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Abstract: In this note it is shown that the weak solutions of the Stefan problem
for the singular p-Laplacian are continuous up to {t = 0}. The result is a follow-up
to a recent paper of the authors concerning the interior regularity.

Keywords: Singular PDE, boundary regularity, intrinsic scaling, Stefan problem.

AMS Subject Classification (2000): 35B65, 35D10, 35K65.

1. The problem and the regularity result
In a recent paper (cf. [5]), the authors obtained interior continuity results

for the weak solutions of the singular parabolic PDE

∂tη − ∆pθ = 0 , η ∈ γ(θ) ; 1 < p < 2 , (1)

where γ is a maximal monotone graph and ∆pu = div |∇u|p−2∇u is the p-
Laplacian. When γ has a single jump at the origin, this equation generalizes
to a nonlinear setting the modelling of the classical Stefan problem that
corresponds to the case p = 2 and describes a phase transition at constant
temperature for a substance obeying Fourier’s law. Equation (1) is singular
both in space and time since 1 < p < 2 and, roughly speaking, γ′(0) = ∞.

In this note it is shown that, for continuous initial data, the continuity re-
sult holds up to {t = 0} so that, in a way, the solution inherits the continuity
properties of the boundary data. We consider a regularized approximated
problem and show that the sequence of approximate solutions is equiconti-
nuous up to {t = 0}. Due to the singularities in the equation we need to
use intrinsic scaling to uniformly reduce the oscillation of the approximate
solutions in a sequence of shrinking cylinders laying at the bottom of the
space-time domain. For a modern account of intrinsic scaling and related
matters, we suggest the reading of the recent survey [4].
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To fix ideas, assume that an incompressible material (say pure water) oc-
cupies a bounded domain Ω ⊂ R

N , with two phases, a solid phase correspon-
ding to the region {θ < 0} and a liquid phase corresponding to the region
{θ > 0}, separated by an interface Φ = {θ = 0}, the free boundary. We
denote ΩT = Ω × (0, T ) and Σ = ∂Ω × (0, T ), for some T > 0. The problem
in its strong formulation reads

(P)







































∂t θ = ∆pθ in ΩT \ Φ = {θ < 0} ∪ {θ > 0}

[

|∇θ|p−2∇θ
]+

−
· n = λw · n on Φ = {θ = 0}

θ = 0 on Σ

θ(0) = θ0 in Ω × {0}

where n is the unit normal to Φ, pointing to the solid region, w the velocity
of the free boundary and λ = [e]+− > 0 the latent heat of phase transition (e
is the internal energy), with [ . ]+− denoting the jump across Φ.

As usual, a weak formulation, in which all explicit references to the free
boundary are absent, is obtained considering the maximal monotone graph
H associated with the Heaviside function, and introducing a new unknown
function, the enthalpy η, such that

η ∈ γ(θ) := θ + λH(θ) .

A formal integration by parts against appropriate test functions and the
replacement of the initial condition for θ by a more adequate initial condition
for η, leads to an integral relation that we adopt as definition of weak solution.

Definition 1.1. We say that (η, θ) is a weak solution of problem (P), if

θ ∈ Lp
(

0, T ;W 1,p
0 (Ω)

)

∩ L∞(ΩT ) ;

η ∈ L∞(ΩT ) and η ∈ γ(θ) , a.e. in ΩT ;

−

∫

ΩT

η ∂tξ +

∫

ΩT

|∇θ|p−2∇θ · ∇ξ =

∫

Ω

η0 ξ(0) , ∀ξ ∈ T (ΩT ) .
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The space of test functions we are considering is

T (ΩT ) :=

{

ξ ∈ Lp
(

0, T ;W 1,p
0 (Ω)

)

: ∂tξ ∈ L2(ΩT ) , ξ(T ) = 0

}

,

and we assume that

η0 ∈ γ(θ0) , and ∃M > 0 : |θ0(x)| ≤M , a.e. x ∈ Ω . (2)

Let 0 < ǫ≪ 1 and consider the bilipschitzian function

γǫ(s) = s+ λHǫ(s) ,

where Hǫ is a C∞-approximation of the Heaviside function. Taking also
functions θ0ǫ ∈ W 1,p(Ω) such that

