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SAMPLING THEORY ASSOCIATED TO ¢-DIFFERENCE
EQUATIONS OF THE STURM-LIOUVILLE TYPE

LUIS DANIEL ABREU

ABSTRACT We will show that if the kernel K (z,t) in the representation f(t) =
fo t)d,t, with u € L2 2(0,a), is a solution of a second order ¢g-Sturm-Liouville
boundary problem then f admlts a representation as a sampling formula of the form
F(t) =300 FOR)W (@) /[W'(An) (t — Ay)] where A, is the nth eigenvalue of the
associated g-Sturm-Liouville boundary problem and W (t) is the Wronskian of two
solutions selected in a specified way.
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1. Introduction

The celebrated Whittaker-Shannon-Kotel’nikov theorem states that every
integral transform of the form

f(x) = / et (t)dt
where u € L?(—m, 7), can be written as the sampling formula

Z f(n sm7r —n) (1)

m(x —n)

n=—oo
Writing

o0 2
L(x) =sinmz =z | | (1 — Z—2>
n

n=1
then the Whittaker-Shannon-Kotel’nikov theorem is a Lagrange-type inter-
polation formula of the form
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The quest of writing sampling theorems as Lagrange type interpolation for-
mulas has attracted a considerable amount of research over the years. When
the kernel e/ is replaced by some function in the context of Kramer ‘s lemma,
then often there are special function formulae available to perform the task.
This is also the case of the functions orthogonal with respect to their own
zeros [3]. Another interesting sitution occurs when the kernel of the inte-
gral transform arises from a second order differential equation. A major
achievement in this direction is due to Zayed, Hinsen and Butzer [20]. They

considered the second order Sturm-Liouville eigenvalue

—y"(z) + v(@)y(z) = Ay(z) (3)

where v(z) is defined on the finite interval [a,b], together with the initial
conditions

cosay(a) +sinay'(a) =0

cos By (b) + sin By’ (b) = 0
and selected a particular solution of the problem satisfying ¢(a, A) = sina
and ¢'(a, A\) = — cos o and another one satisfying (b, \) = sin 8 and ¢’ (b, \) =
— cos . Within this setting, their main theorem reads as follows:

Theorem A: Every function f that can written as an integral transform
of the form

b
FO) = [ el N
where u € L*(a,b), admits a sampling representation of the form

= W(\)
f) =) fw)

where W () is the Wronskian of the functions ¢(x, A) and ¥ (z, A).

The construction of expansions in g-Fourier series ([8], [9]) was followed
by the derivation of ¢-sampling theorems ([2], [5], [14]). The most relevant
feature present in all of these g-sampling theorems is the sparsity of their
sampling nodes, located at the zeros of the g-analogues of the sinxz. Recent
research about these zeros ([1], [18]) indicates that, for big n, they behave
very much like sequences of the form ¢~". Therefore, the resulting sam-
pling expansions provide a process of reconstructing signals from samples
that become sparse as they move away from the origin. As an instance, ev-
ery function f within the setting of our main result in [2] contains all its
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information on the sequence {f(¢7"") }nen, 0 <€, < 1,0 < ¢ < 1. That is,
whereas the sampling theorems of the Whittaker-Shannon-Kotel'nikov type
identify a function with its values over an arithmetic sequence (or close to
such a sequence, as in the case of irregular sampling), the g-sampling theo-
rems identify a function with its values over a geometric sequence. The other
novel aspect of the ¢g-sampling theorems is the presence of the parameter g
itself: For every realization of the parameter we have a different sampling
theory, with different sampling nodes. The idea of using g-deformations of
classical results has showed before to be a successfull one in physical mathe-
matics as can be testified by the considerable amount of research about the
g-harmonic oscilator that followed [7] or the surge of the theory of Quantum
Groups and their conections to g-special functions [10].

For a comprehensive introduction to the subject of sampling from a classic
point of view we refer to [13]. For an exposition of modern sampling methods
and how they were inspired by physical problems in communication, astron-
omy, and medicine, we suggest the reading of [4] where also are included
algorithms for practical reconstruction of signals from samples.

The purpose of the present paper is to construct a g-analogue of Theorem
A, building on recent results of Annaby and Mansour [6], who provided a de-
tailed study of the basis properties of solutions of g-Sturm-Liouville systems,
inspired by the formal work of Exton [11].

