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ABSTRACT: We prove that if a surjective submersion which is a homomorphism of
Lie algebroids is given, then there exists another homomorphism between the cor-
responding prolonged Lie algebroids and a relation between the dynamics on these
Lie algebroid prolongations is established. We also propose a geometric reduction
method for dynamics on Lie algebroids defined by a Lagrangian and the method is
applied to regular Lagrangian systems with nonholonomic constraints.
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1. Introduction

The Lie algebroids were introduced by Pradines [21] as infinitesimal objects
for differential groupoids, and since then they are receiving an increasing
interest from mathematics and theoretical physicists. A Lie algebroid can be
seen as a generalization of both a Lie algebra and a tangent bundle, these
being the simplest (no trivial) examples of Lie algebroids. Another relevant
example of Lie algebroid with equal importance to mathematics and physics
is the gauge algebroid T'P/G associated to a principal bundle P(M, GG), where
in the classical field theory M is the space-time manifold and G is the gauge
group. For the basic proprieties and literature on the subject we refer to the
book by Cannas [1] and the survey paper and book by Mackenzie [13, 14].

The aim of this paper is to study the reduction of the dynamics on Lie al-
gebroids defined through a Lagrangian function, which can be carried out by
using the prolongation of a Lie algebroid over a map, introduced by Higgins
and Mackenzie [8]. The study of Lagrangian mechanics on Lie algebroids
was first proposed by Weinstein [23] (see also [12]), and then Martinez [16],
adapting the definition of prolongation of a Lie algebroid over a map, de-
veloped a formalism for Lagrangian mechanics on Lie algebroids using the
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generalization of the fundamental ingredients of geometric Lagrangian me-
chanics: the vertical endomorphism, the Liouville vector field and the Cartan
forms. Afterward several papers on related subjects were developed, see e.g.
[11] and references therein.

The theory of reduction has many applications and has been shown to
be extremely useful for a deep understanding of many physical theories in-
cluding, among others, systems with symmetry, Poisson structures, stability
theory and integrable systems. The reduction of the dynamics has been pre-
viously considered in many papers (see [15] and the references therein) but is
not a well known subject in Lie algebroids dynamics. This happens because
the meaning of Lie algebroid reduction has not been clearly stated; this issue
was clarified in a previous paper [4]. With the study of reduction of the
dynamics on Lie algebroids defined by a Lagrangian we generalize a previous
work by Rodriguez-Olmos [20], where the author reduced the dynamics of
Lie algebroids with symmetry, that is, a Lie algebroid where a Lie group
acts and whose action is defined by a Lie algebroid representation of the Lie
group.

The paper is organized as follows. In the first three sections, we recall
the definition of prolongation of a Lie algebroid A (see [16]) and how the
dynamics on the prolongation of A defined by a Lagrangian function can be
found (see [11, 16]). We prove in section 4 that given a surjective submer-
sion I : A — A that is a homomorphism of Lie algebroids, there exists a
surjective map between their prolonged Lie algebroids Il|74 : 7A — TA
that is a homomorphism of Lie algebroids too, 7.e. we can defined a Lie al-
gebroid reduction between the corresponding prolonged Lie algebroids. The
particular case of Lie algebroids with symmetry is analyzed with an special
attention to the gauge algebroid. In section 5 we show how the dynamics can
be reduced, establishing a relation between the dynamics in the Lie algebroid
prolongation 7 A and the dynamics in the reduced Lie algebroid prolongation
T A. Finally, in the last section the Chetaev formulation for nonholonomic
systems in Lie algebroids is given and a reduction procedure for Lagrangian
systems on Lie algebroids with nonholonomic constraints is explained. We
show that the dynamics of a system with nonholonomic constraints can be
reduced if the system has a regular and Il-invariant Lagrangian L = [ o II

with [ € C®(A).
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2. Basic concepts of Lie algebroids

Recall that a Lie algebroid is a vector bundle p : A — M over a manifold
M together with a vector bundle morphism p : A — T'M over the identity
map on M (called the anchor) and a Lie bracket [, -] 4 on the C*°(M)-modulo
['(A) of sections for p satisfying

[Ua fw]A - f[vv w]A + (p(v)f)w

for every pair of sections v and w and any smooth function f on M. We
denote the Lie algebroid by (A, p, [-,]4) or simply by A whenever it is clear
which Lie algebroid structure we refer to. Note that the anchor is a C*°(M)-
linear map of the space I'(A) into the space X(M) of vector fields on M, and
one can easily prove, using the above condition and the Jacobi identity of the
Lie bracket [-, -] 4, that the anchor is a Lie algebra homomorphism [9]. For a
detailed lecture on the subject see e.g. [1, 14].

