Ta
��

� // TX
_ b
��

X X X

For each a : TX −→7 Y we have a ∗ e◦X = a and e◦Y ∗ a ≥ a, that is, the
relation e◦X is a lax identity for this composition. We have developed now
the language to describe the elements of FixCT for the ultrafilter monad U
exactly in the same style as for the identity monad: a : UX −→7 X belongs
to FixCT if and only if

e◦X ≤ a (Extensivity) and a ∗ a ≤ a (Idempotency).
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Note that the first inequality forces the second one to be an equality. This
presentation of FixT C is described in detail in [HT04]. The adjointness in-
equalities for the functions eX and mX make the inequalities above equivalent
to

idX ≤ a · eX (Reflexivity)) and a · Ta ≤ a ·mX (Transitivity)

respectively, which let a : UX −→7 X look like a lax Eilenberg-Moore algebra
structure for T. These algebras are introduced in [Bar70] for an arbitrary
monad T under the name relational algebras, and it is shown that for T = U
they describe exactly topological spaces. We are seeking for a similar result
for T = S, however, so far we do not know what the monad structure for S

is. Of course, for each set X there is a natural map eX : X → SX, x 7→
�
x :=

[(x)], but there seems to be no canonical candidate for the multiplication m.
It is the aim of the next section to find such a candidate.

2. The sequential monad

2.1. When convergence is unique. We start by recalling a result of
Kisyński [Kis60] which characterizes the partial functions belonging to FixCT .
A convergence space (X, a) is called L∗-space if

(0) each (xn)n∈N has at most one convergence point,
(1) ẋ→ x,
(2) (xn)n∈N → x =⇒ (∀(yn)n∈N 4 (xn)n∈N (yn)n∈N → x),
(3) (∀(yn)n∈N 4 (xn)n∈N ∃(zn)n∈N 4 (yn)n∈N (zn)n∈N → x) =⇒

(xn)n∈N → x

for all x ∈ X and (xn)n∈N ∈ SX.

Theorem ([Kis60]). Let (X, a) be a convergence space satisfying (0). Then
(X, a) is a L∗-space if and only if a is a fixed point of the Galois correspon-
dence.

The corresponding topological spaces are the sequentially Hausdorff se-
quential spaces. It can be easily seen that C(τ) satisfies the conditions (1),
(2) and (3) for each τ ∈ PX, hence each a ∈ FixCT must satisfy them. How-
ever, these conditions are in general not sufficient to guarantee a ∈ FixCT as
the following example shows.

Example. Let X = {1, 2, 3} and define

(xn)n∈N → x :⇐⇒ (xn)n∈N ∈ S({x, x+ 1} ∩X).
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Then (1), (2) and (3) are fulfilled. We have
�

3 → 2 and
�

2 → 1 but not
�

3 → 1,
which shows that this convergence on X cannot come from a topology.

The insufficiency of (1), (2) and (3) does not come as a surprise since we
do not require any diagonal condition yet.

2.2.Natural order on TX. We learned from [Sea05] that for each monomor-
phism preserving functor T : Set → Set there is a canonical order relation on
TX:

x ≥ y :⇐⇒ ∀A ⊆ X (x ∈ TA =⇒ y ∈ TA)

for all x, y ∈ TX. In the examples discussed so far we obtain the expected
order: the equality relation if T = Id or T = U , whereby for T = S we have
(xn)n∈N ≥ (yn)n∈N if and only if, for each N ∈ N, there exists some M ∈ N
such that {yn | n ≥M} ⊆ {xn | n ≥ N}.

This construction can be generalized further. Given monomorphism pre-
serving functors R, T : Set → Set, as above we define, for each set X, a
relation kX : RX −→7 TX by putting

x(kX)y :⇐⇒ ∀A ⊆ X (x ∈ RA =⇒ y ∈ TA)

for all x ∈ RX and y ∈ TX. For instance, if we choose T = U and R = Id or
R = U 2, we obtain exactly the unit and the multiplication of the ultrafilter
monad. This encourages us to define diagonal sequences in the same way.

