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Abstract: We prove that if a surjective submersion which is a homomorphism of
Lie algebroids is given, then there exists another homomorphism between the cor-
responding prolonged Lie algebroids and a relation between the dynamics on these
Lie algebroid prolongations is established. We also propose a geometric reduction
method for dynamics on Lie algebroids defined by a Lagrangian and the method is
applied to regular Lagrangian systems with nonholonomic constraints.
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1. Introduction

The Lie algebroids were introduced by Pradines [21] as infinitesimal objects
for differential groupoids, and since then they are receiving an increasing
interest from mathematics and theoretical physicists. A Lie algebroid can be
seen as a generalization of both a Lie algebra and a tangent bundle, these
being the simplest (no trivial) examples of Lie algebroids. Another relevant
example of Lie algebroid with equal importance to mathematics and physics
is the gauge algebroid TP/G associated to a principal bundle P (M, G), where
in the classical field theory M is the space-time manifold and G is the gauge
group. For the basic proprieties and literature on the subject we refer to the
book by Cannas [1] and the survey paper and book by Mackenzie [13, 14].

The aim of this paper is to study the reduction of the dynamics on Lie al-
gebroids defined through a Lagrangian function, which can be carried out by
using the prolongation of a Lie algebroid over a map, introduced by Higgins
and Mackenzie [8]. The study of Lagrangian mechanics on Lie algebroids
was first proposed by Weinstein [23] (see also [12]), and then Mart́ınez [16],
adapting the definition of prolongation of a Lie algebroid over a map, de-
veloped a formalism for Lagrangian mechanics on Lie algebroids using the
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generalization of the fundamental ingredients of geometric Lagrangian me-
chanics: the vertical endomorphism, the Liouville vector field and the Cartan
forms. Afterward several papers on related subjects were developed, see e.g.
[11] and references therein.

The theory of reduction has many applications and has been shown to
be extremely useful for a deep understanding of many physical theories in-
cluding, among others, systems with symmetry, Poisson structures, stability
theory and integrable systems. The reduction of the dynamics has been pre-
viously considered in many papers (see [15] and the references therein) but is
not a well known subject in Lie algebroids dynamics. This happens because
the meaning of Lie algebroid reduction has not been clearly stated; this issue
was clarified in a previous paper [4]. With the study of reduction of the
dynamics on Lie algebroids defined by a Lagrangian we generalize a previous
work by Rodŕıguez-Olmos [20], where the author reduced the dynamics of
Lie algebroids with symmetry, that is, a Lie algebroid where a Lie group
acts and whose action is defined by a Lie algebroid representation of the Lie
group.

The paper is organized as follows. In the first three sections, we recall
the definition of prolongation of a Lie algebroid A (see [16]) and how the
dynamics on the prolongation of A defined by a Lagrangian function can be
found (see [11, 16]). We prove in section 4 that given a surjective submer-

sion Π : A → Â that is a homomorphism of Lie algebroids, there exists a
surjective map between their prolonged Lie algebroids Π|T A : T A → T Â
that is a homomorphism of Lie algebroids too, i.e. we can defined a Lie al-
gebroid reduction between the corresponding prolonged Lie algebroids. The
particular case of Lie algebroids with symmetry is analyzed with an special
attention to the gauge algebroid. In section 5 we show how the dynamics can
be reduced, establishing a relation between the dynamics in the Lie algebroid
prolongation T A and the dynamics in the reduced Lie algebroid prolongation
T Â. Finally, in the last section the Chetaev formulation for nonholonomic
systems in Lie algebroids is given and a reduction procedure for Lagrangian
systems on Lie algebroids with nonholonomic constraints is explained. We
show that the dynamics of a system with nonholonomic constraints can be
reduced if the system has a regular and Π-invariant Lagrangian L = l ◦ Π
with l ∈ C∞(Â).
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2. Basic concepts of Lie algebroids

Recall that a Lie algebroid is a vector bundle p : A → M over a manifold
M together with a vector bundle morphism ρ : A → TM over the identity
map on M (called the anchor) and a Lie bracket [·, ·]A on the C∞(M)-modulo
Γ(A) of sections for p satisfying

[v, fw]A = f [v, w]A + (ρ(v)f)w

for every pair of sections v and w and any smooth function f on M . We
denote the Lie algebroid by (A, ρ, [·, ·]A) or simply by A whenever it is clear
which Lie algebroid structure we refer to. Note that the anchor is a C∞(M)-
linear map of the space Γ(A) into the space X(M) of vector fields on M , and
one can easily prove, using the above condition and the Jacobi identity of the
Lie bracket [·, ·]A, that the anchor is a Lie algebra homomorphism [9]. For a
detailed lecture on the subject see e.g. [1, 14].

Let (q1, . . . , qn) be local coordinates in a chart on an open set U ⊂ M ,
and let {eα | α = 1, . . . , r} be a basis of local sections of the bundle p|UA

:
UA = p−1(U) → M . Each local section VU is written VU = ξα eα. The local
coordinates of a ∈ UA are (q1, . . . , qn, ξ1, . . . , ξr). The local expressions for
the Lie product and the anchor map are, respectively,

[eα, eβ]A = cαβ
γ eγ , ρ(eα) = ρi

α
∂

∂qi
, (2.1)

where cαβ
γ and ρi

α are the so called structure functions of the Lie algebroid
relative to {eα}. As ρ is an homomorphism of Lie algebras this function
satisfies:

ρj
α

∂ρi
β

∂qj
− ρj

β
∂ρi

α

∂qj
= ρi

γ cαβ
γ , i = 1, . . . , n . (2.2)

Moreover the compatibility condition, and the Jacobi identity implies:
∑

cycl(α,β,γ)

[
ρi

γ
∂cβα

µ

∂qi
+ cαβ

ν cνγ
µ

]
= 0 , µ = 1, . . . , r . (2.3)

The equations (2.2) and (2.3) are known as the compatibility equations of the
structure functions.

A Lie algebroid (A, p, M) is endowed with a differential operator dA that is
a nilpotent (d2

A = 0) derivative of degree one in the exterior graded algebra
of A-forms, Ω•(A); dA is the exterior derivative of the Lie algebroid. We say
that a vector bundle morphism (Π, π) : (A, p, M) → (A′, p′, M ′) between two
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Lie algebroids is a homomorphism of Lie algebroids if dA ◦Π∗ = Π∗ ◦ dA′ (see
[22]). This definition is equivalent to the definition of homomorphism of Lie
algebroids introduced in [8]: a vector bundle morphism (Φ, φ) : (A, p, M) →
(A′, p′, M ′) is a homomorphism of the Lie algebroid (A, ρ, [·, ·]A) in the Lie
algebroid (A′, ρ′, [·, ·]A′) when Tφ ◦ ρ = ρ′ ◦ Φ and, for any pair v, w ∈ Γ(A)
with Φ-decompositions Φ ◦ v =

∑
i fi (v

′
i ◦ φ) and Φ ◦w =

∑
j gj (w′

j ◦ φ), the
following condition is satisfied:

Φ◦[v, w]A =
∑

i,j

fi gj ([v′i, w
′
j]A′◦φ)+

∑

j

(ρ(v)gj) (w′
j◦φ)−

∑

i

(ρ(w)fi) (v′i◦φ).

(2.4)

Given a surjective morphism of vector bundles (Π, π) : (A, p, M)→(Â, p̂, M̂)

between two Lie algebroids (A, ρ, [·, ·]A) and (Â, ρ̂, [·, ·]Â), respectively, we

say that Â is a reduced Lie algebroid of A if Π is a homomorphism of Lie
algebroids (see [4]).

3. Lagrangian mechanics on Lie algebroids

In this section, we recall the definition of prolongation of a Lie algebroid A
and the fundamental elements of the Lagrangian mechanics on this prolonged
Lie algebroid (see [11] and [16]).