Let (¢',...,¢") be local coordinates in a chart on an open set U C M,
and let {e, | @« = 1,...,7r} be a basis of local sections of the bundle p|y, :
Uy =p 1 (U) — M. Each local section Vi is written Viy = £%¢e,. The local
coordinates of a € Uy are (¢*,...,q" &, ..., €"). The local expressions for
the Lie product and the anchor map are, respectively,

i a
[eaa eﬁ]A = Caﬁ’y €y p(ea) =P «a 8_(]2 3 (21)

where .57 and p’, are the so called structure functions of the Lie algebroid
relative to {e,}. As p is an homomorphism of Lie algebras this function
satisfies:

Y .
p7a 8qﬂ — 0 s o0 =" Cap” i=1,...,n. (2.2)
Moreover the compatibility condition, and the Jacobi identity implies:
. 0cga
> [p7 ;Z teas e =0, p=1,...,r. (2.3)
cyel(a,3,7)

The equations (2.2) and (2.3) are known as the compatibility equations of the
structure functions.

A Lie algebroid (A, p, M) is endowed with a differential operator d4 that is
a nilpotent (d% = 0) derivative of degree one in the exterior graded algebra
of A-forms, Q°(A); d4 is the exterior derivative of the Lie algebroid. We say
that a vector bundle morphism (I, 7) : (A, p, M) — (A',p', M") between two
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Lie algebroids is a homomorphism of Lie algebroids if dqoI1* = I1* o dy (see
[22]). This definition is equivalent to the definition of homomorphism of Lie
algebroids introduced in [8]: a vector bundle morphism (@, ¢) : (A,p, M) —
(A, p', M") is a homomorphism of the Lie algebroid (A, p, [-,:]4) in the Lie
algebroid (A’, ¢/, [+, -]a) when T'p o p = p’ o & and, for any pair v,w € T'(A)
with ®-decompositions ®ov =3, fi (vio¢) and Pow =}, g; (w) o ¢), the
following condition is satisfied:

Dofv,wla =3 fig; (v wilaog)+d (p(v)g;) (wjod) = (p(w)fi) (vjod).

7

(2.4)
Given a surjective morphism of vector bundles (II, 7): (A, p, M) — (A, p, M)

between two Lie algebroids (A, p,[-,-]a) and (A, p,[-,-]7), respectively, we

say that A is a reduced Lie algebroid of A if II is a homomorphism of Lie
algebroids (see [4]).

3. Lagrangian mechanics on Lie algebroids

In this section, we recall the definition of prolongation of a Lie algebroid A
and the fundamental elements of the Lagrangian mechanics on this prolonged
Lie algebroid (see [11] and [16]).

Let p: A — M be a vector bundle over M with Lie algebroid structure
(p,[-,-]a). The prolongation of the Lie algebroid A is a vector bundle 7 A
over A, where 7 A is the total space of the pullback of the vector bundle
Tp : TA — TM by the anchor map p : A — TM; such total space is (see

[16])
TA={(bv)e AxTA|p(b) = Tp(v)}.

The projection pra : TA — A is defined by pra(b,v) = a, where pra(v) =
a € Awith pry : TA — A the canonical projection of the tangent bundle T'A
over the base A. Note that the pullback of the bundle Tp : TA — T M by
the anchor map p : A — T'M coincides with the induced or inverse-image Lie
algebroid of A over p: A — M in the terminology of Higgins and Mackenzie
8] (see also [11]).

A element (b, v) of 7 A will be denoted by (a,b,v), where a € A is the point
where v is tangent to A. With this notation

TA=A{(a,b,v) € Ax AxTA|p(a) =p), p(b) =T,p(v) with v € T,A}.
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So, we have in a natural way the following projections:

pTA(a7 ba U) = a, p2(a7 ba U) — b7 IOTA(a7 ba U) =,
which we represent in the commutative diagram

PTA

TA—TA

| % |72

A —p> TM
The structure of vector space of each fibre 7,A of pra: TA — A is
(CL, bl, ’01) + (a, bg, UQ) = (CL, bl + bg, U1 + UQ), )\(CL, bl, ’Ul) = (CL, )\bl, >\U1>,

for each (a,b;,v;) € T,A and A\ € R, with i« = 1,2. If r is the rank of the
vector bundle A and n is the dimension of M, the dimension of each fibre
of T A is 2r because the tangent map Tp : TA — T M is surjective, and so
dim (Im p,,, + Im T;,p) = dim 7T,,, M = n, where p(a) = m (see [11]).