2.3. Diagonal sequences. Motivated by the considerations above, we say
that x = (xn)n∈N ∈ SX is a diagonal sequence of X = (xnm)n,m∈N ∈ SSX
(written as X(mX)x) if, for all A ⊆ X, X ∈ SSA implies x ∈ SA. Hence
(xn)n∈N is a diagonal of (xnm)n,m∈N if and only if, for each N ∈ N and each
family (mn)n≥N of natural numbers, there exists M ∈ N such that {xn |
n ≥ M} ⊆ {xn,m | n ≥ N,m ≥ mn}. At this point it becomes clear why we
consider equivalence classes of sequences and not just the functor S ′X = XN.
In the latter case we obtain that (xn)n∈N is a diagonal of (xnm)n,m∈N if and
only if {xn | n ∈ N} ⊆ {xn,m | n,m ∈ N}. This diagonal considers only
the set of elements of a sequence regardless of their position in the sequence,
hence it is not the “right one” for our study of sequential convergence in
general. However, it turns out to be useful in the case of Fréchet spaces (see
2.5).
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Note that mX : SSX −→7 SX is in general just a relation and not a
function as in the examples above. In fact, it is a very weak relation in the
sense that most of the double sequences do not have any diagonal sequence
at all. However, we have that

SX
�eSX

//

id

≤

GG
GG

GG
GG

G

GG
GG

GG
GG

G
S2X

_mX

��

SX

and SX
�SeX

//

id

≤

GG
GG

GG
GG

G

GG
GG

GG
GG

G
S2X

_mX

��

SX.

In other words, every sequence x = (xn)n∈N is diagonal to the double sequence

eSX(x) =
�

(xn)n∈N which is constant (xn)n∈N as well as to the double sequence

SeX(x) = (
�
xn)n∈N formed by the constant sequences

�
xn. We add now the

idempotency axiom a ∗ a ≤ a to our list. In this setting it reads as

(4) [(xnm)m,n∈N
m

−→ (yn)n∈N
n

−→ x] and [(xnm)m,n∈N(mX)(xk)k∈N] =⇒
(xk)k∈N → x.

We remark that a ∗ a ≤ a is not equivalent to a · Sa ≤ a ·mX , since mX

is in general not a function. It is easy to see that (1) and (4) together imply
(2). We show now that (4) can be reduced to two simpler axioms. First we
state some auxiliary results.

Lemma. Let X be a set and a : SX −→7 X. Then the following assertions
hold.

(a) Assume that (X, a) satisfies (2) and (3). Let (xn)n∈N → x in (X, a)
and ϕ : N → N be a bijection. Then (xϕ(n))n∈N → x.

(b) Let (xnm)n,m∈N ∈ S2X and (ϕn : N → N)n∈N be a family of bijections. If
(xn)n∈N is a diagonal of (xnm)n,m∈N, then it is a diagonal of (xnϕ(m))n,m∈N

as well.

Proposition. Under (1), (2), (3), axiom (4) is equivalent to

(4a) (
�
xn)n∈N → (yn)n∈N → x ⇒ (xn)n∈N → x (that is: a · Sa · SeX ≤ a),

(4b)
�

(xm)m∈N → (yn)n∈N → x ⇒ (xn)n∈N → x (that is: a ·Sa · eSX ≤ a).

Proof : Clearly, (4) implies (4a) and (4b) since (xn)n∈N is a diagonal sequence

of both (
�
xn)n∈N and

�

(xn)n∈N. Suppose now that (xnm)m,n∈N → (yn)n → x
and (xn)n∈N is a diagonal sequence of (xnm)m,n∈N. From (2) it follows that
we can assume that {xn | x ∈ N} = {xnm | n,m ∈ N}. According to
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(3), we must show that each subsequence of (xn)n∈N contains a subsequence
which converges to x. Since each subsequence of (xn)n∈N is a diagonal of
(xnm)m,n∈N as well, it is enough to show that (xn)n∈N contains a subsequence
which converges to x. Furthermore, since each sequence contains either a
constant or an injective subsequence, we assume that (xn)n∈N is injective or
constant. In the latter case we obtain immediately (xn)n∈N → x from any of
the conditions (4a) and (4b), since (xnm)m,n∈N is constant too.