Let p : A → M be a vector bundle over M with Lie algebroid structure
(ρ, [·, ·]A). The prolongation of the Lie algebroid A is a vector bundle T A
over A, where T A is the total space of the pullback of the vector bundle
Tp : TA → TM by the anchor map ρ : A → TM ; such total space is (see
[16])

T A = {(b, v) ∈ A × TA | ρ(b) = Tp(v)} .

The projection pT A : T A → A is defined by pT A(b, v) = a, where pTA(v) =
a ∈ A with pTA : TA → A the canonical projection of the tangent bundle TA
over the base A. Note that the pullback of the bundle Tp : TA → TM by
the anchor map ρ : A → TM coincides with the induced or inverse-image Lie
algebroid of A over p : A → M in the terminology of Higgins and Mackenzie
[8] (see also [11]).

A element (b, v) of T A will be denoted by (a, b, v), where a ∈ A is the point
where v is tangent to A. With this notation

T A = {(a, b, v) ∈ A × A × TA | p(a) = p(b), ρ(b) = Tap(v) with v ∈ TaA} .
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So, we have in a natural way the following projections:

pT A(a, b, v) = a, p2(a, b, v) = b, ρT A(a, b, v) = v,

which we represent in the commutative diagram

T A
ρT A

//

p2

��

TA

pTA
{{wwwwwwwww

Tp
��

A ρ
// TM

The structure of vector space of each fibre TaA of pT A : T A → A is

(a, b1, v1) + (a, b2, v2) = (a, b1 + b2, v1 + v2), λ(a, b1, v1) = (a, λb1, λv1),

for each (a, bi, vi) ∈ TaA and λ ∈ R, with i = 1, 2. If r is the rank of the
vector bundle A and n is the dimension of M , the dimension of each fibre
of T A is 2r because the tangent map Tp : TA → TM is surjective, and so
dim (Im ρm + Im Tap) = dimTmM = n, where p(a) = m (see [11]).

The vector bundle pT A : T A → A can be endowed with a Lie algebroid
structure, where the anchor is the map ρT A : T A → TA and the Lie bracket
in the space of sections is defined using the bracket of a certain type of
sections, the so-called projectable sections, that generate all space of sections
of T A. A section V ∈ Γ(T A) is said to be projectable if there exists a
σ ∈ Γ(A) such that p2◦V = σ◦p or, equivalently, if V (a) = (a, σ(p(a)), X(a))
for all a ∈ A, where σ ∈ Γ(A) and X ∈ X(A) are such that Tp◦X = ρ(σ)◦p.
Given two projectable sections V and V ′ of T A the bracket of these two
sections is defined by:

[V, V ′]T A(a) = (a, [σ, σ′]A(p(a)), [X, X ′](a)).

A section V of T A is said to be vertical if p2 ◦ V = 0. Obviously, all vertical
sections of T A are projectable and the bracket of vertical sections is also
vertical.

For example, if A is the tangent bundle to a manifold Q, A = TQ, endowed
with its usual Lie algebroid structure, the prolongation of the Lie algebroid
A is the tangent bundle T (TQ) to TQ endowed with its usual structure of
Lie algebroid over TQ (see [16]).
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As pointed out in [11], with the above structure of Lie algebroid in T A,
p2 : T A → A is a homomorphism of Lie algebroids over p : A → M .

T A
pT A

��

p2
// A

p
��

A
p

// M

In fact, we have ρ ◦ p2(a, b, v) = ρ(b) = Tp(v) = Tp ◦ ρT A(a, b, v) for all
(a, b, v) ∈ T A; moreover, for every projectable sections V and V ′ of T A,
with p2 ◦ V = σ ◦ p and p2 ◦ V ′ = σ′ ◦ p, we have p2 ◦ [V, V ′]T A = [σ, σ′]A ◦ p.
Since p2 is a surjective morphism we can conclude that p2 is a homomorphism
of Lie algebroids [8]. As a consequence, A is a reduced Lie algebroid of T A
(see [4]).

The prolongation of the Lie algebroid p : A → M plays a relevant role
in the definition of Lagrangian mechanics on Lie algebroids [16]. First, if
a, b ∈ A, we call vertical lift of b on a to the element of TaA given by

bV (a) = (a, 0, bV
a ),

where bV
a f = d/dt [f(a + tb)]|t=0 for all f ∈ C∞(A). Thus, given a section

σ ∈ Γ(A) the vertical lift of σ is a section σV of T A given by

σV (a) = (σ(p(a)))V (a), a ∈ A.

This allows to define the vertical endomorphism S in T A as follows: if
(a, b, v) ∈ TaA, then

S(a, b, v) = (a, 0, bV
a ).

The Liouville section ∆ is the vertical section of T A given by

∆(a) = (a, 0, aV
a ) = aV (a), a ∈ A.

From the definition of vertical endomorphism we verify that S transforms
any sections of T A in a vertical section and that ImS = Ker S, therefore,
S2 = 0. We call second order differential equation (SODE) to a section D of
T A such that S(D) = ∆ or, equivalently, p2 ◦ D = idA.

Let L ∈ C∞(A) be the Lagrangian of a system on the Lie algebroid A
and dT A denote the exterior derivative of the Lie algebroid T A. The Cartan
forms, θL and ωL, are defined, respectively, by

θL = dT AL ◦ S and ωL = −dT AθL.
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If (q1, ..., qn,v1, ...,vs) is a system of local coordinates of p : A → M as-
sociated with the choice of a basis of local sections {eα | α = 1, ..., s} for
which the structure functions of the Lie algebroid are [eα, eβ]A = cαβ

γ eγ,
ρ(eα) = ρi

α ∂/∂qi, we can consider the following basis of sections of T A,

Xα(a) = (a, eα(p(a)), ρi
α

∂

∂qi
|a) and Vα(a) = (a, 0,

∂

∂vα
|a);

denote by X α and Vα the sections of (T A)∗ corresponding to its dual basis.
The vertical endomorphism and Liouville section in these local coordinates
are given by,

S = X α ⊗ Vα, ∆ = vα Vα,

and the Cartan forms are written:

θL =
∂L

∂vα
X α

ωL =
1

2

(
cαβ

γ ∂L

∂vγ
− ρi

α
∂2L

∂qi∂vβ
+ ρj

β
∂2L

∂qj∂vα

)
X α ∧ X β

+

(
∂2L

∂vβ∂vα

)
X α ∧ Vβ

The energy of the system is given by EL = ρT A(∆)L − L or, in local
coordinates, by

EL = vα ∂L

∂vα
− L

and its differential is given by

dT AEL =

(
vαρi

β
∂2L

∂qi∂vα
− ρi

β
∂L

∂qi

)
X β + vα ∂2L

∂vβ∂vα
Vβ.

The Lagrangian L is said to be (hyper-) regular if the Legendre transfor-
mation FL : A → A∗, defined by

FL(a)(b) :=
d

dt
L(a + tb)

∣∣∣∣
t=0

,

is a (global) diffeomorphism; note that the Legendre transformation is regular
if the matrix

(
∂2L/∂vα∂vβ

)
is invertible. When the Lagrangian is regular the

Cartan 2-form ωL is a symplectic form. Therefore, the dynamical equation

i(VL)ωL = dT AEL (3.1)

has a unique solution VL ∈ Γ(T A) that is a SODE, i.e. S(VL) = ∆.
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Let us suppose that the Lagrangian L is regular and that VL ∈ Γ(T A),
given by VL = aαXα + bαVα, is the solution of the dynamics. Then, the
integral curves of ρT A(VL) = aαρi

α ∂/∂qi + bα ∂/∂vα satisfy




q̇i = aαρi
α = vαρi

α

v̇α = bα = W αβ

[
vǫcǫβ

γ ∂L

∂vγ
− vǫρi

ǫ
∂2L

∂qi∂vβ
+ ρi

β
∂L

∂qi

]
,

where (W αβ) represents the inverse matrix of
(
∂2L/∂vα∂vβ

)
. When VL is a

SODE, the dynamics equation (3.1) is equivalent to

£VL
θL = dT AL

where £VL
= i(VL)◦dT A+dT A◦i(VL) denotes the ‘Lie derivative’ with respect

to the section VL of T A. Then, the Euler-Lagrange equations are given by

d

dt

(
∂L

∂vα

)
= ρi

α
∂L

∂qi
+ vβcβα

γ ∂L

∂vγ

with q̇i = vαρi
α; the above equations are the Lagrange equations obtained

by Weinstein [23].

