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1. Introduction

The Gegenbauer expansion of the two variable complex exponential in
terms of the ultraspherical polynomials

eixt = Γ(ν)

(

t

2

)−ν ∞
∑

k=0

ik(ν + k)Jν+k(t)C
ν
k (x) (1)

has the remarkable feature of being at the same time an expansion in a
Neumann series of Bessel functions. The usefulness of this expansion was
made very clear in a paper authored by Ismail and Zhang, where it was
used to solve the eigenvalue problem for the left inverse of the differential
operator, on L2 spaces with ultraspherical weights [19]. The consideration
of the q-analogue of this diagonalization problem led the authors to extend
Gegenbauer´s formula to the q-case. This task required the introduction of a
new q-analogue of the exponential, a two variable function denoted by Eq(x; t)
which became known in the literature as the curly q-exponential function,
bearing the name from its notational convention. Ismail and Zhang´s formula
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is

Eq(x; it) =
t−ν(q; q)∞

(−qt2; q2)∞(qν+1; q)∞

∞
∑

k=0

ikqk2/4 (1 − qk+ν)

(1 − qν)
J

(2)
ν+k(2t; q)Ck(x; qν|q)

(2)
The functions involved in this formula will be defined in section 4. Since its
introduction, the function Eq was welcomed as a proper q-analogue of the ex-
ponential function, since it was suitable to provide a satisfactory q-analogue
of the Fourier theory of integral transformations and series developments.
This suitability was made concrete by Bustoz and Suslov in [5], where the
authors introduced the subject of q-Fourier series. Some of the subsequent
research activity has been already collected in a book [26]. Among recent
developments not yet included in this book, we quote the orthogonality re-
lations for sums of curly exponential functions [22], obtained using spectral
methods, and the construction of a q-analogue of the Whittaker-Shannon-
Kotel´nikov sampling theorem [18]. The designation ”Quantum” has appear
often in recent literature on q-analysis, as in the monographs [21] and [20].
This designation is very convenient, since q-special functions are intimately
connected with representations of quantum groups [6].

An abstract formulation designed to capture the essential properties of
q-Fourier type systems was proposed in [14] and we proceed to describe it
here. Let {pn(x)} be a complete orthonormal system in L2(µ) and assume
that {rn(x)} is a discrete orthonormal system whose orthogonality relation
is

∞
∑

j=0

ρ(tj)rn(tj)rm(tj) = δmn

and with dual orthogonality

∞
∑

k=0

rk(tn)rk(tm) =
δmn

ρ(tn)

Assume also that the the system {rn(x)} is complete in L2(
∑

ρ(tj)δtj). Now
define a sequence of functions {Fn(x)} by

Fn(x) =

∞
∑

k=0

rk(tn)pk(x)uk (3)
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where {uk} is an arbitrary sequence of complex numbers in the unit circle.
The following theorem is due to Ismail and comprises in an abstract form
the fundamental fact behind the theory of basic analogs of Fourier series on
a q-quadratic grid [5].

Theorem A [14] The system {Fn(x)} is orthogonal and complete in L2(µ).
To give an idea of what is involved in this statement, we sketch Ismail´s

argument. Since, by (3), rk(tn) are the Fourier coeficients of Fn in the basis
{ukpk}, the use of Parseval´s formula gives

∫

Fn(x)Fn(x)dµ(x) =

∞
∑

k=0

rk(tn)rk(tm) =
δmn

ρ(xn)

and the orthogonality relation is proved. To show the completeness, choose
f ∈ L2(µ) and assume

∫

Fn(x)f(x)dµ(x) = 0 for all m. Again Parseval´s
formula implies

∑∞
k=0 fkrk(tm) = 0 for all m, where fk are the Fourier coeffi-

cients of f in the basis {pk}. Now the completeness of {rk} implies fk = 0.
Therefore f = 0 almost everywhere in L2(µ).

In [15], Ismail posed the problem of studying the mapping properties of
operators with kernels defined as above and conjectured that there was a
reproducing kernel Hilbert space structure behind these operators. We will
show that Ismail´s conjecture is true. Our approach will reveal a reproducing
kernel structure reminiscent of the well known structure of the Paley Wiener
space of functions bandlimited to a real interval. However, even in the case
when the system {Fn(x)} is the set of the complex exponentials, we obtain
results that, as far as our knowledge goes, seem to be new. When the system
{Fn(x)} is the set of basis functions of the q-Fourier series constructed with
the function Eq(x; it), we will obtain results that complement the investiga-
tions done in [26] and [18]. In particular it will be shown that the sampling
theorem derived in [18] lives in a reproducing kernel Hilbert space and that
the correspondent q-analogues of the Sinc function provide an orthogonal
basis for that space.