Assume now that (xn)n∈N is an injective sequence. As above, each of the
sequences (xnm)m∈N (n ∈ N) either has a constant subsequence or an injective
one. Suppose first that P = {n ∈ N | (xnm)m∈N has a constant subsequence}
is infinite. Then, by (4a), every sequence (zn)n∈P converges to x, where zn
appears infinitely many times in (xnm)m∈N. If we are able to choose (zn)n∈P so
that {zn | n ∈ P} is infinite, we conclude the proof. If not, then, beginning
from some order p ∈ P, there is only a finite set {z1, . . . , zk} of possible
constants. We delete the sequences (x1

m)m∈N, . . . , (x
p−1
m )m∈N and all elements

in {z1, . . . , zk} from (xnm)m,n∈N. Then (xn)n∈N is still a diagonal of the so
obtained sequence of sequences, and the next case applies. Assume now that
(xnm)m∈N is essentially injective, for almost all n ∈ N. We can safely assume
that (xnm)m∈N is injective and, by the lemma above, we may even assume
that (xnm)m∈N 4 (xk)k∈N, for all n ∈ N. Since (x1

m)m∈N is a subsequence
of (xk)k∈N, it is also a diagonal of (xnm)m,n. This fact implies that there is
n2 > 1 such that (xn2

m )m∈N and (x1
m)m∈N have a common subsequence x2.

Iterating this process, we obtain a sequence of sequences (xl)l∈N in X where
xl+1 4 xl and xl 4 (xnl

m)m∈N. We define now z1 = x1
m and zn+1 is the first

element of xn+1 different from z1, . . . , zn. By construction, for all l ∈ N,
(zn)n∈N 4 xl 4 (xnl

m)m∈N 4 (xk)k∈N. Applying (4b), we obtain (zn)n∈N → x
which concludes the argument.

It is easy to see that each C(τ) satisfies also (4). However, (1),. . . ,(4) are
still not sufficient to characterize FixCT , as we show in the next subsection.

2.4. A counter example. We construct now a convergence space (X, a)
which satisfies (1),. . . ,(4) and where a is not induced by a topology on X.
This counter example motivates the modification of axiom (3) studied in the
next section.

Let X = N ∪ PinfN ∪ {⋆}, where PinfN is the set of infinite subsets of N.
For A,B ⊆ N, we define A ≤ B if A\B is finite. The set X is equipped with
the following convergence structure.
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(a) ẋ→ x, for all x ∈ X.
From now we consider only sequences with no constant subsequences.

(b) Let (xn)n∈N ∈ SN. Then (xn)n∈N → A if {xn | n ∈ N} ≤ A.
(c) Let (An)n∈N ∈ S(PinfN). Then (An)n∈N → ⋆ if

∀B ∈ PinfN ∃k ∈ N ∀n ≥ k B � An.

There are no other convergences. One easily verifies (1), (2), (3), (4a) and
(4b).

By definition, no sequence in N converges to ⋆. On the other hand, let A be
an infinite subset of N. From A ∼= N × N we obtain a sequence of sequences
in A converging to a sequence in PinfN, which in turn converges to ⋆. This
shows that ⋆ belongs to the closure of each infinite subset of N, hence (n)n∈N

converges to ⋆ in the induced topology.
Why do we have this counter example? The main reason is that we have

a sequence of limit points of subsequences of (n)n∈N converging to a point to
which (n)n∈N does not converge. To avoid this problem, it is useful to have
a second order version of axiom (3):

(3.2) [∀(yk)k∈N 4 (xn)n∈N ∃(znm)m,n∈N 4 (yk)n∈N (znm)n∈N → x] =⇒
(xn)n∈N → x.