4. Prolongation of a reduced Lie algebroid

Let Â be a Lie algebroid which is a reduction of the Lie algebroid A. In
this section, we will show that there exists a homomorphism of Lie algebroids
between the prolongation of the Lie algebroids A and Â, in such a way that
T Â is a reduced Lie algebroid of T A. This construction is a generalization
of the work developed in [20].

Let A and Â be vector bundles endowed with the Lie algebroid structures
(ρ, [·, ·]A) and (ρ̂, [·, ·]Â), respectively. Suppose that (Π, π) : (A, p, M) →

(Â, p̂, M̂) is a surjective submersion of vector bundles that is a homomor-
phism of Lie algebroids.

Let us consider the surjective morphism of vector bundles Π = (Π, Π, TΠ)
over Π. We will show that the restriction of Π to T A is a surjective map
with values in T Â and a homomorphism of Lie algebroids too. First, we
will show that Π|T A(T A) is contained in T Â. Let (a, b, v) ∈ T A, then
Π(a, b, v) = (Π(a), Π(b), TΠ(v)). Since p(a) = p(b), we have that π(p(a)) =
π(p(b)) and so p̂(Π(a)) = p̂(Π(b)). On the other hand, ρ̂(Π(b)) = Tπ(ρ(b)) =

Tπ(Tp(v)) = T p̂(TΠ(v)); therefore, Π(a, b, v) ∈ T Â.
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Before proving that Π|T A : T A → T Â is a homomorphism of Lie algebroids

over Π : A → Â, we need two auxiliary results.