The outline of the paper is as follows. The next section contains the main
results of the paper, formulated and proved in the general framework de-
scribed above. An integral transformation between two Hilbert spaces is de-
fined, basis for both spaces are provided, and the formula for the reproducing
kernel of the image Hilbert space is deduced. We also prove an abstract sam-
pling theorem in this context, that generalizes the one in [18]. The remaining
sections consider three applications of these results, using specific systems of
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orthogonal polynomials as well as Bessel functions and their generalizations.
The first application is associated to formula (1) and systems of complex ex-
ponentials. The reproducing kernel in this case is written in terms of Bessel
functions. The second application is linked to (2) and to systems of curly
q-exponentials, and we write the reproducing kernel as a 2φ2 basic hypergeo-
metric function. These two examples explore the interplay between Lommel
polynomials and Bessel functions and the corresponding relations between
their q-analogues. In the last section we consider a construction of a general
character, designed originally in the papers [19], [16] and [14]. It allows to
extend the interplay between Bessel functions and Lommel polynomials to a
more general class of functions. Using this construction we will make a brief
discussion about the application of our results to spaces weighted by Jacobi
weights and their q-analogues and, in the case of the Jacobi weights, we eval-
uate the reproducing kernel explicitly. In this instance, the Bessel functions
from the ultraspherical case will be replaced by confluent hypergeometric
functions.

2. The reproducing kernel structure

In this section we will show the existence of a reproducing kernel structure
behind the abstract setting of the previous section. The results will follow
from the study of the mapping properties of an integral transform whose
kernel is obtained from the sequence of functions {rk} and {pk}. Our first
technical problem comes from the fact that, when {rk} is a discrete system of
orthogonal polynomials with a determinate moment problem, then {rk(t)} ∈
l2 if and only if x is a mass point for the measure of orthogonality. For this
reason the series

∞
∑

k=0

rk(t)pk(x)uk

would diverge if t is not such a point (this is pointed out in Section 5 of
[14]). Since we want our kernel to be defined for every t, we will assume the
existence of an auxiliary system of functions {Jk(x)} ∈ l2 for every t real,
and such that every function Jk interpolates pk at the mass points {xn} in
the sense that

Jk(xn) = λnrk(
1

xn
) (4)

for every k = 0, 1, ... and n = 0, 1, ...and some constant λn independent of k.
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Remark 1. Claiming that such a function Jk exists, seems a priori to be a
strong assumption. However, as it will be seen in the last section, a general
constructive method is available in order to find such a function under very
natural requirements on the polynomials rk.

Remark 2. In the abstract formulation it may not be clear why the constant
λn must be present. Actually the construction would work without it, but for
technical reasons that will become evident upon consideration of examples we
prefer to use it. Otherwise, careful bookkeeping of the normalization constants
would be required in the remaining sections.

Now we can use the functions Jk(t) to define a kernel K(x, t) as

K(x, t) =
∞

∑

k=0

Jk(t)pk(x)uk (5)

Such a kernel is well defined and belongs to L2(µ), since it is a sum of basis
functions of L2(µ). From (3), (4) and (5) we have

K(x, xn) =
∞

∑

k=0

Jk(xn)pk(x)uk

= λn

∞
∑

k=0

rk(
1

xn
)pk(x)uk

= λnFn(x)

and Theorem A with tn = 1
xn

shows that K(x, xn) is an orthogonal basis for

the space L2(µ). Now define an integral transformation F by setting

(Ff)(t) =

∫

f(x)K(x, t)dµ(x)

We will study this transform as a map whose domain is the Hilbert space
L2(µ) and we will define on its range, F (L2(µ)), the norm

‖Ff‖F (L2(µ)) = ‖f‖L2(µ)

Theorem 1. The transform F is a Hilbert space isomorphism mapping the
space L2(µ) into F (L2(µ)) and the basis { 1

un
pn(x)} into the basis {Jn(x)}.

As a consequence, {Jn(x)} is a basis of the space F (L2(µ)). Moreover, every
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function f of the form

f(x) =

∫

u(t)K(t, x)dµ(t) (6)

with u ∈ L2(µ), admits an expansion

f(t) =

∞
∑

n=0

anJn(t)

where the coefficients ak are given by

an =

〈

u,
1

un
pn(.)