The vector bundle pr4 : TA — A can be endowed with a Lie algebroid
structure, where the anchor is the map pra: 7A — T A and the Lie bracket
in the space of sections is defined using the bracket of a certain type of
sections, the so-called projectable sections, that generate all space of sections
of TA. A section V € I'(TA) is said to be projectable if there exists a
o € I'(A) such that pooV = gop or, equivalently, if V (a) = (a,o(p(a)), X(a))
for alla € A, where o € ['(A) and X € X(A) are such that Tpo X = p(o)op.
Given two projectable sections V' and V' of T A the bracket of these two
sections is defined by:

V. Vlza(a) = (a,[0,0a(p(a)), [X, X](a)).

A section V of T A is said to be vertical if po oV = 0. Obviously, all vertical
sections of 7 A are projectable and the bracket of vertical sections is also
vertical.

For example, if A is the tangent bundle to a manifold ), A = T'Q), endowed
with its usual Lie algebroid structure, the prolongation of the Lie algebroid
A is the tangent bundle T(T'Q) to T'Q) endowed with its usual structure of
Lie algebroid over T'Q) (see [16]).
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As pointed out in [11], with the above structure of Lie algebroid in 7 A,
py: T A — Ais a homomorphism of Lie algebroids over p: A — M.

TALZ- A

, L

A—M

bra |

In fact, we have p o ps(a,b,v) = p(b) = Tp(v) = Tp o pra(a,b,v) for all
(a,b,v) € T A; moreover, for every projectable sections V and V' of T A,
with ppoV =cgop and pyo V' = 0" op, we have pyo [V, V']|14 = [0,0'|40D.
Since ps is a surjective morphism we can conclude that py is a homomorphism
of Lie algebroids [8]. As a consequence, A is a reduced Lie algebroid of 7 A
(see [4]).

The prolongation of the Lie algebroid p : A — M plays a relevant role
in the definition of Lagrangian mechanics on Lie algebroids [16]. First, if
a,b e A, we call vertical lift of b on a to the element of 7,A given by

b" (a) = (a,0,by),

where bY f = d/dt[f(a + tb)]|;=o for all f € C*(A). Thus, given a section
o € T'(A) the vertical lift of ¢ is a section o of T A given by

o"(a) = (o(p(@))(a). ac A
This allows to define the wvertical endomorphism S in T A as follows: if
(a,b,v) € T,A, then

S(a,b,v) = (a,0,b)).

The Liouville section A is the vertical section of 7 A given by

A(a) = (a,0,a)) = a"(a), a € A.

From the definition of vertical endomorphism we verify that S transforms
any sections of 7 A in a vertical section and that Im .S = Ker S, therefore,
S? = 0. We call second order differential equation (SODE) to a section D of
7 A such that S(D) = A or, equivalently, ps o D = idy.

Let L € C*(A) be the Lagrangian of a system on the Lie algebroid A
and dr 4 denote the exterior derivative of the Lie algebroid 7 A. The Cartan
forms, 01 and wy, are defined, respectively, by

9L = dTAL oS and Wi, — —dTAQL.
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If (¢',...,¢" v!,...,v®) is a system of local coordinates of p : A — M as-

sociated with the choice of a basis of local sections {e, |« =1,..., s} for

which the structure functions of the Lie algebroid are [eq, esla = cap” €,

plea) = p' o« 0/0q", we can consider the following basis of sections of 7 A,
.0 0

X, (a) = (a,ea(p(a)),p’aﬁ—qib) and V,(a) = (a,0, Wla);

denote by X* and V* the sections of (7 A)* corresponding to its dual basis.
The vertical endomorphism and Liouville section in these local coordinates
are given by,

S=X®V,, A=v'YV,,
and the Cartan forms are written:

oL .
O = 5 oX
1 oL 0°L 0L

= T '
L 2 <CO‘6 v P “0qiovP s Oqiove
2
+ ( oL ) XUAVP

)X@Axﬁ

ovPove

The energy of the system is given by Ep = pra(A)L — L or, in local
coordinates, by

oL
Ep=v'— —
L=v ov®
and its differential is given by
- 0’L . OL O?L
dr 1B, = o i : K : Xﬁ Q@ I6}
TARL (V P 5ogave ~ P 58ql> Y viove

The Lagrangian L is said to be (hyper-) regular if the Legendre transfor-
mation FL : A — A", defined by