T A
pT A

~~~~
~~

~~
~~

~

ρT A

��

Π|T A
// T Â

ρ̂
T bA

��

p̂
T bA
  

AA
AA

AA
AA

A

idA   
AA

AA
AA

AA
A

TAτA

oo

τA

��

TΠ
// TÂ
τ bA

��

τ bA // Â

id bA~~~~
~~

~~
~~

~

A
Π

// Â

Lemma 4.1. Every section V of pT A : T A → A is written in the form
V =

∑
i∈I fiVi +Z, where Z ∈ Γ(Ker Π) and, for each i ∈ I, fi ∈ C∞(A) and

Vi(a) = (a, σi(p(a)), Xi(a)) is a projectable section of T A, with Π◦σi = σ′
i◦π

for σ′
i ∈ Γ(Â) and TΠ(Xi) = X ′

i ◦ Π for X ′
i ∈ X(Â).

Proof.The Π-projection of a section V of T A is given by

Π ◦ V =
∑

i

fi(V
′
i ◦ Π),

with fi ∈ C∞(A) and V ′
i a projectable section of T Â. Each section V ′

i is

given by V ′
i (a

′) = (a′, σ′
i(p̂(a)), X ′

i(a
′)) for all a′ ∈ Â. Then,

Π ◦ V (a) =
∑

i

fi(a)(Π(a), σ′
i ◦ p̂ ◦ Π(a), X ′

i ◦ Π(a))

=
∑

i

fi(a)(Π(a), σ′
i ◦ π ◦ p(a), X ′

i ◦ Π(a))

because p̂ ◦ Π = π ◦ p. Once Π and TΠ are surjective, there exist σi ∈ Γ(A)
and Xi ∈ X(A), such that, Π ◦ σ = σ′

i ◦ π and TΠ ◦ X = X ′
i ◦ Π. Thus,

Π ◦ V (a) =
∑

i

fi(a)(Π(a), Π ◦ σi ◦ p(a), TΠ ◦ Xi(a))

=
∑

i

fi(a)(Π ◦ Vi)(a) = Π ◦

(∑

i

fiVi

)
(a),

with Vi(a) = (a, σi(p(a)), Xi(a)), where Π ◦σi = σ′
i ◦π and TΠ ◦Xi = X ′

i ◦Π.
Therefore, V =

∑
i fiVi + Z for Z ∈ Ker Π. �
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Lemma 4.2. Let be Z a section of Ker Π and Vi projectable sections of T A
fulfilling the conditions of the above lemma. Then, the following conditions
are satisfied:

(1) ρT A(Z) ∈ KerTΠ;
(2) [Vi, Z]T A ∈ Ker Π;
(3) Γ(KerΠ) is a Lie subalgebra of Γ(T A).

Proof. If Z ∈ Γ(KerΠ) then Z is of the form Z(a) = (a, σ(p(a)), X(a))
for all a ∈ A, where X ∈ XV (A) is a Π-vertical vector field on A and
Π ◦ σ = 0 ◦ π. Since ρT A(Z)(a) = ρT A(a, σ(p(a)), X(a)) = X(a), then (1)
holds. The bracket between the sections Vi and Z is given by

[Vi, Z]T A(a) = (a, [σi, σ]A(p(a)), [Xi, X](a)).

Since
TΠ ◦ [Xi, X] = [X ′

i, 0] ◦ Π = 0 ◦ Π

and
Π ◦ [σi, σ]A = [σ′

i, 0]Â ◦ π = 0 ◦ π,

we have that Π◦ [Vi, Z]T A = (Π(a), 0π(p(a)), 0Π(a)), that is, condition (2) holds.

Now, we suppose that Z, Z ′ ∈ Γ(KerΠ). Then, Z(a) = (a, σ(p(a)), X(a))
and Z ′(a) = (a, σ′(p(a)), X ′(a)), with X, X ′ ∈ XV (A), Π ◦ σ = 0 ◦ π and
Π ◦ σ′ = 0 ◦ π. Thus,

[Z, Z ′]T A(a) = (a, [σ, σ′]A(p(a)), [X, X ′](a)).

Since
TΠ ◦ [X, X ′] = 0 ◦ Π and Π ◦ [σ, σ′]A = 0 ◦ π,

we can conclude that Π ◦ [Z, Z ′]T A = (Π(a), 0π(p(a)), 0Π(a)). �

Now, we prove the main result of this section.

Proposition 4.3. The map Π|T A : T A → T Â is a homomorphism of Lie

algebroids over Π : A → Â. Therefore, T Â is a reduced Lie algebroid of T A.

Proof.We first remark that TΠ ◦ ρT A = ρT Â ◦ Π. In fact, if (a, b, v) ∈ T A,
then

TΠ ◦ ρT A(a, b, v) = TΠ(v) = ρT Â(Π(a), Π(b), TΠ(v)) = ρT Â ◦ Π(a, b, v).

Now, let us prove that (2.4) holds. Let V and V ′ be two sections of T A.
Then, according to Lemma 4.1, there exist functions fi, gj ∈ C∞(A) and
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projectable sections Vi, Wj ∈ Γ(T A) such that V =
∑

i fiVi + Z1 and W =∑
j gjWj + Z2, where Z1, Z2 ∈ Γ(KerΠ), Vi(a) = (a, σi(p(a)), Xi(a)) and

Wj(a) = (a, ςj(p(a)), Yj(a)), with: Π ◦ σi = σ′
i ◦ π, Π ◦ ςj = ς ′j ◦ π, TΠ(Xi) =

X ′
i ◦Π and TΠ(Yj) = Y ′

j ◦Π. Thus, the Π-projections of V and W are given
by

Π ◦ V =
∑

i

fi(V
′
i ◦ Π) and Π ◦ W =

∑

j

gj(W
′
j ◦ Π),

with V ′
i (a

′) = (a′, σ′
i(p̂(a′)), X ′

i(a
′)) and W ′

j(a
′) = (a′, ς ′j(p̂(a

′)), Y ′
j (a

′)) pro-

jectable sections of T Â. The bracket [·, ·]T A of the sections V and W is given
by

[V, W ]T A =
∑

i,j

figj[Vi, Wj]T A +
∑

j

(ρT A(v)gj)Wj −
∑

i

(ρT A(w)fi)Vi

+
∑

j

gj[Z1, Wj]T A +
∑

i

fi[Vi, Z2]T A + [Z1, Z2]T A ,

that is,

[V, W ]T A(a) =
∑

i,j

(figj)(a) (a, [σi, ςj]A(p(a)), [Xi, Yj](a))

+
∑

j

(ρT A(v)gj)(a) (a, ςj(p(a)), Yj(a))

−
∑

i

(ρT A(w)fi)(a) (a, σi(p(a)), Xi(a))

+
∑

j

gj[Z1, Wj]T A +
∑

i

fi[Vi, Z2]T A + [Z1, Z2]T A,

for all a ∈ A. Thus, by Lemma 4.2, we have

Π ◦ [V, W ]T A(a) =
∑

i,j

(figj)(a) (Π(a), (Π ◦ [σi, ςj]A)(p(a)), (TΠ ◦ [Xi, Yj])(a))

+
∑

j

(ρT A(v)gj)(a) (Π(a), (Π ◦ ςj)(p(a)), (TΠ ◦ Yj)(a))

−
∑

i

(ρT A(w)fi)(a) (Π(a), (Π ◦ σi)(p(a)), (TΠ ◦ Xi)(a)) .
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Since the sections σi and ςj are Π-projectable and the vectors field Xi and
Yj are TΠ-projectable, we may write

Π ◦ [V, W ]T A(a) =
∑

i,j

(figj)(a)
(
Π(a), ([σ′

i, ς
′
j]A ◦ π)(p(a)), ([X ′

i, Y
′
j ] ◦ Π)(a)

)

+
∑

j

(ρT A(v)gj)(a)
(
Π(a), (ς ′j ◦ π)(p(a)), (Y ′

j ◦ Π)(a)
)

−
∑

i

(ρT A(w)fi)(a) (Π(a), (σ′
i ◦ π)(p(a)), (X ′

i ◦ Π)(a)) ,

that is,

Π ◦ [V, W ]T A(a) =
∑

i,j

(figj)(a)
(
Π(a), ([σ′

i, ς
′
j]A ◦ p̂)(Π(a)), [X ′

i, Y
′
j ](Π(a))

)

+
∑

j

(ρT A(v)gj)(a)
(
Π(a), (ς ′j ◦ p̂)(Π(a)), Y ′

j (Π(a))
)

−
∑

i

(ρT A(w)fi)(a) (Π(a), (σ′
i ◦ p̂)(Π(a)), X ′

i(Π(a))) .

Therefore,

Π ◦ [V, W ]T A =
∑

i,j

figj([V
′
i , W

′
j]T Â ◦ Π) +

∑

j

(ρT A(V )gj)(W
′
j ◦ Π)

−
∑

i

(ρT A(W )fi)(V
′
i ◦ Π). �

Note that, since Π is surjective we could have shown the condition of ho-
momorphism (2.4) only on projectable sections of T A of the form Vi(a) =

(a, σi(p(a)), Xi(a)), with Π ◦ σi = σ′
i ◦ π for σ′

i ∈ Γ(Â) and TΠ(Xi) = X ′
i ◦ Π

for X ′
i ∈ X(Â). This proposition is a particular case of a more general result

obtain in [17].
The statement of Proposition 4.3 means that dT A◦(Π|T A)∗ = (Π|T A)∗◦dT Â,

where dT A and dT Â are the exterior derivatives of the Lie algebroids T A and

T Â, respectively. Moreover, one can easily prove that the Lie algebroid
structure on T Â is the unique structure for which Π|T A : T A → T Â is a

homomorphism of Lie algebroids over Π : A → Â.
By hypothesis, Π is a homomorphism of Lie algebroids, i.e. dA ◦ Π∗ =

Π∗◦dÂ. We also have that p2 : T A → A is a homomorphism of Lie algebroids



REDUCTION OF LAGRANGIAN MECHANICS ON LIE ALGEBROIDS 13

so, dT A ◦ p∗2 = p∗2 ◦ dA. Then, dT A ◦ (Π ◦ p2)
∗ = (Π ◦ p2)

∗ ◦ dÂ, that is, Â is a
reduced Lie algebroid of T A.

4.1. Lie algebroids with symmetry. Let Φ be a representation of the
Lie group G in the Lie algebroid (A, ρ, [·, ·]A) in the sense of [4]. Suppose
that Φ and its contragradient representation define free and proper actions
of G on the fibre bundles (A, p, M) and (A∗, τ, M), respectively. In these
conditions Φ = (Φ, Φ, TΦ) defines a Lie algebroid representation of G in the
Lie algebroid prolongation T A of A [20], that is

Proposition 4.4. The morphism Φ : G → Aut(T A) is a Lie algebroid