〉

L2(µ)

Proof : Endowing the range of F with the inner product

〈Ff, Fg〉F (L2(µ)) = 〈f, g〉L2(µ) (7)

then F (L2(µ)) becomes a Hilbert space isometrically isomorphic to L2(µ)
under the isomorphism F . We already know by default that {pn(x)} is a
basis for L2(µ). It remains to prove that {Jn(t)} is a basis for F (L2(µ)).
Observe that

(Fpn)(t) =

∫

pn(x)K(x, t)dµ(x)

=

∞
∑

k=0

Jk(t)uk

∫

pn(x)pk(x)dµ(x)

= Jn(t)un

Since {pn(x)} is a basis for L2(µ) and F is an isomorphism between L2(µ) and
F (L2(µ)), then {Jn(x)} is a basis for F (L2(µ)). To prove the last assertion of
the theorem, observe that function f defined by (6) belongs to F (L2(µ)) and
therefore can be expanded in the basis { 1

un
pn(x)}. The Fourier coefficients of

this expansion are

an = 〈f, Jn(.)〉F (L2(µ)) =

〈

Fu, F (
1

un
pn(.))

〉

F (L2(µ))

=

〈

u,
1

un
pn(.)

〉

L2(µ)

where we have used (7) in the last identity.

Let H be a class of complex valued functions, defined in a set X ⊂ C, such
that H is a Hilbert space with the norm of L2 (X, µ). The function R (s, x)
is a reproducing kernel of H if
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i) R (., x) ∈ H for every x ∈ X;
ii) f (x) = 〈f (.) , R (., x)〉 for every f ∈ H, x ∈ X.
The space H is said to be a Hilbert space with reproducing kernel if it

contains a reproducing kernel. It is easy to see that the space H has a
reproducing kernel if and only if point evaluations in H are bounded in H.
This is indeed the case of the image space of the transform F , as will be seen
in the next proposition.

Theorem 2. The space F (L2(µ)) is a Hilbert space with reproducing kernel
given by

R(t, s) =

∫

K(x, t)K(x, s)dµ(x) (8)

Proof : An application of the Cauchy-Schwarz inequality gives

‖(Ff)(t)‖ =

∣

∣

∣

∣

∫

f(x)K(x, t)dµ(x)

∣

∣

∣

∣

≤ ‖f‖L2(µ) ‖K‖L2(µ) (9)

= ‖Ff‖F (L2(µ)) ‖K‖L2(µ) (10)

Therefore, point evaluations in F (L2(µ)) are bounded and F (L2(µ)) is a
Hilbert space with reproducing kernel. To evaluate the reproducing kernel,
observe that

R(t, s) = F (K(., s))(t)

Therefore, writing an arbitrary g ∈ F (L2(µ)) in the form g = F (f) with
f ∈ L2(µ), we have, by the isometric property of F ,

〈g, R(., s)〉F (L2(µ)) = 〈F (f), F (K(., s))〉L2(µ) = f(s)

This proves that R(t, s) is the reproducing kernel of F (L2(µ)).

Given the existence of a reproducing kernel structure, it is natural to look
for a sampling theorem valid for functions in F (L2(µ)). This is the content
of our next result.

Theorem 3. Every function of the form

f(x) =

∫

u(t)K(t, x)dµ(t)

with u ∈ L2(µ) can be written as the sampling expansion

f(x) =
∑

f(tn)
R(x, tn)

R(tn, tn)
. (11)
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The sum in (11) converges absolutely. Furthermore, it converges uniformly
in every set such that ‖K(., t)‖L2(µ) is finite.

Proof : As we have seen before, K(x, xn) is an orthogonal basis for the space
L2(µ). Since F is an isometry between the spaces L2(µ) and F (L2(µ)) then
the functions

R(t, tn)
√

R(tn, tn)
=

∫

K(x, tn)K(x, s)dµ(x)
√

∫

|K(x, tn)|2 dµ(x)

form an orthonormal basis for the space F (L2(µ)). The Fourier coefficients
of a function f ∈ F (L2(µ)) in such a basis are

〈

f(.),
R(., tn)

√

R(tn, tn)

〉

=
f(tn)

√

R(tn, tn)

This gives (11). This expansion is convergent in norm and, due to inequality
(9), convergence in norm implies uniform convergence in every set such that
‖K(., t)‖L2(µ) is finite. To prove the absolute convergence, apply Schwarz

inequality for sums to (11)

[

∑

f(tn)
R(x, tn)

R(tn, tn)

]2

≤
∑

∣

∣

∣

∣

∣

f(tn)
√

R(tn, tn)

∣

∣

∣

∣

∣

2
∑

∣

∣

∣

∣

∣

R(x, tn)
√

R(tn, tn)

∣

∣

∣

∣

∣

2

We have seen that f(tn)√
R(tn,tn)

are the Fourier coefficients of the function f in the

basis { R(.,tn)√
R(tn,tn)

}. On the other side, R(x, tn)/
√

R(tn, tn) are the Fourier coef-

ficients of the function K(x, t) in the basis K(x, tn)/ ‖K(., tn)‖L2(µ). Therefore

both sequences are in l2 and the theorem is proved.