θ0ǫ → θ0 , γǫ(θ0ǫ) → η0 in Lp(Ω) and |θ0ǫ| ≤M , a.e. in Ω

we define a sequence of approximated problem as follows

(Pǫ): For each 0 < ǫ≪ 1, find a function

θǫ ∈ H1
(

0, T ;L2(Ω)
)

∩ L∞
(

0, T ;W 1,p
0 (Ω)

)

∩ L∞(ΩT )

such that

−

∫

ΩT

γǫ(θǫ) ∂tξ+

∫

ΩT

|∇θǫ|
p−2∇θǫ ·∇ξ =

∫

Ω

γǫ(θ0ǫ) ξ(0) , ∀ξ ∈ T (ΩT ) . (3)

In the presence of the regularity required, equation (3) can be shown to be
equivalent to the two conditions: θǫ(0) = θ0ǫ and, for a.e. t ∈ (0, T ),
∫

Ω×{t}

∂t[γǫ(θǫ)] ϕ+

∫

Ω×{t}

|∇θǫ|
p−2∇θǫ · ∇ϕ = 0 , ∀ϕ ∈W 1,p

0 (Ω) . (4)

It was shown in [7] that this approximated problem has a unique solution
and enough a priori estimates were derived to pass to the limit and obtain a
solution of the original problem. In particular, the sequence of approximate
solutions was shown to be equibounded.

We show here that there exists a uniform, i.e. independent of ǫ, modulus of
continuity for θǫ up to {t = 0} and this will allow us to obtain a continuous
solution up to {t = 0} for the original problem as a consequence of Ascoli’s
theorem. We need to assume, in addition to (2), that

θ0 ∈ C(Ω) and (θ0ǫ)ǫ is equicontinuous. (5)

This means that, over a compact K ⊂ Ω, each θ0ǫ and θ0 have the same
modulus of continuity.
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We will prove the following regularity result.

Theorem 1.2. The sequence (θǫ)ǫ is equicontinuous up to {t = 0}. Then

the weak solution of problem (P ) is continuous up to {t = 0}. Moreover,

for any compact K ⊂ Ω, there exists a non-decreasing continuous function

ωK : R
+ → R

+, ωK(0) = 0, depending only upon the data and the modulus

of continuity of θ0, such that

|θ(x1, t1) − θ(x2, t2)| ≤ ωK

(

|x1 − x2| + |t1 − t2|
1
p

)

,

for every pair of points (x1, t1), (x2, t2) ∈ K ′ × [0, T ], and every compact

K ′ ⊂ K.

In face of the recent results of [5], we clearly only need to prove the conti-
nuity at t = 0.

2. Energy and logarithmic estimates near {t = 0}
The building blocks of regularity theory leading to continuity results are

energy and logarithmic estimates. These are the fundamental tools to proof
Proposition 3.1 and will be derived next.

The crucial observation here is that, when deriving estimates for (1) in
cylinders laying at the bottom of ΩT , the term involving (θǫ − k)± with
power one, is absent, unlike in the interior case, which strongly simplifies the
analysis. This is due to the choice of an independent of time cutoff function,
which suffices for our purposes, and an appropriate selection of levels k,
according to the initial data.

Given a point x0 ∈ R
N , Kρ(x0) denotes theN -dimensional cube with centre

at x0 and wedge 2ρ:

Kρ(x0) :=

{

x ∈ R
N : max

1≤i≤N
|xi − x0i| < ρ

}

.

Fix (x0, t0) ∈ ΩT and consider the cylinder

(x0, t0) +Q(τ, ρ) = Kρ(x0) × (t0 − τ, t0)

where τ is such that t0 − τ = 0 so the cylinder lies at the bottom of ΩT .
Consider a piecewise smooth cutoff function ξ, independent of t ∈ (0, t0),
satisfying

0 ≤ ξ ≤ 1 , |∇ξ| <∞ and ξ(x) = 0 , x /∈ Kρ(x0) . (6)
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In the weak formulation (4), take ϕ = ± (θǫ − k)± ξp ∈ W 1,p
0 (Kρ(x0)) and

then integrate in time over (0, t), for t ∈ (0, t0). Since

±∂t (γǫ(θǫ)) (θǫ−k)± = ±γ′ǫ(θǫ)∂tθǫ(θǫ−k)± = ∂t

(

∫ (θǫ−k)±

0

γ′ǫ(k ± s) s ds

)