representation of the Lie group G on the Lie algebroid T A.

Proof.First of all we need to prove that Φg := Φ(g) preserves T A, i.e.
Φg(T A) ⊂ T A. Let (a, b, v) ∈ TaA, then Φg(a, b, v) = (Φg(a), Φg(b), TΦg(v)),
with Φg := Φ(g). Since p(a) = p(b), φg(p(a)) = φg(p(b)), where φg is the base
map of Φg; then p◦Φg(a) = p◦Φg(b). We have Tp(TΦg(v)) = T (p◦Φg)(v) =
Tφg ◦Tp(v) = Tφg ◦ρ(b), since Φg is a Lie algebroid representation, and then
Tp(TΦg(v)) = ρ(Φg(b)). Therefore Φg(a, b, v) ∈ TΦg(a)A.

Now, in order to show that Φg is an automorphism of Lie algebroids, we
need to prove that TΦg◦ρT A = ρT A◦Φg and Rg([V1, V2]T A)=[Rg(V1),Rg(V2)]T A

for all V1, V2 ∈ Γ(T A), where Rg(V ) = Φg ◦ V ◦Φg−1 for all V ∈ Γ(T A). For
the first condition, we have, for all (a, b, v) ∈ TaA,

ρT A ◦ Φg(a, b, v) = ρT A(Φg(a), Φg(b), TΦg(v)) = TΦg(v) = TΦg ◦ ρT A(a, b, v)

Suppose now that V1, V2 ∈ Γ(T A) are projectable sections, that is Vi(a) =
(a, σi(p(a)), Xi(a)), i = 1, 2. Then Rg(Vi)(a) = (a,R(σ)(p(a))), X ′

i(a)) where
R(σ) = Φg ◦ σ ◦ φ−1

g and X ′
i = TΦg ◦ Xi ◦ Φg−1 for i = 1, 2. Since

Rg([V1, V2]T A)(a) = (a, Φg([σ1, σ2]A)(φg−1(p(a))), TΦg([X1, X2])(Φg−1(a))),

a ∈ A, and Φg and TΦg are homomorphisms of Lie algebroids, we conclude

Rg([V1, V2]T A)(a) = (a, [Rg(σ1),Rg(σ2)]A)(p(a))), [X ′
1, X

′
2](a))

= [Rg(V1),Rg(V2)]T A(a). �

Let Π be the canonical projection of A onto A/G. We know (see [4])
that A/G is endowed with a vector bundle structure in such a way that

(Π, π) : (A, p, M) → (A/G, p̂, M̂) is a surjective submersion of vector bun-
dles. Moreover, A/G is endowed with a Lie algebroid structure such that
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Π is a homomorphism of Lie algebroids. Thus, by Proposition 4.3, Π|T A

is a homomorphism of Lie algebroids over Π and T (A/G) is a reduced
Lie algebroid of T A. One can easily prove that Π is Φ-invariant, that is
Π ◦ Φg = Π for all g ∈ G; we just have to note that Π is Φ-invariant and so
TΠ ◦ TΦg = T (Π ◦ Φg) = TΠ for all g ∈ G. Moreover,

Proposition 4.5. For each a ∈ A,

(i) the map Πa : TaA → T[a](A/G) is a isomorphism;
(ii) the fibre T[a](A/G) is isomorphic to the fibre (T A/G)[a].

Proof. (i) Let (a, b, v), (a, b′, v′) ∈ TaA such that Πa(a, b, v) = Πa(a, b′, v′),
that is, (Π(a), Π(b), TΠ(v)) = (Π(a), Π(b′), TΠ(v′)). So Π(b) = Π(b′) and
TΠ(v) = TΠ(v′). Since Π is the canonical projection defined by the Lie
algebroid representation Φ of the Lie group G on A, there exists g ∈ G such
that b = Φg(b

′). Then, p(b) = p ◦ Φg(b
′), that is, p(a) = φg ◦ p(b′) = φg(p(a))

where φg is the base map of Φg that defines a free and proper action of the
Lie group G on the vector bundle p : A → M . Therefore, g = e and so b = b′.

Now, we prove that v = v′. We have v− v′ ∈ Ker TaΠ. In these conditions,
KerTaΠ is generated by the fundamental vector fields in a ∈ A, defined by
the free and proper action associated to the representation Φ of G on A. So,
v = v′ +

∑
i λiX

i
A(a), where X i represents the elements of a basis of the Lie

algebra g of G. Since b = b′, we know that Tap(v) = Tap(v′), then

Tap(v′) +
∑

i

λiTap(X i
A(a)) = Tap(v′),

that is, ∑

i

λiTap(X i
A(a)) = 0.

But
∑

i λiTap(X i
A(a)) = 0 is equivalent to

∑
i λiX

i
M(m) = 0, where p(a) = m

and X i
M is the fundamental vector field in M associated to the element X i

of g. Since the fundamental vector fields associated to elements of a basis of
g are independent, then, all λi are null. Therefore, v = v′.

(ii) The Lie algebroid representation Φ = (Φ, Φ, TΦ) defines a free and
proper action of the Lie group G on the Lie algebroid T A. Therefore, the
canonical projection Π : T A → T A/G is in each point of A an isomorphism.
So, TaA ≃ (T A/G)[a] and therefore by (i) T[a](A/G) ≃ (T A/G)[a], for each
a ∈ A. �
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For example, consider a principal fibre bundle P (M, G) and the gauge alge-
broid associated (TP/G, p, M) (see [14]). The canonical projection Π : TP →
TP/G determines a homomorphism of Lie algebroids Π|T (TP ) : T (TP ) →
T (TP/G) over Π. Let φ be the (right) action of the group G on P . Then,
Φ(g) := Tφg defines a Lie algebroid representation of the group G in TP .
Thus, Φ = (Φ, Φ, TΦ) is a Lie algebroid representation of the group G in
T (TP ) = T (TP ). By the above proposition T (TP )/G ∼= T (TP/G), that is,
T (TP )/G ∼= T (TP/G). In the recent paper of M. de Léon et al. [11], the
above results for gauge algebroids are proved by a different approach.

5. Reduction of a Lagrangian dynamics

Let (A, p, M) and (Â, p̂, M̂) be vector bundles endowed with the Lie al-
gebroid structures (ρ, [·, ·]A) and (ρ̂, [·, ·]Â), respectively, and suppose that

(Π, π) : (A, p, M) → (Â, p̂, M̂) is a surjective submersion of vector bundles
that is a homomorphism of Lie algebroids.

A function F ∈ C∞(A) is said to be Π-invariant if there exists a function

f ∈ C∞(Â) such that F = f ◦ Π for ; this is equivalent to say that its
differential dF belongs to the annihilator of Ker TΠ.

Next, given a dynamical system in A defined by a regular and Π-invariant
Lagrangian function L ∈ C∞(A), we will show how the dynamics is reduced.
The following results generalize those obtained in [20] for the reduction of
dynamics on Lie algebroids with symmetry.

Lemma 5.1. The morphism Π intertwines the vertical endomorphism S in
T A with the vertical endomorphism S ′ in T Â, and the Liouville section ∆
of T A is Π-related with the Liouville section ∆′ of T Â, i.e.

Π ◦ S = S ′ ◦ Π and Π ◦ ∆ = ∆′ ◦ Π.

Proof.Let a ∈ A, then

Π(bV (a)) = (Π(a), 0, TΠ(bV
a )).

Since

TΠ(bV
a )f =

d

dt
(f ◦ Π)(a + tb) |t=0 =

d

dt
f( Π(a) + tΠ(b) ) |t=0

for all f ∈ C∞(A), we have

TΠ(bV
a ) = (Π(b))V

Π(a).
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Therefore,
Π(bV (a)) = (Π(b))V (Π(a)). (5.1)

From the above equality, we show that Π ◦ S = S ′ ◦ Π. In fact, for each
(a, b, v) ∈ TaA, we have that

S ′ ◦ Π(a, b, v) = S ′(Π(a), Π(b), TaΠ(v)) = (Π(b))V (Π(a)).

By (5.1) we conclude that S ′ ◦Π(a, b, v) = Π(bV (a)) = Π◦S(a, b, v). Now, let
us prove that Π ◦ ∆ = ∆′ ◦ Π. We have Π ◦ ∆(a) = Π(aV (a)), for all a ∈ A.
From (5.1), we may write

Π ◦ ∆(a) = (Π(a))V (Π(a))

and therefore Π ◦ ∆(a) = ∆′(Π(a)) = ∆′ ◦ Π(a) for all a ∈ A. �

The main result of this section is:

Theorem 5.2. Let us suppose that the Lagrangian L ∈ C∞(A) of a dynam-
ical system in the Lie algebroid A is regular and Π-invariant, that is, there