Remark 3. The construction of this section is reminiscent of the reproducing
kernel structure of the Paley-Wiener space. In the classical situations gener-
alizing this structure, there is an integral transform whose kernel is defined
as

K(x, t) =
∑

Sk(t)ek(x) (12)

where ek(x) is an orthogonal basis for the domain Hilbert space and Sk(t) is
a sequence of functions such that there exists a sequence {tn} satisfying the
sampling property

Sk(tn) = anδn,k (13)
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As an instance, take Sk(t) = sin π(t−k)
π(t−k) and ek(x) = eikx. Then (12) is

eitx =

∞
∑

k=−∞

sinπ(t − k)

π(t − k)
eikx

and K(x, t) is the kernel of the Fourier transform. The corresponding repro-
ducing kernel Hilbert space is the Paley-Wiener space. In our construction
we made a modification of this classical setting: Instead of the sequence of
functions Sk, with the sampling property (13), we considered a sequence of
functions {Jk}, interpolating an orthogonal system {rk} in the sense of (4).
And we have seen that the essential properties of classical reproducing ker-
nel settings are kept. However, this modification allows to recognize a class
of reproducing kernel Hilbert spaces that were obscured until now. This will
became clear in the next section. For an account of Hilbert spaces defined by
transforms with kernels as (12), see [12], [23] and [8] , with many historical
notes and references. The root of these ideas is in Hardy´s groundbreaking
paper [11]. For an application of this classical set up to Jackson q-integral
transforms and the third Jackson q-Bessel function, see [1].

3. The Fourier system with ultraspherical weights

The nth ultraspherical (or Gegenbauer) polynomial of order ν is denoted
by Cν

n(x). These polynomials satisfy the orthogonality relation
∫ 1

−1

Cν
n(x)Cν

m(x)(1− x2)ν−1/2dx =
(2ν)n

√
πΓ(ν + 1

2)

n!(ν + n)Γ(ν)
δm,n

and form a complete sequence in the Hilbert space L2[(−1, 1), (1− x2)ν−1/2].
For typographical convenience we will introduce the following notation for
this Hilbert space:

Hν = L2[(−1, 1), (1− x2)ν−1/2]

The Bessel function of order ν, Jν(x), is defined by the power series expansion

Jν(z) =
∞

∑

n=0

(−1)n

n!Γ(ν + n + 1)

(z

2

)ν+2n

(14)

The nth Lommel polynomial of order ν, denoted by hn,ν(x), is related to the
Bessel functions by the relation

Jν+k(x) = hk,ν(
1

x
)Jν(x) − hk−1,ν−1(

1

x
)Jν−1(x). (15)
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The Lommel polynomials satisfy the discrete orthogonality relation
∞

∑

k=0

1

(jν,k)2
hn,ν+1(±

1

jν,k
)hm,ν+1(±

1

jν,k
) = δnm

and the dual orthogonality
∞

∑

k=0

hk,ν+1(±
1

jν,n
)hk,ν+1(±

1

jν,m
) = (jν,k)

2δnm

They form a complete orthogonal system in the l2 space weighted by the
discrete measure with respect to which they are orthogonal. We will use
these two complete orthogonal systems in our first illustration of the general
results. Set

pk(x) = Γ(ν)(ν + k)Cν
k (x)

and

rk(t) = hk,ν−1(t)

Consider also

Jk(t) = Jν+k(t).

Denote by jν,k the kth zero of the Bessel function of order ν. Substituting
x = jν,n in (15), the following interpolating property is obtained

hk,ν−1(
1

jν,n
) = −Jν+k(jν,n)

Jν−1(jν,n)
(16)

The interpolating property (16) will play the role of (4) with λn = − 1
Jν−1(jν,n)

.

Consider also the sequence of complex numbers {un} defined as

uk = ik

and set

K(x, t) = Γ(ν)
∞

∑

k=0

ik(ν + k)Jν+k(t)C
ν
k (x)

Using (1) we have

K(x, t) =

(

t

2

)ν

eixt

and

K(x, jν,n−1) =

(

jν,n−1

2

)ν

eixjν,n−1
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leading us to conclude that {eijν,n−1x} is an orthogonal basis for the space
Hν (observe that setting ν = 1/2 the orthogonality and completeness of the
complex exponentials {eiπnx} in L2(−1, 1) is obtained as a special case). The
transformation F is defined, for every f ∈ Hν, as

(Ff)(t) =

(

t

2

)ν ∫ 1

−1

f(x)eixt(1 − x2)ν−1/2dx

Since {i−nΓ(ν)(ν + n)Cν
n(t)} forms a basis of the space Hν , it follows from

Theorem 1 that {Jν+n(x)} = F{i−nΓ(ν)(ν + n)Cν
n(t)} is a basis of the space

F (Hν). Furthermore, the application of Theorem 1 to this setting gives our
first expansion result.