,

recalling the t-independence of ξ and the definition of γǫ, we obtain the
following bound from below for the term involving the time derivative

1

2

∫

Kρ(x0)×{t}

(θǫ − k)2
± ξ

p − 2(M + λ)

∫

Kρ(x0)×{0}

(θǫ − k)± ξ
p . (7)

Observe that, if we choose

k ≥ sup
x∈Kρ(x0)

θ0ǫ(x) (8)

when working with (θǫ − k)+, and

k ≤ inf
x∈Kρ(x0)

θ0ǫ(x) (9)

for (θǫ − k)−, the second term of (7) vanishes. On the other hand, the term
concerning the space derivatives is estimated above by

1

2

∫ t

0

∫

Kρ(x0)

|∇(θǫ − k)±|
p ξp − C(p)

∫ t

0

∫

Kρ(x0)

(θǫ − k)p
± |∇ξ|p

using Young’s inequality with ε = (2(p− 1))
p−1

p . We thus obtain

Proposition 2.1. There exists a constant C, that can be determined a priori

in terms of the data and independently of ǫ, such that for every (x0, t0) ∈ ΩT ,

for every cylinder (x0, t0) +Q(τ, ρ) such that t0 − τ = 0, and for every level

k verifying (8) or (9),

sup
0<t<t0

∫

Kρ(x0)×{t}

(θǫ − k)2
± ξ

p +

∫ t0

0

∫

Kρ(x0)

|∇(θǫ − k)±|
p ξp

≤

∫ t0

0

∫

Kρ(x0)

(θǫ − k)p
− |∇ξ|p . (10)

Now consider the logarithmic function

Ψ± = Ψ
(

H±
k , (θǫ − k)±, c

)

=

(

ln

(

H±
k

H±
k + c− (θǫ − k)±

))

+

, 0 < c < H±
k
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where

H±
k = ess sup

(x0,t0)+Q(τ,ρ)

(θǫ − k)± .

In the weak formulation (4) take

ϕ =
[

(

Ψ±
)2
]′

ξp = 2Ψ±
(

Ψ±
)′
ξp ,

where ξ is defined as in (6). Observing that














Ψ+(x, 0) = 0 for k ≥ sup
x∈Kρ(x0)

θ0ǫ(x)

Ψ−(x, 0) = 0 for k ≤ inf
x∈Kρ(x0)

θ0ǫ(x) ,

and using Young’s inequality with ε = (2(p− 1))
p−1

p we arrive at

Proposition 2.2. There exists a constant C, determined a priori only in

terms of the data and independently of ǫ, such that for every (x0, t0) ∈ ΩT ,

for every cylinder (x0, t0) +Q(τ, ρ) such that t0 − τ = 0 and for every level k
verifying (8) or (9),

sup
0<t<t0

∫

Kρ(x0)×{t}

(

Ψ±
)2
ξp ≤

∫ t0

0

∫

Kρ(x0)

Ψ±
∣

∣

∣

(

Ψ±
)′
∣

∣

∣

2−p

|∇ξ|p . (11)

3. Reduction of the oscillation in rescaled cylinders
Fix (x0, 0) ∈ Ω × {0}, and take R > 0 such that K2R(x0) ⊂ Ω. By

translation, we may assume that x0 = 0. Introduce the cylinder

Q (Rp, 2R) := K2R × (0, Rp)

and define

µ+ =ess sup
Q(Rp,2R)

θǫ ; µ− = ess inf
Q(Rp,2R)

θǫ ; ω =ess osc
Q(Rp,2R)

θǫ = µ+ − µ− .

Construct the cylinder

Q (a0R
p, R) = KR × (0, a0R

p) , a0 =
( ω

2m

)2−p

,

where m > 1 is to be chosen. Without loss of generality, we may assume
that ω

2m ≤ 1 so that the following relations hold:

Q (a0R
p, R) ⊂ Q (Rp, 2R) and ess osc

Q(a0R
p,R)

θǫ ≤ ω .
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The proof of Theorem 1.2 is a well-known consequence of the following
iterative argument.