By (znm)m,n∈N 4 (yk)k∈N we mean that every sequence (znm)m∈N is a subse-
quence of (yk)k∈N, for almost all n ∈ N (see also Subsection 3.2). Clearly,
(3.2) and (1) imply (3). However, it is possible to construct a convergence
structure where (1), (2), (3.2) and (4) are satisfied, but it is still not a con-
vergence structure of a topological space. This indicates that it is necessary
to consider a more general version of axiom (3). We will do so in Section 3.
Finally, for later use we point out that (3.2) implies (4b).

2.5. Fréchet spaces. Although adding axiom (4) to the previous three is not
sufficient to characterize sequential spaces, it is very helpful to characterize
convergence relations of Fréchet spaces. As before, the partial functions
belonging to FixCT and inducing a Fréchet topology are well known [Eng89,
p. 64]. These spaces are called S∗-spaces, and are the L∗-spaces satisfying in
addition

[(xnm)n,m∈N
m

−→ (yn)n∈N
n

−→ x] =⇒

∀A ⊆ X ((xnm)n,m∈N ∈ S2A =⇒ ∃(xk)k∈N ∈ SA (xk)k∈N → x). (5)
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Axiom (5) essentially states that the sequential closure induced by the con-
vergence space is idempotent.

Remark. The formulation of axiom (5) suffers some complications due to the
fact that we consider equivalence classes of sequences. Of course, A ⊆ X
with (xnm)n,m∈N ∈ S2A is essentially {xn,m | n,m ∈ N}. Moreover, when
considering S ′ and the corresponding diagonal relation m′

X (see 2.3), then
(xk)k∈N is just a diagonal of (xnm)n,m∈N. We find it interesting to observe that,
in this notation, (5) can be written as the transitivity condition a · S ′a ≤
a ·m′

X .

We have seen before that (1),. . . ,(4) do not characterize sequential spaces,
basically since we cannot deal with certain sequences of subsequences. How-
ever, the problem disappears if we add (5), since then (3.2) is provable.
Having said this, our next theorem does not come as a surprise.

Theorem. A convergence space is a convergence of a Fréchet space if and
only if satisfies (1), (2), (3), (4) and (5).

The proof of this theorem is not hard, moreover, it is a consequence of
Theorem 3.3. For these reasons we do not include a proof here. We notice
that (4) can be replaced by (4a), because (3) and (5) imply (3.2), which in
turn implies (4b).

3. The characterization

3.1. Iteration of monads. The insufficiency of (1),. . . ,(4) has its roots in
the fact that the sequential closure is not idempotent. To make it idempotent
requires one to consider sequences of sequences, and so on. This fact must
be reflected in our axioms.

We define, for all ordinals α ≤ β, functors Sα : Set → Set and natural
transformations eα,β : Sα → Sβ by putting

S0 = Id,

Sα+1 = SSα, eα,α+1 = eSα,

Sλ = colimα<λ S
α, eα,λ = colimit injection.

The latter colimit is taken pointwise in Set. It is important to observe that
it is also a lax colimit in Rel in the following sense. For every family (cα :
SαX −→7 Z)α<λ satisfying cα+1 ·e

α,α+1
X ≥ cα, there is a relation c : SλX −→7 Z

such that c ≥ cα for each ordinal α < λ. Moreover, c is universal with this



AXIOMS FOR SEQUENTIAL CONVERGENCE 13

property: it holds c ≤ c′ for any c′ : SλX −→7 Z such that c′ ≥ cα for each
ordinal α < λ. We denote the induced relation c by [cα]α<λ. Recall that

Rel is selfdual, hence ((eα,λX )◦ : SλX −→7 SαX)α<λ is a lax limit in Rel. The
induced relation d : Z −→7 SλX of a family (dα : Z −→7 SαX)α<λ is denoted
by 〈dα〉α<λ.