2. Preliminaries on ¢-calculus

Following the standard notations in [12], consider a number 0 < ¢ < 1 and
define the g¢-shifted factorial for n finite and different from zero as

(a:9)n = (1—q@)(1 —ag)...(1 —ag" ")

and the zero and infinite cases as
(a;q)o =1
(a;9)so = lim (a;q)n
n—oo

The g-difference operator D, is defined as
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When required, ¢ will be replaced by ¢~'. The following facts can be verified
directly from the definition and will be used often :

Dy f(z) = (Dyf)(wq ™)
Dgf(q_lx) = qD, [qu(q_lx)] = Dy Dy f ()

Associated to this operator there is a nonsymmetric formula for the g-differentiation
of a product

Dy f(x)g(x)] = f(qx)Dyg(x) + g(x) Dy f (x) (4)

The g¢-integral usually associated to the name of Jackson is defined, in the
interval (0, a), as

/O F@)dgr = (1—0) S flag")ag”

=0

Let LS(O, a) be the space of all complex-valued functions defined on (0, a)

such that 1
— ’ 21 r
11 [/ )| < oo

The space LZ(0,a) is a separable Hilbert space (see [5] for details) with the
inner product

(. g) = / ' F@)g@d,a

Through the remainder of the text we will deal only with functions g-regular
at zero, that is, functions such that

lim f(q"z) = f(0)

n—oo

The class of the functions which are g-regular at zero includes the continuous
functions. An example of a function that is not ¢-regular at zero is given by

[17]
f(x) =sin(alogz) with alogq = 2n

If f and g are both g-regular at zero, there is a rule of g-integration by parts
given by

/Oag(x)qu(x)dqx = (fg)(a) — (fg)(0) — /Oa Dyg(2)f(qz)dye. (5
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The g appearing in the argument of f in the right hand side integrand is
another manifestation of the asymmetry that is everywhere present in g¢-
calculus. As an important special case we have

| Purt@ide = (ni@ - (10 ©)
For these and other formulas we refer to [15].

3. The ¢-Sturm-Liouville problem

We will consider a ¢-Sturm-Liouville equation of the form

_éDqquy(x) +v(x)y(x) = \y(x) (7)

0<zr<a<oo, AeC.
with v(z) defined on the interval [0, a], together with the initial conditions

ally(O) + a12Dq—1y(0) =0 (8)

any(a) + agDy-1y(a) =0 9)
It was shown in [6] that such a ¢g-Sturm-Liouville problem is formally self
adjoint, that is, denoting by fy the left hand member of (7), they proved
that (¢y, h) = (y,£h). This self-adjointness property allowed the authors to
use the spectral theorem for compact self adjoint operators, after turning the
g-difference problem into a g-integral one, by means of the construction of a
g-type Green s function. A key step for the construction of a ¢-type Green’s
function in [6] was the definition of a fundamental set of solutions of (7) by
means of the g-analogues of the functions sin and cos defined as

sin(a; q) = 3 (—1)" (q?% (2 (1 — )™ (10)
and . ) )
cos(z;q) = Y (~1)" @]T (2 (1 — )" (11)

these functions differ slightly from the ones consider in [9]. However, the
crucial information about their roots can be obtained by relating them to
the third Jackson g-Bessel function

(6" @)oo Wt
J(x;q) = ¥ —"— —1 "
#34) (45 9) o _0( ) (¢ 9), (¢ @)n

n
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Clearly we have the relations

ooy (@) N (e (1 — o)
sin(x; q) = . (x(1—q)) Ji( (1-4q);q)
cos(z;q) = ((i’qu)) (x (1 — q))% J_%(:z: (1—9q) q%; )

combining this relations with the bounds obtained in [1] for the roots of the
third ¢-Bessel function, we obtain the following theorem on the location of
the roots of the functions sin(z;q) and cos(z; q).
Theorem B If ¢ < (1—¢?)? then the nonzero roots of the function sin(x; q)
are of the form
q—n—i—en

(12)

and if ¢ < (1 — ¢*)? then the roots of the function cos(x;q) are of the form

—n+1l+e,
q

Toq (13)

Yn =

where 0 < €, < 1. The restrictions on q can be removed if n is big enough.