Proposition 3.1. There exist constants σ ∈ (0, 1), and C,m > 1, that can

be determined a priori only in terms of the data, such that constructing the

sequences
{

ω0 = ω
ωn+1 = σ ωn

and

{

R0 = R
Rn+1 = R

Cn

and the family of boxes

Qn = (anR
p
n, Rn) , an =

(ωn

2m

)2−p

,

we have

Qn+1 ⊂ Qn and ess osc
Qn

θǫ ≤ max

{

ωn, 2 ess osc
KRn

θ0ǫ

}

, (12)

for all n = 0, 1, 2, . . ..

To prove Proposition 3.1, assume first that both inequalities

µ+ −
ω

4
≤ µ+

0 := ess sup
KR

θ0ǫ and µ− +
ω

4
≥ µ−0 := ess inf

KR

θ0ǫ (13)

hold. Subtracting the second inequality from the first one we get

ω

2
≤ µ+

0 − µ−0 = ess osc
KR

θ0ǫ .

and the proposition is trivially proved.
Without loss of generality, assume that the second inequality in (13) fails.

Then the levels k = µ− + ω
2s , for s ≥ 2, verify k ≤ µ−0 and, consequently,

the energy and logarithmic estimates (10) and (11), respectively, hold for
(θǫ − k)−. The next result has a double scope: it determines the parameter
m that defines the height of the constructed initial cylinder and defines a
level such that the subset of Q

(

a0R
p, R

2

)

where θǫ is below that level is small.

Lemma 3.2. For all ν ∈ (0, 1), there exists m > 3, depending only on the

data, such that
∣

∣

∣

∣

(x, t) ∈ Q

(

a0R
p,
R

2

)

: θǫ(x, t) < µ− +
ω

2m

∣

∣

∣

∣

< ν

∣

∣

∣

∣

Q

(

a0R
p,
R

2

)∣

∣

∣

∣

.
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Proof. Consider estimate (11) written for (θǫ − k)−, with k = µ− + ω
4 , and

for a cutoff function 0 ≤ ξ ≤ 1, defined in KR, and verifying

ξ ≡ 1 inKR
2

; ξ ≡ 0 on |x| = R ; |∇ξ| ≤
2

R
.

Take m > 3 sufficiently large so that 0 < c = ω
2m < H−

k . The logarithmic
function Ψ− is well-defined and, since H−

k ≤ ω
4 , the following inequalities

hold

Ψ− ≤ (m− 2) ln 2 and
∣

∣

∣

(

Ψ−
)′
∣

∣

∣

2−p

≤
( ω

2m

)p−2

.

Then, from (11), we get for all t ∈ (0, a0R
p), the estimate

∫

KR×{t}

(

ψ−
)2
ξp ≤ C (m− 2)

∣

∣

∣
KR

2

∣

∣

∣
.

Next, integrate over the smaller set
{

x ∈ KR
2

: θǫ(x, t) < µ− +
ω

2m

}

, ∀t ∈ (0, a0R
p)

where ξ = 1 and Ψ− ≥ (m − 3) ln 2, since H−
k ≤ ω

4 . Consequently, for all
t ∈ (0, a0R

p),
∣

∣

∣
x ∈ KR

2
: θǫ(x, t) < µ− +

ω

2m

∣

∣

∣
≤ C

m− 2

(m− 3)2

∣

∣

∣
KR

2

∣

∣

∣
.

The proof is complete if we choose m so large that C m−2
(m−3)2 < ν.

�

The next lemma provides a uniform lower bound for θǫ within a smaller
cylinder, through a specific choice of the value ν that appears in Lemma 3.2.

Lemma 3.3. There exists ν0 ∈ (0, 1), depending only on the data, such that

if
∣

∣

∣

∣

Q

(

a0R
p,
R

2

)

: θǫ(x, t) ≤ µ− +
ω

2m

∣

∣

∣

∣

≤ ν0

∣

∣

∣

∣

Q

(

a0R
p,
R

2

)
∣

∣

∣

∣

then

θǫ(x, t) ≥ µ− +
ω

2m+1
, a.e. (x, t) ∈ Q

(

a0R
p,
R

4

)

.

Proof. Consider the decreasing sequences of real numbers

Rn =
R

4
+

R

2n+2
; kn = µ− +

ω

2m+1
+

ω

2m+1+n
, n = 0, 1, . . .
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and, in the energy estimates (10), take ϕ = −(θǫ − kn)− ξ
p
n, where 0 ≤ ξn ≤ 1

are smooth cutoff functions, defined in KRn
, and verifying

ξ ≡ 1 in KRn+1
; ξ ≡ 0 on |x| = Rn ; |∇ξn| ≤

2n+3

R
.