Theorem 4. Let f be a function of the form

f(t) =

(

t

2

)ν ∫ 1

−1

u(x)eixt(1 − x2)ν−1/2dx (17)

where u ∈ Hν. Then f can be written as

f(t) =

∞
∑

n=0

anJν+n(t) (18)

with the coefficients an given by

an = i−nΓ(ν)(ν + n)

∫ 1

−1

u(x)Cν
n(x)(1− x2)ν−1/2dx (19)

Remark 4. Expansions of the type (18) are known as Neumann series of
Bessel functions (see chapter 16 of [24]).

In the next result we obtain the explicit formula for the reproducing kernel
of F (Hν).

Theorem 5. The space F (Hν) is a Hilbert space with reproducing kernel
Rν(t, s) given by

Rν(t, s) = Γ(ν +
1

2
)Γ(

1

2
)

(

ts

t − s

)ν

Jν(t − s) (20)
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Proof : By Theorem 2 we know that F (Hν) is a Hilbert space with reproduc-
ing kernel. By (8) we have

Rν(t, s) =

(

ts

2

)ν ∫ 1

−1

eix(t−s)(1 − x2)ν− 1

2dx

Using the Poisson integral in the form (see [24, pag. 50 ])

Jν(t) =

(

t
2

)ν

Γ(ν + 1
2)Γ(1

2)

∫ 1

−1

eitx(1 − x2)ν− 1

2dx

we obtain (20).

Observe that Graf´s addition formula [24, pag. 145] can be used to give
yet another form to this kernel:

Rν(t, s) = Γ(ν +
1

2
)Γ(

1

2
)

(

ts

t − s

) ∞
∑

n=−∞
Jν+m(t)Jm(s)

The sampling theorem resulting from this construction seems to have been
hitherto unnoticed, although it deals with very classical mathematics.

Theorem 6. Let f be a function of the form (17), where u ∈ Hν. Then f
can be represented as the following absolutely convergent sampling series

f(t) =
1

Γ(ν + 1)

∞
∑

n=0

f(jν,n)

[

1

jν,n(t − jν,n)

]ν

Jν(t − jν,n) (21)

The convergence is uniform in compact subsets of R.

Proof : In order to apply apply Theorem 3 we must evaluate the quotient
Rν(t, jν,n)/R

ν(jν,n, jν,n). Substituting in (20) and using (14) yields, after
some simplification,

Rν(t, jν,n)

Rν(jν,n, jν,n)
=

1

Γ(ν + 1)

[

1

jν,n(t − jν,n)

]ν

Jν(t − jν,n)

Remark 5. When ν = 1/2 we have

R
1

2 (t, s) =
√

2(ts)1/2sin(t − s)

(t − s)
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and the sampling theorem states that every function of the form

f(t) =

(

t

2

)1/2 ∫ 1

−1

u(x)eixtdx

with u ∈ L2[(−1, 1)] can be represented as.

f(t) =
√

2

∞
∑

n=0

f(n)
sin(t − n)

n1/2(t − n)

4. The q-Fourier system with q-ultraspherical weights

We proceed to describe the q-analogue of the previous situation. Choose a
number q such that 0 < q < 1. The notational conventions from [9]

(a; q)0 = 1, (a; q)n =

n
∏

k=1

(1 − aqk−1),

(a; q)∞ = lim
n→∞

(a; q)n, (a1, ..., am; q)n =
m
∏

l=1

(al; q)n, |q| < 1,

where n = 1, 2, . . . , will be used. The symbol r+1φr stands for the function

r+1φr

(

a1, . . . , ar+1

b1, . . . , br

∣

∣

∣

∣

q, z

)

=

∞
∑

n=0

(a1, . . . , ar+1; q)n

(q, b1, . . . , br; q)n
zn.