exists l ∈ C∞(Â) such that L = l ◦ Π. Then, the following conditions are
satisfied:

(i) if EL and E ′
l are the energies of the dynamics on the Lie algebroids A

and Â, respectively, then E ′
l ◦ Π = EL;

(ii) if θL and θ′l are the Cartan 1-forms defined by L and l on the Lie

algebroids A and Â, respectively, then Π
∗
θ′l = θL. As a consequence,

we have that Π
∗
ω′

l = ωL;
(iii) the induced Lagrangian l is regular;
(iv) if VL and V ′

l are the solutions of the dynamics on the Lie algebroids

A and on Â, respectively, then Π ◦ VL = V ′
l ◦ Π.

Therefore, the dynamics in A induced by a regular and Π-invariant La-
grangian L = l ◦ Π reduces to the Lagrangian dynamics in Â given by l.

Proof. (i) We have E ′
l := ρT Â(∆′)l − l. Then,

E ′
l ◦ Π(a) = ρT Â(∆′)l ◦ Π(a) − l ◦ Π(a) = ρT Â(∆′(Π(a)))l − L(a).

for all a ∈ A. By Lemma 5.1 we have

E ′
l ◦ Π(a) = ρT Â(Π(∆(a)))l − L(a)

and by ρT Â ◦ Π = TΠ ◦ ρT A we obtain

E ′
l ◦ Π(a) = TΠ ◦ ρT A(∆(a))l − L(a) = ρT A(∆(a))(l ◦ Π) − L(a)
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for all a ∈ A. Therefore, E ′
l ◦ Π = EL.

(ii) Let us prove that Π
∗
θ′l = θL. If V ∈ TaA, then

Π
∗
θ′l(V ) = θ′l(Π(V )) = dT Âl ◦ S ′(Π(V )).

and using the results of the Lemma 5.1 we may write

Π
∗
θ′l(V ) = dT Al ◦ Π ◦ S(V ) = Π

∗
◦ dT Al ◦ S(V ).

But Π
∗
◦ dT A = dT Â ◦ Π

∗
, and then

Π
∗
θ′l(V ) = dT Â ◦ Π

∗
l ◦ S(V ) = dT ÂL ◦ S(V ) = θL(V ),

that is, Π
∗
θ′l = θL. Thus, by definition of the Cartan 2-form we deduce

Π
∗
ω′

l = −Π
∗
(dT Âθ′l). The exterior derivative commutes with the morphism

Π
∗
, so

Π
∗
ω′

l = −dT A(Π
∗
θ′l) = −dT A ◦ θL = ωL.

(iii) If L ∈ C∞(A) is regular then ωL is symplectic. By the above condition

we have Π
∗
ω′

l = ωL, then, ω′
l is also symplectic because Π is a surjective

morphism. So the reduced Lagrangian l ∈ C∞(Â) is regular.
(iv) We have

Π
∗
ω′

l(VL, X) = ω′
l(Π(VL), Π(X)) = i(Π(VL))ω′

l(Π(X)), (5.2)

for all X ∈ Γ(T A). On the other hand,

Π
∗
ω′

l(VL, X) = ωL(VL, X) = i(VL)ωL(X) = dT AEL(X). (5.3)

Since EL = E ′
l ◦ Π = Π

∗
E ′

l, then by (5.2) and (5.3) we have

i(Π(VL))ω′
l(Π(X)) = (dT A ◦ Π

∗
)E ′

l(X) = (Π
∗
◦ dT Â)E ′

l(X) = dT ÂE ′
l(Π(X)) ,

for all X ∈ Γ(T A). So Π(VL) is a global solution of the dynamics in T Â.
Once L is regular so is l, then the Cartan 2-form ω′

l is symplectic and so the
dynamical equation has just one solution. Therefore, Π(VL) = V ′

l , that is,
Π ◦ VL = V ′

l ◦ Π. �

In general, the regularity of l does not imply the regularity of L. However,
in the case of Lie algebroids with symmetry, since Π is an isomorphism in each
fibre, we have that a projectable Lagrangian L = l ◦Π in A is regular iff the
reduced Lagrangian l in A/G is regular. Moreover, if F l : Â → Â∗ denotes
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the Legendre transformation associated with the Lagrangian l ∈ C∞(Â) we
have

FL(a)(b) =
d

dt
L(a + tb)|t=0 =

d

dt
l(Π(a) + tΠ(b))|t=0 = F l(Π(a))(Π(b))

for all a, b ∈ A, then FL = Π∗ ◦ F l ◦ Π.
We can weaken the conditions of the Theorem 5.2, by considering a Π-

invariant (possibly degenerated) Lagrangian L ∈ C∞(A) that admits a global
dynamics, i.e. there exists a globally defined section V of T A satisfying the
equation i(V )ωL = dT AEL. With these hypotheses we have

i(Π(V ))ω′
l = dT ÂE ′

l,

that is, the reduced dynamics admits a global solution given by Π(V ). If
the solution of the initial dynamics V is a SODE, then the solution of the
reduced dynamics is a SODE too, because

S ′(Π(V )) = Π(S(V )) = Π(∆) = ∆′.

Of course, if the Cartan 2-form ω′
l is symplectic then Π(V ) is always a SODE.

In this case, Im S ′ = KerS ′ is a Lagrangian subspace with respect to ω′
l be-

cause ω′
l(S

′(X), S ′(Y )) = 0 for all X, Y ∈ T Â, that is, dim ImS ′ = 1
2dimT Â.

5.1. Examples of dynamical reduction.

1. Reduction of degenerated Lagrangian systems. In standard
classical dynamics, let us consider a Lagrangian L ∈ C∞(TQ) satisfy-
ing the following conditions (see [2]):

(A1) the Cartan 2-form ωL is presymplectic, i.e. it is a constant rank
closed form;

(A2) the Lagrangian L admits a global dynamics;
(A3) the foliation defined by ωL is regular, i.e. the quotient space

TQ/Ker ω̂L has a differentiable manifold structure and the pro-
jection Π : TQ → TQ/Ker ω̂L is a surjective submersion, where
ω̂L(X) = i(X)ωL = ωL(X, ·) for all X ∈ X(TQ).

Under these conditions, let p : TQ → Q be the canonical projection
of TQ and let us suppose that:

(A4) the distribution D = Tp(Ker ω̂L) defines a regular foliation of

Q, i.e. the space of the leaves Q̂ = Q/D admits a structure of
differentiable manifold for which the canonical projection
π : Q → Q̂ is a surjective submersion.
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We can prove that there exists a unique vector bundle structure in the

quotient manifold T̂Q = TQ/Ker ω̂L such that p̂ ◦ Π = π ◦ p, where

p̂ : T̂Q → Q̂ is given by p̂([X]) = π(p(X)) for each X ∈ TQ such that
Π(X) = [X].

We know that the tangent bundle TQ is a Lie algebroid over Q
whose anchor is the identity map on TQ and whose Lie algebra struc-
ture in the set of sections is given by the usual bracket of vector
fields in Q. If the surjective submersion of vector bundles (Π, π) :

(TQ, p, Q) → (T̂Q, p̂, Q̂) satisfies the conditions of the reduction the-

orem stated in [4], then the bundle T̂Q is endowed with a (reduced)
Lie algebroid structure, such that, (Π, π) is a homomorphism of Lie
algebroids. From what we have prove so far, if L is Π-invariant, the

dynamics in T (TQ) = T (TQ) reduces to the dynamics in T T̂Q. In
other words, the dynamics solution in T (TQ), given by a vector field

V in TQ, projects into a section of T T̂Q that satisfies the dynamics

equation in T T̂Q. In these conditions, we can conclude that there

exists a unique symplectic form ω̃ in T T̂Q such that ωL = Π
∗
ω̃ and,

therefore, ω′
l = ω̃ is a symplectic form. So the solution of the reduced

dynamics is a SODE, i.e. S ′(Π(V )) = ∆.

2. Reduction of a principal fibre bundle. Let P (M, G) be a prin-
cipal fibre bundle. We saw in [4] that the gauge algebroid TP/G is
a reduced Lie algebroid of the tangent bundle TP endowed with its
usual Lie algebroid structure, where the canonical projection (sur-
jective submersion) Π : TP → TP/G is a homomorphism of Lie
algebroids. Given a Π-invariant Lagrangian L = l ◦ Π ∈ C∞(TP )
with a global dynamics (solution) V on TP , we have that Π(V ) is a