Given a reflexive a : SX −→7 X, we define relations aα : SαX −→7 X by
putting

a0 = a · eX , aα+1 = a · Saα, aλ = [aα]α<λ.

In the limit step we make use of the fact that (aα)α<λ forms a lax cocone in
the sense above. We extend the notation used so far and write x → x instead
of x(aα)x, for x ∈ SαX and x ∈ X. For A ⊆ X, we define σ(A) = {x ∈ X |
∃(xn)n∈N ∈ SA (xn)n∈N → x} and put

σα+1(A) = σ · σα(A), σλ(A) =
⋃

α<λ

σα(A), σ̂(A) = σω1(A).

Lemma. Let a : SX −→7 X be reflexive and A ⊆ X. For every ordinal α
and x ∈ X, the following are equivalent:

(a) x ∈ σα(A);
(b) ∃x ∈ SαA x → x.

Suppose that (X, a) satisfies (1). It is not hard to see that the closure
of A ⊆ X in the induced topology is given by σ̂(A). Moreover, a sequence
(xn)n∈N converges to x in the induced topology if and only if x belongs to the
closure of {xnk

| k ∈ N}, for each subsequence (xnk
)k∈N of (xn)n∈N. Hence we

have the following

Proposition. For a : SX −→7 X, the following are equivalent:

(a) a ∈ FixCT ;
(b) a satisfies (1) and

(∀y 4 (xn)n∈N∀A ⊆ X(y ∈ SA ⇒ ∃α∃z ∈ SαA z → x)) ⇒ (xn)n∈N → x.
(*)

We will show that (*) can be substituted by (2), (4a) and a “higher order”
version of (3).
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3.2. Higher order sequences. First we extend the subsequence relation 4
to “higher order sequences”.

(a) For x, y ∈ X we put x 4 y if x = y.
(b) For (xn)n∈N, (yn)n∈N ∈ Sα+1X we define (xn)n∈N 4 (yn)n∈N if there

exists some subsequence (ynk
)k∈N of (yn)n∈N such that, for each k ∈ N,

xk 4 ynk
.

(c) 4: SλX −→7 SλX is the lax colimit of (4: SαX −→7 SαX)α<λ.

We are now able to introduce a “higher order” version of (3):

(3’) (∀y 4 (xn)n∈N ∃α∃z 4 e1,α
X (y) z → x) ⇒ (xn)n∈N → x.

One observes immediately that our new axiom (3’) is very similar to (*).
The main difference is that here z has to respect the order of the elements
in y instead of being merely formed by elements of y. We will show that (3’)
together with (1), (2) and (4a) indeed characterize FixCT . To do so, we need
some further notation.

We define relations # : SαX −→7 SαX as follows.

(a) For x, y ∈ X we put x#y if x = y.
(b) For (xn)n∈N, (ym)m∈N ∈ Sα+1X we define (xn)n∈N#(ym)m∈N if there

exist subsequences (xnk
)k∈N and (ymk

)k∈N of (xn)n∈N and (ym)m∈N re-
spectively such that, for all k ∈ N, xnk

#ymk
.

(c) # : SλX −→7 SλX is the lax colimit of (# : SαX −→7 SαX)α<λ.

The following result can be easily proven by transfinite induction.

Lemma. For all ordinals α and x, y ∈ SαX, we have x#y if and only if there
exists some z ∈ SαX such that z 4 x and z 4 y.

Finally, we extend the diagonal relation mX to “higher order sequences”.
Recall that (4) is equivalent to (4a) and (4b), and (4b) is implied by (3’).
Therefore it will be sufficient to consider Se◦X instead of mX . For ordinals α

and β we define relations mα,β
X : Sα −→7 Sβ by putting

(a) mα,β
X = 0 if α < β,

(b) m0,0
X = idX and m1,0

X = (4 ·eX)◦,

(c) mα+1,β+1
X = Smα,β

X

(d) mλ,β
X = [mα,β

X ]α<λ,

(e) mλ,λ
X = 〈mλ,β

X 〉β<λ.

