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SAMPLING THEORY ASSOCIATED TO q-DIFFERENCE
EQUATIONS OF THE STURM-LIOUVILLE TYPE
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Abstract: We will show that if the kernel K(x, t) in the representation f(t) =
∫

a

0
K(x, t)u(t)dqt, with u ∈ L2

q
(0, a), is a solution of a second order q-Sturm-Liouville

boundary problem, then f admits a representation as a sampling formula of the form
f(t) =

∑

∞

n=0
f(λn)W (t)/[W ′(λn) (t − λn)] where λn is the nth eigenvalue of the

associated q-Sturm-Liouville boundary problem and W (t) is the Wronskian of two
solutions selected in a specified way.
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1. Introduction

The celebrated Whittaker-Shannon-Kotel’nikov theorem states that every
integral transform of the form

f(x) =

∫ π

−π

eixtu(t)dt

where u ∈ L2(−π, π), can be written as the sampling formula

f(x) =
∞

∑

n=−∞
f(n)

sinπ(x− n)

π(x− n)
(1)

Writing

L(x) = sinπz = πz

∞
∏

n=1

(

1 − z2

n2

)

then the Whittaker-Shannon-Kotel’nikov theorem is a Lagrange-type inter-
polation formula of the form

f(x) =
∞

∑

n=−∞
f(n)

L(x)

L′(n)(x− n)
(2)
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The quest of writing sampling theorems as Lagrange type interpolation for-
mulas has attracted a considerable amount of research over the years. When
the kernel eixt is replaced by some function in the context of Kramer´s lemma,
then often there are special function formulae available to perform the task.
This is also the case of the functions orthogonal with respect to their own
zeros [3]. Another interesting sitution occurs when the kernel of the inte-
gral transform arises from a second order differential equation. A major
achievement in this direction is due to Zayed, Hinsen and Butzer [20]. They
considered the second order Sturm-Liouville eigenvalue

−y′′(x) + v(x)y(x) = λy(x) (3)

where v(x) is defined on the finite interval [a, b], together with the initial
conditions

cosαy(a) + sinαy′(a) = 0

cosβy(b) + sin βy′(b) = 0

and selected a particular solution of the problem satisfying ϕ(a, λ) = sinα
and ϕ′(a, λ) = − cosα and another one satisfying ψ(b, λ) = sinβ and ψ′(b, λ) =
− cosβ. Within this setting, their main theorem reads as follows:

Theorem A: Every function f that can written as an integral transform
of the form

f(λ) =

∫ b

a

u(x)ϕ(x, λ)dx

where u ∈ L2(a, b), admits a sampling representation of the form

f(λ) =

∞
∑

n=0

f(λn)
W (λ)

W ′(λn)(λ− λn)

where W (λ) is the Wronskian of the functions ϕ(x, λ) and ψ(x, λ).
The construction of expansions in q-Fourier series ([8], [9]) was followed

by the derivation of q-sampling theorems ([2], [5], [14]). The most relevant
feature present in all of these q-sampling theorems is the sparsity of their
sampling nodes, located at the zeros of the q-analogues of the sinx. Recent
research about these zeros ([1], [18]) indicates that, for big n, they behave
very much like sequences of the form q−n. Therefore, the resulting sam-
pling expansions provide a process of reconstructing signals from samples
that become sparse as they move away from the origin. As an instance, ev-
ery function f within the setting of our main result in [2] contains all its
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information on the sequence {f(q−n+ǫn)}n∈N, 0 < ǫn < 1, 0 < q < 1. That is,
whereas the sampling theorems of the Whittaker-Shannon-Kotel’nikov type
identify a function with its values over an arithmetic sequence (or close to
such a sequence, as in the case of irregular sampling), the q-sampling theo-
rems identify a function with its values over a geometric sequence. The other
novel aspect of the q-sampling theorems is the presence of the parameter q
itself: For every realization of the parameter we have a different sampling
theory, with different sampling nodes. The idea of using q-deformations of
classical results has showed before to be a successfull one in physical mathe-
matics as can be testified by the considerable amount of research about the
q-harmonic oscilator that followed [7] or the surge of the theory of Quantum
Groups and their conections to q-special functions [10].