Remark: It can be seen from the rapid growth of their zeros, or di-
rectly from the power series expansions (10) and (11), that both sin(zx;q)
and cos(x; q) are functions of order zero, when considered as entire funtions.
As a result they are unbounded on the real line (if they were bounded on
the real line then we could use a Phragmén-Lindelof argument to extend
the bound to the whole complex plane and this would force the functions
to be constant). This unboundedness property constitutes a serious obsta-
cle in obtaining asymptotics for the eigenvalues and eigenfunctions of the
g-Sturm-Liouville problem.

We will use the next two results from [6] in our discussion.

Theorem C Concerning the above definitions, the following propositions
hold:

i) Given ¢y, co € C, equation (7) has a unique solution ¢, q-reqular at zero
and satisfying

¢(0, )\) = (1, qulqb(O, )\) = C9, A e C.
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Moreover, ¢(x, \) is entire in X for all x € [0, a], where the Dqg~' derivative
of a function f(x) at zero is given by

Theorem D The eigenvalues of the problem (7)-(9) form an infinite se-
quence of real numbers which can be ordered in an ascending way. Moreover,
the set of all normalized eigenfunctions of (7)-(9) forms an orthonormal basis
for L:(0,a).

Essential in our discussion will be the ¢-Wronskian of two functions f and
g defined as

Dy f(z) = lim

n——00 xq—"

Wo(f, 9)(x) = f(2)Dog(x) — g(2) Dy f (x) (14)
It was proved by Meijer and Swarttouw that {f, g} forms a complete set
of solutions of (7) if and only if their ¢-Wronskian does not vanish at any
point of [0,a]. The ¢g-Wronskian of a ¢-Sturm-Liouville problem will play a
fundamental role in the next section.

4. The ¢g-sampling theory

In this section we will establish our main result. The key ingredient will be
Kramer 's Lemma, discovered in [16]. It is usually stated with the Lebesgue
measure dr but a g-version can be derived without modifying the structure of
the proof. Actually, the result can be stated in a very general way, using the
inner product in a general Hilbert space. Since it is clear that the g-integral
defines a inner product in a Hilbert space, we simply state Kramer “s Lemma
in the required form, and appeal to [13] for more information on the subject.

Theorem E (Kramer’s Lemma). Let I C R be a bounded interval, K (x,t)
be a kernel belonging to L*(I) for each fized t in a suitable subset D of R.
Suppose also that, for some sequence of points belonging to D, {K(x,\,)}
is an orthogonal basis for L*(I). Under this conditions, every function f
written in the form

£(t) = / 9(2) K (2, 1)dga

I
admats the sampling expansion

M) K (x,t)dx
Zf fI \K (z,1)” dyz
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the sampling series converges absolutely, and uniformly on every set C C D
for which ||K(,t)]| is bounded.

Before the proof of our main result we need to establish some basic facts
about the g-Wronskian of ¢g-Sturm-Liouville problems.

Lemma 1 Let f and g be g-regular at zero. The Wronskian W, (f, g)(z)
of the ¢-Sturm-Liouville problem (7) does not depend on z.

Proof. Applying the formula (5) in the proper order we obtain

DW,(f,9)(x) = Dy[f(x)(Deg)(x) — g()(Dyf)(2)]
= flqx)Dig(x) — g(qx)D; f(x)
Then
DW,(f.9)(q 'x) = f(z)(Djg)(q 'x) — g(x)(D; f)(q 'x)
= f(z) [v(z)g(z) — Ag(x)] — g(z) [v(x) f(z) = Af(x)] =0

As a result,

W, (f, 9)(q""x) = W,(f, 9)(x)
g tz(1—q)

0= Dqu(f7 g)(q_lx) =
or, for every x # 0,

Wy(f. 9)(x) = Wy(f.9)(a'x)
Iterating gives
Wo(f, 9)(q"x) = Wy(f, 9)(@)

for every n = 1,2,.... Taking the limit when n — oo we conclude that

W,(f,9)(x) = W,(f,9)(0), since W,(f,g)(x) is ¢g-regular at zero. [J

From now on, we will invoke Theorem C and choose, from the solutions of
(7), a particular solution ¢(x, A) such that it is an entire function of A, real
valued when A is real and satisfying

QO(O, )\) = —Qa192; Dq—lgo(O, )\) = al (15)
and another one satisfying
w(a, )\) = —a99; Dq—lw(a, )\) = ag (16)

since the g-wronskian is independent of x, we can evaluate it at x = a, and
use the above conditions on 1 in order to write

Wy, 0)(A) = W(A) = anp(a, A) + anDgro(a, A) (17)
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It follows from the initial conditions (9) that W () = 0 if and only if A is
an eigenvalue of the ¢-Sturm-Liouville problem. The set up is now complete
to state our main result. The proof will go along the same lines of Zayed "s
proof in [21].