global dynamics (solution) on TP/G, i.e. i(Π(V ))ω′

l = dT (TP/G)E
′
l. If

V ′ = Π(V ) is a SODE, then the reduced dynamics equation is equiv-
alent to £V ′θ′l = dT (TP/G)l, with θ′l = dT (TP/G)l ◦ S ′. In this case we
have T (TP )/G ∼= T (TP/G).

6. Reduction of Nonholonomic systems on Lie algebroids

Let (A, p, M) and (Â, p̂, M̂) be two vector bundles endowed with Lie alge-
broid structures (ρ, [·, ·]A) and (ρ̂, [·, ·]Â), respectively, and suppose that the
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vector bundle morphism (Π, π) : (A, p, M) → (Â, p̂, M̂) is a surjective sub-
mersion and a homomorphism of Lie algebroids. We have proved before that
Π induces a homomorphism of Lie algebroids between the prolongation of
the Lie algebroids A and Â,

Π|T A = (Π, Π, TΠ)|T A : T A → T Â.

Let L ∈ C∞(A) be a regular Lagrangian of a dynamical system on A, which

is Π-invariant (i.e. L = l ◦ Π for some l ∈ C∞(Â)). As we have proved in

section 5, the reduced dynamics on Â admits a global solution X ′
l = Π(XL),

i(Π(XL))ω′
l = dT ÂE ′

l,

where Π
∗
ω′

l = ωL and Π
∗
E ′

l = EL.

6.1. Nonholonomic systems on a Lie algebroid. The first time non-
holonomic systems in the framework of Lie algebroids is dealt with was in
[5].

Let us consider a system on the Lie algebroid A with nonholonomic con-
straints given by a vector subbundle B of A, where the submanifold B is de-
fined by the vanishing of a set of independent linear functions {φa = φaβv

β |
a = 1, ..., k}. In a parallel way to the usual formalism in classical mechanics
on the tangent bundle (see e.g. [3]), the constrained system equations of
motion can be written in a global form

{
i(V )ωL − dT AEL ∈ S∗((T B)0)
V |B ∈ T B,

(6.1)

where

T B = {(b, c, v) ∈ B × B × TB | p(b) = p(c), ρ(c) = Tp(v) with v ∈ TbB} ∗

is a subbundle of pT A|B : TBA → B and (T B)0 ⊂ (T A)∗ denotes the annihi-
lator of T B. The above formulation of the nonholonomic system in the Lie
algebroid A is called Chetaev formulation.

Note that V is a SODE of T A since 1-forms in S∗((T B)0) are semibasic,
that is, vanishing on vertical sections of T A: S∗(dT Aφa) = ∂φa/∂vβ X β. The
semibasic forms S∗(dT Aφa) are called reactions forces on the Lie algebroid
A.

∗In order to simplify the text, we write p (resp. Π and ρ) instead of p|B (resp. Π|B and ρ|B)
and we write p̂ (resp. ρ̂) instead of p̂| bB (resp. ρ̂| bB).
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Definition 6.1. A nonholonomic constraint φ on a Lie algebroid is called
ideal if the Liouville section of T A in B belongs to T B where B is the
subbundle of A defined by φ = 0, that is, £∆φ = dT Aφ(∆) = 0.

With this definition of ideal constraint, we can show:

Proposition 6.2. When the constrains φα are ideal and V is a solution of
(6.1), the energy of the system is conserved, that is, £V EL = 0.

Proof.We have

£V EL = ρT A(V )EL = λaS∗(dT Aφa)(V ) = λadT Aφa(S(V ))

and, since V is a SODE, then S(V ) = ∆ and

£V EL = λadT Aφα(∆) = λa£∆φa.

But as the constraints were assumed to be ideal, the right hand term is zero.
�

The solution of the nonholonomic system (6.1) is given by

V = VL + λaZa,

where VL is a solution of the initial dynamics (without constraints), Za is a
vertical section of T A given by i(Za)ωL = S∗(dT Aφa) and λa is a function on
A determined in such a way that V |B ∈ T B, i.e. £V φa = 0 or ρT A(V )φa = 0
for all a = 1, ..., k.

If (q1, ..., qn,v1, ...,vs) is a system of local coordinates of p : A → M as-
sociated with the choice of a basis of local sections {eα | α = 1, .., s}, the
Euler-Lagrangian equations of the constrained system (6.1) are:

{
q̇i = ρi

αv
α

d
dt

(
∂L
∂vα

)
= ρi

α
∂L
∂qi + vβcβα

γ ∂L
∂vγ + λa ∂φa

∂vα

with λa ∈ C∞(A) for all a = 1, ..., k. We can use a new set of local co-
ordinates adapted to the constraints, that is, let us consider a new set of
local coordinates in the Lie algebroid A, {(qi,wα) | i = 1, ..., n, α = 1, ..., s},
associated with the basis of sections {fα | α = 1, ..., s} of A that satisfy:

wα = Φ̂α(q,v) = Φαβ(q)vβ, vα = Ψ̂α(q,w) = Ψαβ(q)wβ, (6.2)

for all α = 1, ..., s, where Φ̂α and Ψ̂α are linear functions in A associated to
the A-1-forms Φα and Ψα, respectively, that satisfies ΨαβΦβγ = δαγ and are
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defined by

Φ =

(
Is−k 0(s−k)×k

A21 A22

)
, Ψ =

(
Is−k 0(s−k)×k

B21 B22

)
,

where the matrix A = (A21 A22) is given by Aaβ = φaβ for all a = 1, ..., k and
β = 1, ..., s and the matrix B = (B21 B22) is given by B21 = −A−1

22 A21 and
B22 = A−1

22 . We have the following relations between the local sections:

fα = Ψβαeβ , eα = Φβαfβ .

In these new coordinates, the Euler-Lagrange equations of the nonholonomic
system on the Lie algebroid A are given by:

{
q̇i = ρi

βΨβāw
ā

d
dt

(
∂L
∂wā

)
= ρi

βΨβā
∂L
∂qi + wb̄γβ

b̄ā
∂L

∂wβ

for all ā = 1, ..., s − k, where [fb̄, fā]A = γβ

b̄ā
fβ. These are, precisely, the

equations (5) obtained by Mestdag et al. in [18], because:

wb̄γβ

b̄ā

∂L

∂wβ
= wb̄γβ

b̄ā
Ψηβ

∂L

∂vη

= wb̄ 〈eη, [fb̄, fā]A〉
∂L

∂vη

= wb̄(Ψβb̄Ψαā cβα
η + ρi

β Ψβb̄

∂Ψηā

∂qi
− ρi

αΨαā

∂Ψηb̄

∂qi
)
∂L

∂vη
.

Now, suppose that the subbundle B of A is a Lie subalgebroid of A, that
is, there exists an injective morphism ι : B → A such that ι is a homomor-
phism of Lie algebroids; we will represent the Lie algebroid structure of B by
(λ, [·, ·]B). In these conditions we have that ι = (ι, ι, T ι)|T B : T B → T A
is a homomorphism of Lie algebroids. In fact, ι ◦ V |B = V ◦ ι for all
V ∈ Γ(T A) such that V |B ∈ Γ(T B) and [V1|B, V2|B]B ∈ Γ(T B) for all
sections V1, V2 ∈ T A such that V1|B, V2|B ∈ Γ(T B). Then, we can prove that

ι∗(S∗(dTAφa)) = 0 (6.3)

Indeed

ι∗(S∗(dTAφa)) = S∗
B(ι∗dT Aφa),

where SB is the vertical endomorphism in T B; then, because ι is a homo-
morphism of Lie algebroids we have

ι∗(S∗(dT Aφa)) = S∗
B(dT B(ι∗φa)),
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and then as ι∗φa = 0 we have proved that ι∗(S∗(dTAφa)) = 0.
Consider the set T AB = {(b, c, v) ∈ B × A × TB | p(b) = p(c), ρ(c) =

Tp(v) with v ∈ TbB}. The bundle τ : T AB → B, with τ(b, c, v) = b for all
(b, c, v) ∈ T A

b B, is endowed with a Lie algebroid structure, induced by the
Lie algebroid structure in A, whose anchor is defined by ̺(b, c, v) = v ∈ TcB
for all (b, c, v) ∈ T A

b B and the Lie bracket of projectable sections of T AB,
that is, of sections of the form V (b) = (b, σ(p(b)), X((p(b)))), where σ ∈ Γ(A)