For a comprehensive introduction to the subject of sampling from a classic
point of view we refer to [13]. For an exposition of modern sampling methods
and how they were inspired by physical problems in communication, astron-
omy, and medicine, we suggest the reading of [4] where also are included
algorithms for practical reconstruction of signals from samples.

The purpose of the present paper is to construct a q-analogue of Theorem
A, building on recent results of Annaby and Mansour [6], who provided a de-
tailed study of the basis properties of solutions of q-Sturm-Liouville systems,
inspired by the formal work of Exton [11].

2. Preliminaries on q-calculus

Following the standard notations in [12], consider a number 0 < q < 1 and
define the q-shifted factorial for n finite and different from zero as

(a; q)n = (1 − q)(1 − aq)...(1− aqn−1)

and the zero and infinite cases as

(a; q)0 = 1

(a; q)∞ = lim
n→∞

(a; q)n

The q-difference operator Dq is defined as

Dqf(x) =
f(x)− f(qx)

x(1 − q)
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When required, q will be replaced by q−1. The following facts can be verified
directly from the definition and will be used often :

Dq−1f(x) = (Dqf)(xq−1)

D2
qf(q−1x) = qDq

[

Dqf(q−1x)
]

= Dq−1Dqf(x)

Associated to this operator there is a nonsymmetric formula for the q-differentiation
of a product

Dq[f(x)g(x)] = f(qx)Dqg(x) + g(x)Dqf(x) (4)

The q-integral usually associated to the name of Jackson is defined, in the
interval (0, a), as

∫ a

0

f(x)dqx = (1 − q)

∞
∑

n=0

f(aqn)aqn

Let L2
q(0, a) be the space of all complex-valued functions defined on (0, a)

such that

‖f‖ =

[
∫ a

0

|f(x)|2 dqx

]
1

2

<∞

The space L2
q(0, a) is a separable Hilbert space (see [5] for details) with the

inner product

〈f, g〉 =

∫ a

0

f(x)g(x)dqx

Through the remainder of the text we will deal only with functions q-regular
at zero, that is, functions such that

lim
n→∞

f(qnx) = f(0)

The class of the functions which are q-regular at zero includes the continuous
functions. An example of a function that is not q-regular at zero is given by
[17]

f(x) = sin(α log x) with α log q = 2π

If f and g are both q-regular at zero, there is a rule of q-integration by parts
given by

∫ a

0

g(x)Dqf(x)dqx = (fg)(a) − (fg)(0)−
∫ a

0

Dqg(x)f(qx)dqx. (5)
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The q appearing in the argument of f in the right hand side integrand is
another manifestation of the asymmetry that is everywhere present in q-
calculus. As an important special case we have

∫ a

0

Dqf(x)dqx = (f)(a)− (f)(0) (6)

For these and other formulas we refer to [15].

3. The q-Sturm-Liouville problem

We will consider a q-Sturm-Liouville equation of the form

−1

q
Dq−1Dqy(x) + v(x)y(x) = λy(x) (7)

0 ≤ x ≤ a <∞, λ ∈ C.

with v(x) defined on the interval [0, a], together with the initial conditions

a11y(0) + a12Dq−1y(0) = 0 (8)

a21y(a) + a22Dq−1y(a) = 0 (9)

It was shown in [6] that such a q-Sturm-Liouville problem is formally self
adjoint, that is, denoting by ℓy the left hand member of (7), they proved
that 〈ℓy, h〉 = 〈y, ℓh〉. This self-adjointness property allowed the authors to
use the spectral theorem for compact self adjoint operators, after turning the
q-difference problem into a q-integral one, by means of the construction of a
q-type Green´s function. A key step for the construction of a q-type Green´s
function in [6] was the definition of a fundamental set of solutions of (7) by
means of the q-analogues of the functions sin and cos defined as

sin(x; q) =
∞

∑

n=0

(−1)n qn2

(q; q)2n

(x (1 − q))2n (10)

and

cos(x; q) =
∞

∑

n=0

(−1)n qn(n+1)