Theorem 1 Let ¢(z,\) and ¥(x,\) be the solutions of (7) selected as
above. Then every function f of the form

OV = [ ulwota Ny, we 120.0) (18)
0
can be written as the Lagrange-type sampling expansion
- W(A)
A) = g An 19

where W () is the Wronskian of the functions @(x, X) and (z, \).

Proof. Multiply equation (7) by ¢(z, \,). Then consider again equation
(7), but replace A by A, and multiply this last equation by ¢(z, A). Subtract-
ing the two results yields

(A = X) o(z, Np(z, M) = Daolg ™'z, An)p(z, ) — Dio(q 'z, M) o(z, An)

an application of the rule for the g-differentiation of a product (4) gives,
choosing the right order in both ¢-differentiations,

- Dq [Dqu(q_lx, An)@(x7 )‘) - Dqgo(q_lxa )‘)90('%7 )\n)]

Performing a g-integration by means of (6) gives

(A=) / ol Nl \)dya

= Dyp(q'a, Mn)p(a, \) — Dyp(q a, Np(a, An)
—Dgp(0, An)p(0, A) = Dyep(0, A)0(0, An)
= ¢(a, \)Dy-1(a, An) — @(a, M) Dg-rp(a, A)
the justification for the last identity lies on the fact that, by (15) and the
initial conditions (8) we have
Dyo(0, A) (0, A) — Dgp(0, N)(0, Ay)
= —D 190, \,)a12 — a0, A,) =0
Now assume that ag; # 0. Multiply (17) by ¢(a, \,,) to obtain

W(N)e(a, \p) = aaip(a, N)p(a, A\n) + a2Dg-1¢(a, N)p(a, ).
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Using the initial condition (8) this identity becomes
W(N)p(a, A,) = —aD10(a, N p(a, N) + axnDg1¢(a, N)e(a, Ay)
= a22 [QO(CL, )‘>Dq_l(a7 )‘) - QO(CL, )‘n)Dq_lgp(a? )‘)]

as a result,

(A=) /Oa o(x, N(x, \y)dx = VE/)\()\_)giiC;’;;Z)

and taking the limit as A — A\, gives

/O ol A2 dg = W/(A)

Now, by Theorem D, {¢(x, A\,)} forms an orthogonal basis of L?(0,a). We
can therefore apply Kramer s lemma and write an integral transform of the
form (18) as

p(a, Ay)

as1

> W(\)
f(A) = E fn) = (20)
e W (M)A — \p)

Consider now the case ag; = 0. Multiply the identity (17) by D ,-1¢(a, A,)
to obtain

W()\)qugp(a, )‘n) = a??@(aa )\)qulw(a, )‘n)
on the other side, by (9) we have D,-1p(a, A) = 0, so that

(A=) / ol N, Ayt = (a, N Dyrip(a, )

we conclude that
a W(AN)Dg-1p(a, \y)
x, N o(z, \y))d,x = d ’
| e rpte e = =S En

taking the limit as A — \,,
Dg-1o(a, )

)P do = W'\,
[ et AP de = W) TR

and as before, the use of Kramer’s lemma gives (20). O
Example: Consider the problem

1
—qu—quy(x) = Ay(z)
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and the conditions

y(0) = 0

y(1) =1
A fundamental set of solutions is {cos(v/Az;q),sin(v/Az; ¢)}. From this we
select ¢(x, \) = cos(vVAx; ¢) to satisfy the initial conditions. The eigenvalues
{\,} of the problem are the zeros of sin(v/X; ¢), and from (12), if ¢ < (1—¢?)?
or if n is big enough, then \, = (1 — ¢)"2¢~*"**. Since the Wronskian is a
function of order zero and its zeros are the \,s , it follows from Theorem 1
that every function of the form

70 = [ uta) cos(vAas )

has the representation

FO) = 3 F((1 = )22 sin(vig)

[sin’(vz; ¢)] oy, (A — (1 — q)2g72Fen)

The examples 2 and 3 from [5] can be treated in a similar way.
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