The q-exponential function that we talked about in the introduction is defined
in terms of basic hypergeometric series as

Eq(x; t) =
(−t; q

1

2 )∞
(qt2; q2)∞

r+1φr

(

q
1

3eiθ, q
1

3e−iθ

q
1

2

∣

∣

∣

∣

q
1

2 ,−t

)

where x = cos θ. The continuous q-ultraspherical polynomials of order ν are
denoted by Cν

n(x; qν|q) and satisfy the orthogonality
∫ 1

−1

Cν
n(x; qν|q)Cν

m(x; qν|q)w(x; qν | q)dx =
(2πqν, qν+1; q)∞

(q, q2ν; q)∞

(1 − qν)(q2ν; q)n

(1 − qn+ν)(q; q)n
δm,n

where the weight function w(x; β | q) is

w(cos θ; β|q) =
(e2iθ, e−2iθ; q)∞

sin θ(βe2iθ, βe−2iθ; q))∞
, (0 < θ < π)
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The polynomials {Cν
n(x; qν|q)} form a basis of the Hilbert space Hν

q defined
as

Hν
q = L2[(−1, 1), w(x; qν | q)]

The second Jackson q-Bessel function of order ν is defined by the power series

J (2)
ν (x; q) =

(qν+1; q)∞
(q; q)∞

∞
∑

k=0

(−1)n (x/2)ν+2n

(q; q)n(qν+1; q)n
qn(ν+n)

Since this is the only q-Bessel function to be used in the text, we will drop

the superscript for shortness of the notation and write Jν(x; q) = J
(2)
ν (x; q).

The q-Lommel polynomials associated to the Jackson q-Bessel function of
order ν are denoted by hn,ν−1(x; q). These polynomials were defined in [13]
by means of the relation

qnν+n(n−1)/2Jν+n(x; q) = hn,ν(
1

x
; q)Jν(x; q)− hn−1,ν−1(

1

x
; q)Jν−1(x; q) (22)

The q-Lommel polynomials satisfy the orthogonality relation
∞

∑

k=1

Ak(ν + 1)

(jν,n(q))2
hn,ν+1(±

1

jν,n(q)
; q)hm,ν+1(±

1

jν,n(q)
; q) =

qnν+n(n+1)/2

1 − qn+ν+1
δnm

and the dual orthogonality
∞

∑

k=1

(1 − qn+ν+1)

qnν+n(n+1)/2
hn,ν+1(±

1

jν,n(q)
; q)hm,ν+1(±

1

jν,n(q)
; q) =

(jν,n(q))
2

Ak(ν + 1)
δnm

Consider

pk(x) =
(q; q)∞

(qν+1; q)∞

(1 − qk+ν)

(1 − qν)
Ck(x; qν|q)

rk(t) = hk,ν−1(2t; q)

and
Jk(t) = qkν+(k

2)Jν+k(2t; q)

The parameters uk will be given by

uk = qk2/4ik

Denote by jν,k(q) the kth zero of Jν(x; q). Setting t = jν,k(q) in (22) we have
the interpolating property

hk,ν−1(
1

jν,n(q)
; q) = −qkν+(k

2)Jν+k(jν,n(q); q)

Jν−1(jν,n(q); q)
(23)
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This means that in (4) we must take λn = − 1
Jν−1(jν,n(q);q)

. In this context, the

kernel K(x, t) is given as

K(x, t) = (q; q)∞

∞
∑

k=0

ikqk2/4(1 − qk+ν)

(1 − qν)
Jν+k(2t; q)Ck(x; qν|q)

and the use of (2) gives

K(x, t) = tν(−qt2; q2)∞Eq(x; it)

The basis functions of the domain space are

Fn(x) = K(x, jν,k(q)) = (jν,k(q))
ν(−qj2

ν,k(q); q
2)∞Eq(x; ijν,k(q))

Our imediate conclusion is that {Eq(x; ijν,n−1)} is orthogonal and complete
in Hν

q . Now define the transform

(F ν
q f)(t) = tν(−qt2; q2)∞

∫ 1

−1

f(x)Eq(x; it)w(x; qν | q)dx (24)

for every f ∈ Hν
q . Use of Theorem 1 shows that

qnν+(n

2)Jν+n(t; q) = F ν
q

(

i−n (q; q)∞
(qν+1; q)∞

(1 − qk+ν)

(1 − qν)
Cn(x; qν|q)

)

and {qnν+(n
2)Jν+n(t; q)}∞n=0 is a basis of the space F ν

q

(

Hν
q

)

. We can also
state the q-analogue of the expansion in Theorem 5 and obtain a q-Neumann
expansion theorem in q-Bessel functions.