(q; q)2n+1

(x (1 − q))2n+1 (11)

these functions differ slightly from the ones consider in [9]. However, the
crucial information about their roots can be obtained by relating them to
the third Jackson q-Bessel function

Jν(x; q) = xν (qν+1; q)∞
(q; q)∞

∞
∑

n=0

(−1)n qn(n+1)/2

(qν+1; q)n (q; q)n
x2n
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Clearly we have the relations

sin(x; q) =
(q2; q2)

(q3; q2)
(x (1 − q))

1

2 J 1

2

(x (1 − q) ; q2)

cos(x; q) =
(q2; q2)

(q; q2)
(x (1 − q))

1

2 J− 1

2

(x (1 − q) q
1

2 ; q2)

combining this relations with the bounds obtained in [1] for the roots of the
third q-Bessel function, we obtain the following theorem on the location of
the roots of the functions sin(x; q) and cos(x; q).

Theorem B If q < (1−q2)2 then the nonzero roots of the function sin(x; q)
are of the form

xn =
q−n+ǫn

1 − q
(12)

and if q3 < (1 − q2)2 then the roots of the function cos(x; q) are of the form

yn =
q−n+1+ǫn

1 − q
(13)

where 0 < ǫn < 1. The restrictions on q can be removed if n is big enough.
Remark: It can be seen from the rapid growth of their zeros, or di-

rectly from the power series expansions (10) and (11), that both sin(x; q)
and cos(x; q) are functions of order zero, when considered as entire funtions.
As a result they are unbounded on the real line (if they were bounded on
the real line then we could use a Phragmén-Lindelöf argument to extend
the bound to the whole complex plane and this would force the functions
to be constant). This unboundedness property constitutes a serious obsta-
cle in obtaining asymptotics for the eigenvalues and eigenfunctions of the
q-Sturm-Liouville problem.

We will use the next two results from [6] in our discussion.
Theorem C Concerning the above definitions, the following propositions

hold:
i)Given c1, c2 ∈ C, equation (7) has a unique solution φ, q-regular at zero

and satisfying

φ(0, λ) = c1, Dq−1φ(0, λ) = c2, λ ∈ C.
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Moreover, φ(x, λ) is entire in λ for all x ∈ [0, a], where the Dq−1 derivative
of a function f(x) at zero is given by

Dq−1f(x) = lim
n→−∞

f(xq−n) − f(0)

xq−n
= Dqf(0).

Theorem D The eigenvalues of the problem (7)-(9) form an infinite se-
quence of real numbers which can be ordered in an ascending way. Moreover,
the set of all normalized eigenfunctions of (7)-(9) forms an orthonormal basis
for L2

q(0, a).
Essential in our discussion will be the q-Wronskian of two functions f and

g defined as

Wq(f, g)(x) = f(x)Dqg(x) − g(x)Dqf(x) (14)

It was proved by Meijer and Swarttouw that {f, g} forms a complete set
of solutions of (7) if and only if their q-Wronskian does not vanish at any
point of [0, a]. The q-Wronskian of a q-Sturm-Liouville problem will play a
fundamental role in the next section.

4. The q-sampling theory

In this section we will establish our main result. The key ingredient will be
Kramer´s Lemma, discovered in [16]. It is usually stated with the Lebesgue
measure dx but a q-version can be derived without modifying the structure of
the proof. Actually, the result can be stated in a very general way, using the
inner product in a general Hilbert space. Since it is clear that the q-integral
defines a inner product in a Hilbert space, we simply state Kramer´s Lemma
in the required form, and appeal to [13] for more information on the subject.