and X ∈ X(B) are such that Tp ◦X = ρ ◦ σ, is defined in the usual way (see
section 3 in [18] and also [11]). Note that

ι = IA ◦ I (6.4)

where I : T B → T AB is defined by I(b, c, v) = (b, ι(c), v) and IA : T AB →
T A is defined by IA(b, c, v) = (ι(b), c, T ι(v)); both IA and I are Lie algebroids
homomorphisms. In these conditions, we can give a geometric proof of the
relation (14) obtained by Mestdag et.al in [18]:

i(V |B)δθ̃L = −δẼL, (6.5)

where θ̃L = (IA)∗θL, ẼL = (IA)∗EL, δ = I∗ ◦ dT AB = dT B ◦ I∗ and where V is
the SODE solution to the constrained system (6.1). Indeed, by the system
(6.1) we can write

ι∗( i(V )ωL − dT AEL )
(6.3)
= 0,

that is,

ι∗(i(V )ωL) = ι∗(dT AEL) = δẼL,

which is equivalent to

i(V |B)(ι∗ωL) = δẼL.

Since ι∗ωL = −ι∗(dT AθL)
(6.4)
= −I∗ ◦ dT AB((IA)∗θL) = −δθ̃L, we obtain

i(V |B)δθ̃L = −δẼL.

From the relation (6.5) we can write

i(V |B)dT B(ι∗θL) = −dT B(ι∗EL),

which is equivalent to

i(V |B)dT BθL = −dT BEL,
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with θL = ι∗θL and EL = ι∗EL, where L = L ◦ ι : B → R is a differentiable
function on B. Therefore,

i(V |B)ωL = dT BEL, (6.6)

with ωL = −dT BθL; in general this 2-form is degenerate.

6.2. Reduction of nonholonomic systems. Let B̂ be a subbundle of Â
given by Im Π|B, Π|B(B) = B̂. Next, we will prove that the constrained

dynamics on A reduces into a dynamics on Â whose solution is a section on
T B̂.

First of all, we will show that Π(V |B) belongs to the subbundle T B̂ of

TB̂Â, with total space

T B̂=
{

(b′, c′, v′)∈B̂ × B̂ × TB̂ | p̂(b′) = p̂(c′), ρ̂(c′) = T p̂(v′) with v∈Ta′B̂
}

,

where V is the solution of the constrained dynamics on A that satisfies the
system (6.1). Let V (b) = (b, c, v) ∈ TbB, then Π(V ) = (Π(b), Π(c), TΠ(v)).
Thus, p̂(Π(b)) = π(p(b)) = π(p(c)) = p̂(Π(c)); on the other hand, we have

T p̂(TΠ(v)) = T (p̂ ◦ Π)(v) = T (π ◦ p)(v)

= Tπ(Tp(v)) = Tπ(ρ(b))

= (ρ̂ ◦ Π)(b) = ρ̂(Π(b)).

Therefore, Π(V |B) ∈ T B̂. Moreover, V ′ = Π(V ) is a SODE since

S ′(V ′) = S ′(Π(V )) = Π(S(V )) = Π(∆) = ∆′.

In the following result we prove that i(V ′)ω′
l−dT ÂE ′

l is equal to the reaction

force of the reduced system in Â.

Lemma 6.3. i(V ′)ω′
l − dT ÂE ′

l ∈ S ′∗((T B̂)0).

Proof.We know that

i(V )ωL − dT AEL ∈ S∗((T B)0).

So,

i(V )(Π
∗
ω′

l) − dT A(Π
∗
E ′

l) ∈ S∗((T B)0),

that is,

Π
∗
[i(V ′)ω′

l − dT ÂE ′
l] ∈ S∗((T B)0).
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But V ′ is a SODE then i(V ′)ω′
l − dT ÂE ′

l is a semibasic 1-form. Therefore,

there exists Φ ∈ (T Â)∗ such that

i(V ′)ω′
l − dT ÂE ′

l = S ′∗(Φ).

Since Π
∗
(S ′∗(Φ)) ∈ S∗((T B)0) and Π ◦ S = S ′ ◦ Π, then, Π

∗
(Φ) ∈ (T B)0.

Therefore, Φ ∈ (T B̂)0. �

Thus, we have proved:

Theorem 6.4. The constrained dynamics on A reduces into a dynamics on
Â whose solution satisfies

{
i(V ′)ω′

l − dT ÂE ′
l ∈ S ′∗((T B̂)0)

V ′|B̂ ∈ T B̂ .

Since V = VL + λαZα then

V ′ = Π(V ) = Π(VL) + Π(λαZα),

where V ′
l = Π(VL) is the SODE solution of the reduced dynamics with-

out constraints on T Â and Π(λαZα) is a vertical section of T Â satisfying

i(Π(λαZα))ω′
l ∈ S ′∗((T ÂB̂)0), that is, i(Π(λαZα))ω′

l = Φ′ is a semibasic 1-

form such that Π
∗
(Φ′) = λαS∗(dT Aφα).

Proposition 6.5. We have the following relation £V EL = £V ′E ′
l.

Proof.From the relation Π
∗
E ′

l = EL, we have

£V EL = dT AEL(V ) = dT A(Π
∗
E ′

l)(V ).

The map Π is a homomorphism of Lie algebroids, then

£V EL = Π
∗
(dT ÂE ′

l)(V ) = dT ÂE ′
l(V

′),

that is, £V EL = £V ′E ′
l. �

As an immediate consequence we have that:

Corollary 6.6. The energy of the constrained system in A is conserved iff
the energy of the reduced system in Â is conserved.
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6.3. Example: Non-Abelian Čaplygin systems. A non-Abelian Čaply-
gin system is a constrained system whose configuration space is a principal
fibre bundle π : P → M = P/G endowed with a connection given by the
constraint distribution H such that TP = H ⊕ V , where V is the vertical
bundle; therefore, the constraints φα are linear in the velocities and the energy
of the system is conserved (see [3] and references therein). The Lagrangian
L ∈ C∞(TP ) of the system is supposed to be regular and invariant for the
lifted action of the Lie group G on P , i.e. L = l ◦ Π where Π : TP → TP/G
is the canonical projection defined by the lift action. The constrained system
in TP can be formulated as follows:

{
i(V )ωL − dT (TP )EL ∈ S∗((T H)0)
V |H ∈ T H

. (6.7)

The solution of the system is of the form V = VL + λaZa where VL is the
solution of the system without constraints and Za is a vertical section of
T (TP ) such that i(λaZa)ωL = λaS∗(dT (TP )φa) and £V φa = 0.

The canonical projection Π : TP → TP/G maps the subbundle H of

A = TP onto the subbundle H ′ = H/G ∼= TM of Â = TP/G, and it is a
homomorphism of Lie algebroids, [4]. Thus, the reduced constrained system
on TP/G has a solution that satisfies

{
i(V ′)ω′

l − dT (TP/G)E
′
l ∈ S ′∗([T (TM)]0)

V ′|TM ∈ T (TM) .
(6.8)

The horizontal lift of a vector field in M into a section of TP/G, ι′ : TM →
TP/G, is a Lie algebroid homomorphism because TM is an integrable dis-
tribution of TP/G, then TM is a Lie subalgebroid of TP/G. So we can also
formulate the system (6.8) as

i(V ′|TM)δθ̃′l = −δẼ ′
l + ι′

∗
(Φ′),

where Φ′ = i(Π(λaZa))ω
′
l ∈ S ′∗([T H ′]0) ⊂ T ∗(TP/G) is a semibasic 1-

form, ι′ = ITP/G ◦ I ′ : T H ′ = T (TM) → T (TP/G) with I ′ : T (TM) →
T TP/G(TM) defined by I ′(a, b, v) = (a, ι′(b), v) and ITP/G : T TP/G(TM) →
T (TP/G) defined by ITP/G(a, b, v) = (ι′(a), b, T ι′(v)), and δ = I ′∗◦dT TP/G(TM)

= dT (TM) ◦ I ′∗. So we have,

i(V ′|TM)dTTM(ι′
∗
θ′l) = −dT (TM)(ι′

∗
E ′

l) + ι′
∗
(Φ′).
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Note that, ι′
∗
θ′l = θl and ι′

∗
E ′

l = El with l : TM → M defined by l(Yq) =
L(Y H

q ) for all q = π(q), Yq ∈ TqM , where Y H denotes the horizontal lift to
P of a vector field Y on M . Therefore,

i(V ′|TM)ωl = dT (TM)(ι′
∗
E ′

l) − ι′
∗
(Φ′),

with ωl = −dTTM(ι′
∗
θ′l). As in [3] we have i(V ′|TM)ι′

∗
(Φ′) = 0, because

i(V ′|TM)ι′
∗
(Φ′) = Φ′(ι′ ◦ V ′|TM) = Φ′(V ′) = ω′

l(Π(λaZa), Π(V ′))

= ωL(λaZa, V
′) = 0.

Once this work has been finished we have realized that some similar results
had been announced in [6], and are given in [7] and [19]. We thank the authors
J. Cortés et.al for sending us the preprint [7] with their results.
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