Hence (xn)n∈N(m1,0
X )x if {n ∈ N | xn = x} is infinite. In the sequel we will

simply write x  y instead of x(mα,β
X )y. It follows easily from (2) and (4a)
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that  preserves convergence, that is, we have y → x whenever x → x and
x x.

Proposition. Let Y be a set and y ∈ SY such that, for each x ∈ SY , we
have x#y or x x for some x ∈ Y . Then the following statements hold.

(a) For each n ∈ N (n ≥ 1) and x ∈ SnY , we have x x′ ∈ SkY where

k = 0 or 1 ≤ k ≤ n and x′#e1,k
Y (y).

(b) For each infinite ordinal α = λ+ n, with n ∈ N and λ a limit ordinal,
and each x ∈ SαY , there exists some z with x z where

z ∈ SαY and z#e1,α
Y (y) or z ∈ SnY.

Proof : To show (a), we prove by induction that, for each n ≥ 1 and x ∈ SnY ,
we have x#e1,n

Y (y) or x  x′ ∈ Sn−1Y . For n = 1 this is just the hypothesis.
Assume now that the assertion is true for n ≥ 1 and let (xm)m∈N ∈ Sn+1Y . If
xm#e1,n

Y (y) for infinitely manym ∈ N, then (xm)m∈N#e1,n+1
Y (y). Otherwise we

have xm  x′m ∈ Sn−1Y for almost all m ∈ N. Hence (xm)m∈N  (x′m)m∈N ∈
SnY

To see (b), let x ∈ SαY and assume that the assertion is true for all infinite
ordinals smaller then α. Assume first that α = λ is a limit ordinal. Hence
x ∈ SβY for some β < λ and the result follows from (a) (in case β ∈ N)
or from the induction hypothesis. Assume now that α = λ + n + 1 and
x = (xm)m∈N with xm ∈ Sλ+nY for each m ∈ N.

1st case: For infinitely many m ∈ N, xm  zm where zm#e1,λ+n
Y (y).

Putting zm = xm for all other m ∈ N, we have (xm)m∈N  (zm)m∈N and

(zm)m∈N#e1,λ+n+1
Y (y).

2nd case: For almost all m ∈ N we have xm  zm ∈ SnY . Then
(xm)m∈N  (zm)m∈N ∈ Sn+1Y

3.3. Theorem. Let a : SX −→7 X. Then a ∈ FixCT if and only if a satisfies
(1), (2), (3’) and (4a).

Proof : Clearly, each a ∈ FixCT satisfies these axioms. To prove the converse,
assume that a : SX −→7 X satisfies (1), (2), (3’) and (4a). We have to show
that a satisfies (*). Let (xn)n∈N ∈ SX, x ∈ X and assume that (xn)n∈N does

not converges to x. Hence
�
xn 9 x for almost all n ∈ N, and then without

loss of generality we assume that it is true for all n ∈ N. If {n ∈ N | xn = y}

is infinite for some y ∈ X, we chose A = {y} and y =
�
y. Clearly we have
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∀α∀z ∈ SαA z 9 x.
Assume now that {n ∈ N | xn = y} is finite for each y ∈ X. We put
A = {xn | n ∈ N} and y = (xn)n∈N. Note that Y = A and y ∈ SY
satisfy the hypothesis of Proposition 3.2. Let α be an ordinal and z ∈ SαA.
Suppose that z → x. From Proposition 3.2 we deduce that z  y ∈ A or

z  z′#e1,β
A (y). The first case is impossible since

�
y 9 x. In the latter case

there exists some z′′ such that z′′ 4 z′ and z′′ 4 e1,β
A (y). But then z′′ → x

and z′′  y = (xn)n∈N, hence (xn)n∈N → x which contradicts our assumption
(xn)n∈N 9 x.