Theorem E (Kramer´s Lemma). Let I ⊂ R be a bounded interval, K(x, t)
be a kernel belonging to L2(I) for each fixed t in a suitable subset D of R.
Suppose also that, for some sequence of points belonging to D, {K(x, λn)}
is an orthogonal basis for L2(I). Under this conditions, every function f

written in the form

f(t) =

∫

I

g(x)K(x, t)dqx

admits the sampling expansion

f(t) =

∞
∑

n=0

f(λn)

∫

I K(x, λn)K(x, t)dqx
∫

I |K(x, t)|2 dqx
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the sampling series converges absolutely, and uniformly on every set C ⊂ D

for which ‖K(, t)‖ is bounded.
Before the proof of our main result we need to establish some basic facts

about the q-Wronskian of q-Sturm-Liouville problems.
Lemma 1 Let f and g be q-regular at zero. The Wronskian Wq(f, g)(x)

of the q-Sturm-Liouville problem (7) does not depend on x.
Proof. Applying the formula (5) in the proper order we obtain

DqWq(f, g)(x) = Dq [f(x)(Dqg)(x) − g(x)(Dqf)(x)]

= f(qx)D2
qg(x) − g(qx)D2

qf(x)

Then

DqWq(f, g)(q
−1x) = f(x)(D2

qg)(q
−1x) − g(x)(D2

qf)(q−1x)

= f(x) [v(x)g(x)− λg(x)] − g(x) [v(x)f(x)− λf(x)] = 0

As a result,

0 = DqWq(f, g)(q
−1x) =

Wq(f, g)(q
−1x) −Wq(f, g)(x)

q−1x(1 − q)

or, for every x 6= 0,

Wq(f, g)(x) = Wq(f, g)(q
−1x)

Iterating gives

Wq(f, g)(q
nx) = Wq(f, g)(x)

for every n = 1, 2, .... Taking the limit when n → ∞ we conclude that
Wq(f, g)(x) = Wq(f, g)(0), since Wq(f, g)(x) is q-regular at zero. �

From now on, we will invoke Theorem C and choose, from the solutions of
(7), a particular solution ϕ(x, λ) such that it is an entire function of λ, real
valued when λ is real and satisfying

ϕ(0, λ) = −a12;Dq−1ϕ(0, λ) = a11 (15)

and another one satisfying

ψ(a, λ) = −a22;Dq−1ψ(a, λ) = a21 (16)

since the q-wronskian is independent of x, we can evaluate it at x = a, and
use the above conditions on ψ in order to write

Wq(ϕ, ψ)(λ) = W (λ) = a21ϕ(a, λ) + a22Dq−1ϕ(a, λ) (17)
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It follows from the initial conditions (9) that W (λ) = 0 if and only if λ is
an eigenvalue of the q-Sturm-Liouville problem. The set up is now complete
to state our main result. The proof will go along the same lines of Zayed´s
proof in [21].

Theorem 1 Let ϕ(x, λ) and ψ(x, λ) be the solutions of (7) selected as
above. Then every function f of the form

f(λ) =

∫ a

0

u(x)ϕ(x, λ)dqx, u ∈ L2(0, a) (18)

can be written as the Lagrange-type sampling expansion

f(λ) =

∞
∑

n=0

f(λn)
W (λ)

W ′(λn)(λ− λn)
(19)

where W (λ) is the Wronskian of the functions ϕ(x, λ) and ψ(x, λ).
Proof. Multiply equation (7) by ϕ(x, λn). Then consider again equation

(7), but replace λ by λn and multiply this last equation by ϕ(x, λ). Subtract-
ing the two results yields

(λ− λn)ϕ(x, λ)ϕ(x, λn) = D2
qϕ(q−1x, λn)ϕ(x, λ)−D2

qϕ(q−1x, λ)ϕ(x, λn)

an application of the rule for the q-differentiation of a product (4) gives,
choosing the right order in both q-differentiations,

= Dq

[

Dqϕ(q−1x, λn)ϕ(x, λ)−Dqϕ(q−1x, λ)ϕ(x, λn)
]

Performing a q-integration by means of (6) gives

(λ− λn)