Introduce the level

k̄n =
kn + kn+1

2
.

Since
∫

KRn×{t}

(θǫ − kn)
2
− ξ

p
n =

∫

KRn×{t}

(θǫ − kn)
p
− (θǫ − kn)

2−p
− ξp

n

≥ (kn − k̄n)
2−p

∫

KRn×{t}

(θǫ − k̄n)
p
− ξ

p
n

= a0 2−(n+3)p

∫

KRn×{t}

(θǫ − k̄n)
p
− ξ

p
n

and (θǫ − kn)
p
− ≤

(

ω
2m

)p
, the referred energy estimates take the form

sup
0<t<a0Rp

∫

KRn×{t}

(θǫ − k̄n)
p
− ξ

p
n +

1

a0
2−(n+3)p

∫ ∫

Q(a0Rp,Rn)

∣

∣∇(θǫ − k̄n)−
∣

∣

p
ξp
n

≤ C(p)
( ω

2m

)p 22pn

Rp

1

a0

∫ ∫

Q(a0Rp,Rn)

χ[(θǫ−kn)−>0] .

Introducing the change of variable z = t
a0

, defining the new functions

θ̄ǫ(x, z) = θǫ(x, a0z) ; ξ̄n(x, z) = ξn(x, a0z) ,

and denoting V p = L∞(Lp) ∩ Lp(W 1,p), we arrive at

∥

∥(θ̄ǫ − k̄n)−
∥

∥

p

V p(Q(Rp,Rn+1))
≤ C(p)

22pn

Rp

( ω

2m

)p

An ,

where

An :=

∫ Rp

0

|An(z)| dz , An(z) :=
{

x ∈ KRn
: (θ̄ǫ − kn)− > 0

}

.

Since
( ω

2m

)p

2−(n+3)p An+1 ≤

∫ ∫

Q(Rp,Rn+1)

(θ̄ǫ − k̄n)
p
−

≤ C A
1+ p

N+p

n

∣

∣

∣

∣(θ̄ǫ − k̄n)−
∣

∣

∣

∣

p

V p(Q(Rp,Rn+1))
,
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using Corollary 3.1 of [3, page 9], we conclude

An+1 ≤ C
23pn

Rp
A

1+ p

N+p

n

and, consequently,

Yn+1 ≤ C 23pn A
1+ p

N+p

n , for Yn :=
An

|Q (Rp, Rn)|
.

If Y0 ≤ C−N+p

p 2−
3(N+p)2

p then, by Lemma 4.1 of [3, page 12], Yn → 0 when
n→ ∞ which completes the proof. Observe that, by the hypothesis,

Y0 =

∣

∣(x, z) ∈ Q(Rp, R) : θ̄ǫ(x, z) < µ− + ω
2m

∣

∣

|Q(Rp, R)|
≤ ν0

so we just have to take

ν0 ≡ C−N+p

p 2−
3(N+p)2

p .

�

Now we can finally conclude the first iteration step in the proof of Pro-
position 3.1. Indeed, taking ν = ν0 from Lemma 3.3, and determining the
corresponding value m with the help of Lemma 3.2, we arrive at

θǫ(x, t) ≥ µ− +
ω

2m+1
, a.e.(x, t) ∈ Q

(

a0R
p,
R

4

)

,

and then we conclude that

ess osc
Q(a0R

p,R
4 )

θǫ ≤

(

1 −
1

2m+1

)

ω = σ ω .

Taking C = 4 in Proposition 3.1, we get Q1 ⊂ Q
(

a0R
p, R

4

)

, and then

ess osc
Q1

θǫ ≤ ess osc
Q(a0R

p,R
4 )

θǫ ≤ σ ω = ω1 .

We can now repeat the whole process starting from Q1.

Remark 3.4. Observe that we don’t get a reduction on the t-direction since

the cutoff functions ξ are independent of t.

Remark 3.5. The regularity result can be further extended; one can obtain

continuity up to the lateral boundary Σ using a reasoning similar to the one

presented in [2] and [8].
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Departamento de Matemática, Universidade de Trás-os-Montes e Alto Douro, Quinta

dos Prados, Apartado 1013, 5000-911 Vila Real, Portugal

E-mail address: eurica@utad.pt
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