Theorem 7. Let f be a function of the form

f(t) = tν(−qt2; q2)∞

∫ 1

−1

u(x)Eq(x; it)w(x; qν | q)dx (25)

where u ∈ Hν
q . Then f can be written as

f(t) =
∞

∑

n=0

anJν+n(t; q)

with the coefficients an given by

an = qnν+(n
2)−n2

4 i−n (q; q)∞
(qν+1; q)∞

(1 − qk+ν)

(1 − qν)

∫ 1

−1

u(x)Cn(x; qν|q)w(x; qν | q)dx
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Once more we can evaluate the reproducing kernel in an explicit form using
the following integral, evaluated, by a fortunate coincidence, in [17]:

∫ π

0

Eq(cos θ; α)Eq(cos θ; β)
(e2iθ, e−2iθ; q)∞

(γe2iθ, γe−2iθ; q)∞
dθ (26)

=
2π(γ, qγ,−αβq1/2; q)∞

(q, γ2; q)∞(qα2, qβ2; q2)∞
2φ2

(

−q1/2α/β,−q1/2β/α
qγ, ,−αβγq1/2

∣

∣

∣

∣

q,−αβγq1/2

)

Theorem 8. The space F ν
q

(

Hν
q

)

is a space with reproducing kernel Rν
q (t, s),

given by

Rν
q (t, s) =

2π(ts)ν(qν, qν+1,−tsq1/2; q)∞
(q, q2ν; q)∞

2φ2

(

−q1/2t/s,−q1/2s/t
qν+1,−tsq1/2+ν

∣

∣

∣

∣

q,−tsqν+1/2

)

(27)

Proof : Applying Theorem 2 we know that Rν
q (t, s) is given by

Rν
q (t, s) = (ts)ν(−qt2,−qs2; q2)∞

∫ 1

−1

Eq(x; it)Eq(x;−is)w(x; qν | q)dx

Make the substitutions x = cos θ, it = α, is = β, and qν = γ in (26). Then
(27) follows.

Of course, as in the preceding sections we can formulate a sampling the-
orem, although no major simplification seems to occur after performing the
required substitutions.

Theorem 9. Every function of the form (25) admits the expansion

f(x) =
∞

∑

k=0

f(tk)
Rν(x, tk)

Rν(tk, tk)
(28)

where tk =
jν,k(q)

2

Remark 6. When ν = 1
2 the orthogonality and completeness of the com-

plex exponentials {Eq(x; i
j1
2

,n−1
(q)

2 } in H
1

2
q is obtained. This is the case of the

q-Fourier series studied in [26]. The functions R1/2(x, tk)/R
1/2(tk, tk) above

turn out to be the same as the Sincq(t, k) in [18], where is shown that, in
this special case, a remarkable simplification occurs and the resulting sam-
pling theorem is an interpolating formula of the Lagrange type. The above
discussion adds information that was not available in previous work: The
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function space where these sampling theorems live, are reproducing kernel
Hilbert spaces, and the corresponding reproducing kernels are known explic-
itly as basic hypergeometric functions.

Remark 7. By the proof of Theorem 3, the functions Rν(x,tk)
Rν(tk,tk) are orthogonal.

In the case ν = 1
2, this shows that the functions Sincq(t, n) are orthogonal in

the space F
1

2
q (H

1

2
q ). This result is new and it is a q-analogue of the important

fact, proved by Hardy in [11], that the functions sin π(t−k)
π(t−k)

are orthogonal in

the Paley-Wiener space.

Remark 8. Important information concerning the zeros of the second Jack-
son q-Bessel function, that appear as sampling nodes in the expansion (28),
was obtained very recently by Walter Hayman in [10] using a method due to
Bergweiler and Haymann [4]. He proved the asymptotic expansion

j2
ν,k(q) = 4q1−2n−ν{1 +

n
∑

ν=1

bνq
kν + O

∣

∣

∣
q(n+1)k

∣

∣

∣
}

as k → ∞, with the constants bν depending on a and q. Therefore, for big k,
the sampling nodes are exponentially separated in a similar way to what was
observed in [1] and [2]. In the case where ν = ±1

2
, the zeros were studied by

Suslov [25].

5. A generalization

We begin this last section describing a formal approach generalizing the
situations studied in the two previous sections. This formal approach was
initiated in [19] and [16] with the purpose of finding functions to play the
role of the Lommel polynomials in more general situations, and was studied
further in [14]. In the context studied in this paper, it will be of particular
relevance, since it gives a constructive method to find the functions Jk sat-
isfying (4). Let {fn,ν} be a sequence of polynomials defined recursively by
f0,ν(x) = 1, f1,ν(x) = xBν and

fn+1,ν(x) = [xBn+ν]fn,ν(x) − Cn+ν−1fn−1,ν(x)

Assuming the positivity condition Bn+νBn+ν+1Cn+ν > 0 (n ≥ 0) and the

convergence of the series
∑∞

n=0
Cn+ν

Bn+νBn+ν+1
, it can be shown, using facts from

the general theory of orthogonal polynomials, that the polynomials fn,ν are
orthogonal with respect to a compact supported discrete measure and that
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the support points of this measure are 1
xn,ν

, where the xn,ν are the zeros of

an entire function J satisfying

Cν...Cν+n−1J (x; ν + n) = J (x; ν)fn,ν(
1

x
) −J (x; ν − 1)fn−1,ν+1(

1

x
) (29)