∫ a

0

ϕ(x, λ)ϕ(x, λn)dqx

= Dqϕ(q−1a, λn)ϕ(a, λ) −Dqϕ(q−1a, λ)ϕ(a, λn)

−Dqϕ(0, λn)ϕ(0, λ)−Dqϕ(0, λ)ϕ(0, λn)

= ϕ(a, λ)Dq−1(a, λn) − ϕ(a, λn)Dq−1ϕ(a, λ)

the justification for the last identity lies on the fact that, by (15) and the
initial conditions (8) we have

Dqϕ(0, λn)ϕ(0, λ)−Dqϕ(0, λ)ϕ(0, λn)

= −Dq−1ϕ(0, λn)a12 − a11ϕ(0, λn) = 0

Now assume that a21 6= 0. Multiply (17) by ϕ(a, λn) to obtain

W (λ)ϕ(a, λn) = a21ϕ(a, λ)ϕ(a, λn) + a22Dq−1ϕ(a, λ)ϕ(a, λn).
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Using the initial condition (8) this identity becomes

W (λ)ϕ(a, λn) = −a22Dq−1ϕ(a, λ)ϕ(a, λ) + a22Dq−1ϕ(a, λ)ϕ(a, λn)

= a22 [ϕ(a, λ)Dq−1(a, λ) − ϕ(a, λn)Dq−1ϕ(a, λ)]

as a result,

(λ− λn)

∫ a

0

ϕ(x, λ)ϕ(x, λn)dqx =
W (λ)ϕ(a, λn)

(λ− λn) a22

and taking the limit as λ→ λn gives
∫ a

0

|ϕ(x, λn)|2 dqx = W ′(λn)
ϕ(a, λn)

a21

Now, by Theorem D, {ϕ(x, λn)} forms an orthogonal basis of L2(0, a). We
can therefore apply Kramer´s lemma and write an integral transform of the
form (18) as

f(λ) =

∞
∑

n=0

f(λn)
W (λ)

W ′(λn)(λ− λn)
(20)

Consider now the case a21 = 0. Multiply the identity (17) by Dq−1ϕ(a, λn)
to obtain

W (λ)Dq−1ϕ(a, λn) = a22ϕ(a, λ)Dq−1ϕ(a, λn)

on the other side, by (9) we have Dq−1ϕ(a, λ) = 0, so that

(λ− λn)

∫ a

0

ϕ(x, λ)ϕ(x, λn)dqx = ϕ(a, λ)Dq−1ϕ(a, λn)

we conclude that
∫ a

0

ϕ(x, λ)ϕ(x, λn)dqx =
W (λ)Dq−1ϕ(a, λn)

a22 (λ− λn)

taking the limit as λ→ λn,
∫ a

0

|ϕ(x, λn)|2 dqx = W ′(λn)
Dq−1ϕ(a, λn)

(λ− λn) a22

and as before, the use of Kramer’s lemma gives (20). �

Example: Consider the problem

−1

q
Dq−1Dqy(x) = λy(x)
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and the conditions

y(0) = 0

y(1) = 1

A fundamental set of solutions is {cos(
√
λx; q), sin(

√
λx; q)}. From this we

select ϕ(x, λ) = cos(
√
λx; q) to satisfy the initial conditions. The eigenvalues

{λn} of the problem are the zeros of sin(
√
λ; q), and from (12), if q < (1−q2)2

or if n is big enough, then λn = (1 − q)−2q−2n+ǫn. Since the Wronskian is a
function of order zero and its zeros are the λńs , it follows from Theorem 1
that every function of the form

f(t) =

∫ 1

0

u(x) cos(
√
λx; q)dqx

has the representation

f(λ) =
∞

∑

n=0

f((1 − q)−2q−2n+ǫn)
sin(

√
λ; q)

[sin′(
√
x; q)]x=λn

(λ− (1 − q)−2q−2n+ǫn)

The examples 2 and 3 from [5] can be treated in a similar way.
Aknowledgement: I thank Hans Feichtinger for his kind hospitality dur-

ing my stay at NUHAG, University of Vienna, where part of this work was
done.
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