4. Further notes

4.1. A new diagonal. Axiom (4) is a very natural diagonal axiom in this
context, but Theorem 3.3 shows that we do not need all of its strength.
Instead of (4), one uses (4a). To keep, simultaneously, condition (4a) and
the parallelism with the ultrafilter case, one might use just a particular case
as definition of diagonal sequence. That is, x = (xn)n∈N ∈ SX is a diagonal
sequence of X = (xnm)n,m∈N ∈ SSX (we write X(nX)x) if there is a k ∈ N such

that, for all n ≥ k, [
�
xn] = [(xnm)m∈N]. Defining the co-Kleisli composition

∗ with respect to the new diagonal nX , we can rewrite condition (4a) as
a ∗ a ≤ a.

Notice that X ∈ SSX has a diagonal, in the new sense, if and only if

X = [(
�
xn)n∈N] for a sequence (xn)n∈N. With this approach we recover the

uniqueness of the diagonal, if exists. This happens mainly because most of
the elements of SSX have no diagonal sequence.

4.2. Fréchet spaces. We have seen in Section 2.5 that our axioms fulfil
well the propose of describing Fréchet spaces. Axiom (5) introduced there is
closer to our intuitive idea of diagonal sequence than Axiom (4) and in its
presence (4a) can be replaced by a weaker condition.

Proposition. Under (1), (2), (3) and (5), axiom (4a) is equivalent to

(4−) (
�
xn)n∈N →

�
x ⇒ (xn)n∈N → x.

Condition (4−) might also be written in terms of co-Kleisli composition
with respect to nX , i.e. it is equivalent to e◦X ∗ a ≤ a.

Proof : Clearly (4a) implies (4−). Let (xn)n∈N be a sequence such that there

is (yn)n∈N with (
�
xn)n∈N → (yn)n∈N → x . We want to show that (xn)n∈N
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converges to x. According to (2) and (3), it is only necessary to prove that a
subsequence of (xn)n∈N converges to x. Axiom (5) implies that either (xn)n∈N

has a convergent subsequence to x or an infinite number of the members of
the sequence must converge to x. In the second case, (4−) implies the desired
convergence.

Corollary. A convergence space is a convergence of a topological Fréchet T1-
space if and only if satisfies (1), (2), (3), (5) and the constant sequences have
unique limits (that is idX = a · eX).

4.3. Pretopological spaces. There are several equivalent ways of describ-
ing pretopological spaces. Here we use the one with closure operators. We
say that (X, k) is a pretopological space if k is grounded (k(∅) = ∅), extensive
(A ⊆ k(A)), and additive (k(A ∪ B) = k(A) ∪ k(B)). A sequence (xn)n∈N

converges to x if, for every (yn)n∈N 4 (xn)n∈N, x ∈ k({yn | n ∈ N}). Now
we will see which convergence spaces are induced by pretopologies. Clearly,
among them are the ones coming from a topology. As for topological spaces,
they are the fixed points of a Galois correspondence, namely of

{k ∈ PXPX | k is extensive}
C

//

{a : SX −→7 X | a satisfies (1),(2)}
σ

oo .

Theorem. ([Kou85]) Let a : SX −→7 X be a convergence in X satisfying
(1) and (2). Then a ∈ FixCσ if and only if it satisfies (3) and (4−).

This corresponds exactly to the ultrafilter case, where the fixed points
of the corresponding Galois correspondence are characterized as those a :
UX −→7 X which satisfy e◦X ∗ a ≤ a (see [Hof05a]).

Corollary. ([Čec66]) A convergence space is a convergence of a pretopological
T1-space if and only if satisfies (1), (2), (3) and the constant sequences have
unique limits.

Remark. Since for sequential spaces the sequential closure need not be idem-
potent, they are not fixed points of this Galois correspondence via the natural
embedding from Top to PrTop. However, the sequential closure provides an
embedding from FixσT to FixσC . The topological spaces characterized by
sequential convergence in both ways are exactly the sequential spaces with
idempotent sequential closure, that is the Fréchet spaces.
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