The dual orthogonality relation of the polynomials fn,ν(x) is

∞
∑

n=0

Bν+1

2λn(ν + 1)
fn,ν+1(

1

xν,k
)fn,ν+1(

1

xν,j
) =

x2
ν,j

Aj(ν + 1)
δj,k

for some constants Aj(ν + 1) and λn(ν + 1). (for the evaluation of these
constants, as well as other parts of the argument missed in this brief sketch,
we recommend the reading of section 4 of [14]). From (29) and the above
analysis we can obtain the interpolation property

J (xn,ν; ν + k) =
−J (xn,ν; ν − 1)

Cν...Cν+n−1
fk−1,ν+1(

1

xn,ν
)

Therefore, in the language of the second section we can set

Jk(t) =
√

λk(ν)
Bk+ν

Bν
J (t, k)

rk(t) =
√

λk(ν)
Bk+ν

Bν
fn,ν(t)

λn =
−J (xn,ν; ν − 1)

Cν...Cν+n−1

and define the kernel

K(x, t) =
∞

∑

k=0

uk

√

λk(ν)
Bk+ν

Bν
J (t, k)pk(x)

where |uk| = 1 and {pn(x)} is an arbitrary complete orthonormal system in
L2(µ). As before, the kernel K(x, t) can be used to define an integral trans-
formation between two Hilbert spaces. We could now apply the machinery
of section 2 and provide a reproducing kernel structure and a sampling the-
orem by means of an integral transform with the above kernel. However,
no simplification would occur on the absence of proper addition formulas for
the kernel K(x, t). Choosing families of orthogonal polynomials fn,ν(t) and
pn(x) in a way that such addition formulas exist is the topic of the second
problem in [15].
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Operators weighted by the Jacobi measure can be studied with kernels
defined by the following generalization of (1) [7, formula 10.20.4]

eixt = e−it
∞

∑

k=0

(α + β + 1)k

(α + β + 1)2k
(2it)k

1F1

(

k + β + 1
2k + α + β + 2

∣

∣

∣

∣

2it

)

P
(α,β)
k (x)

(30)

where {P (α,β)
k (x)} stands for the Jacobi polynomials, orthogonal in the inter-

val [−1, 1] with respect to the weight function (1 − x)α(1 + x)β. Reasoning
as before, we can use this formula to generalize the results in the third sec-
tion to Fourier systems with Jacobi weights. The analogues of the Lommel
polynomials can be constructed as the functions fn,ν described above. These
functions preserve the formal properties of the Lommel polynomials and were
used in [19, section 4]. Results very similar to those of section 3 would follow,
with an extra parameter. Expansions in series of 1F1 replace the Neumann
expansions and sampling theorems with sampling points located at the ze-
ros of these 1F1 can also be derived. To avoid tedious duplication we omit
the statement of these results, but we find useful to compute explicitly the
corresponding reproducing kernel of the resulting image Hilbert space. Set

Hα,β = L2[(−1, 1), (1− x)α(1 + x)β]

and define an integral transform by

(Ff)(t) = eit

∫ 1

−1

f(x)eixt(1 − x)α(1 + x)βdx

for every f ∈ Hα,β. Following section 2 and denoting the reproducing kernel
of F (Hα,β) by Rα,β(t, s), we have

Rα,β(t, s) = ei(t−s)

∫ 1

−1

eix(t−s)(1 − x)α(1 + x)βdx (31)

Now, since the expansion (30) is a Fourier-Jacobi series, the following integral
follows at once for every k = 0, 1, ...

∫ 1

−1

eixtP
(α,β)
k (x)(1− x)α(1 + x)βdx

= e−it (α + β + 1)k

(α + β + 1)2k
(2it)k

1F1

(

n + β + 1
2n + α + β + 2

∣

∣

∣

∣

2it

)
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setting k = 0 gives
∫ 1

−1

eixt(1 − x)α(1 + x)βdx = e−it
1F1

(

β + 1
α + β + 2

∣

∣

∣

∣

2it

)

(32)

this allows to evaluate the integral in (31) and the result is

Rα,β(t, s) = 1F1

(

β + 1
α + β + 2

∣

∣

∣

∣

2i(t − s)

)

In section 6 of [16], formula (6.13) is a q-analogue of (30) generalizing (2).
This formula involves continuous q-analogues of the Jacobi polynomials de-
fined via the Askey Wilson polynomials [3] and a q-exponential function with
an extra variable. To evaluate the kernel we would need an extension of for-
mula (26) to this more general and complicated situation. To our knowledge,
such a formula has not yet be written and a more detailed analysis of this
situation deserves attention in a future discussion.
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