FL(@)(b) = SL(a+ 1)

is a (global) diffeomorphism; note that the Legendre transformation is regular
if the matrix (82L JOvVeOV? ) is invertible. When the Lagrangian is regular the
Cartan 2-form wy, is a symplectic form. Therefore, the dynamical equation

i(VL)wL = dTAEL (31)
has a unique solution V; € I'(7 A) that is a SODE, i.e. S(V1) = A,
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Let us suppose that the Lagrangian L is regular and that V; € I'(T A),
given by Vi, = a®X, + 0*V,, is the solution of the dynamics. Then, the
integral curves of pra(Vy) = a%p',0/0q" + b* 0/0v" satisfy

qz’ :aapia :Vapia
oL . 0L - OL
Va:bazwaﬁ VECE T e Ze : N .

ov7
where (W) represents the inverse matrix of (9°L/9v*0v”). When V; is a
SODE, the dynamics equation (3.1) is equivalent to

Ly, 0 =dral

where £y, = i(Vy)odra+draoi(Vy) denotes the ‘Lie derivative’ with respect
to the section V, of 7 A. Then, the Fuler-Lagrange equations are given by

A (oL _ s 9L s, 9L
it \ove ) ~ P aqg B Hv

with ¢' = v¥p',; the above equations are the Lagrange equations obtained
by Weinstein [23].

4. Prolongation of a reduced Lie algebroid

Let A be a Lie algebroid which is a reduction of the Lie algebroid A. In
this section, we will show that there exists a homomorphism of Lie algebroids
between the prolongation of the Lie algebroids A and A, in such a way that
T A is a reduced Lie algebroid of 7 A. This construction is a generalization
of the work developed in [20].

Let A and A be vector bundles endowed with the Lie algebroid structures
(p,[-s-]a) and (p,[-,-]7), respectively. Suppose that (II,7) : (A,p, M) —
(f/l\, D, M ) is a surjective submersion of vector bundles that is a homomor-
phism of Lie algebroids.

Let us consider the surjective morphism of vector bundles II = (II, IT, T'II)
over II. We will show that the restriction of II to 7 A is a surjective map
with values in TA and a homomorphism of Lie algebroids too. First, we
will show that II|74(7 A) is contained in TA. Let (a,b,v) € TA, then
(a,b,v) = (II(a), I1(b), TTI(v)). Since p(a) = p(b), we have that 7(p(a)) =
7(p(b)) and so p(Il(a)) = p(I1(b)). On the other hand, p(I1(b)) = T'n(p(b)) =
Tr(Tp(v)) = TH(TI(v)); therefore, (a, b, v) € T A.
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Before proving that I|74 : TA — TAisa homomorphism of Lie algebroids
over II : A — A, we need two auxiliary results.

|7

TA—TA
PTA R Pra
PTA P
TII ~

A TA TA— A

TA

\T\A
id 4

Lemma 4.1. Every section V of pra : TA — A is written in the form
V=3 [iVi+Z, where Z € T'(KerIl) and, for eachi € I, f; € C*(A) and
Vi(a) = (a,0:(p(a)), Xi(a)) is a projectable section of T A, with lloo; = olom

Py A~

for ol € T(A) and TTI(X;) = X[ o 11 for X! € X(A).

Proof. The II-projection of a section V of T A is given by
MoV =2 fi(Vol),

with f; € C*(A) and V; a projectable section of 7 A. Each section V! is
given by V/(d") = (d/, 0l(p(a)), X/(a)) for all @’ € A. Then,

ﬁovw)::E:ﬁwXHMLﬁoﬁdﬂwgﬁonD
= Z fila)(Il(a), o} o 7 o p(a), X o l1(a))

because po Il = m o p. Once II and T'1I are surjective, there exist o; € T'(A)
and X; € X(A), such that, [loo =0, om and Tl o X = X/ oIl. Thus,

HoV(a) = Zfi(a)(ﬂ(a),ﬂoal-op(a),THoXZ-(a))

= 3 Ao V() = TIe (Z fivi) (@),

with V;(a) = (a, 04(p(a)), X;(a)), where [Too; = o om and TTlo X; = X/ o]l.
Therefore, V =3, f;V;+ Z for Z € KerIL. O
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Lemma 4.2. Let be Z a section of KerII and V; projectable sections of T A
fulfilling the conditions of the above lemma. Then, the following conditions
are satisfied:

(1) pra(Z) € Ker T1I;

(2) [Vi, Z]za € Kerll;

(3) I'(Ker1l) is a Lie subalgebra of I'(T A).
Proof.If Z € I'(KerIl) then Z is of the form Z(a) = (a,o(p(a)), X(a))
for all @ € A, where X € XV(A) is a Il-vertical vector field on A and
Moo = 0or. Since pra(Z)(a) = prala,o(p(a)). X(a)) = X(a), then (1)
holds. The bracket between the sections V; and Z is given by

Vi, Z]ra(a) = (a, [0, 0]a(p(a)), [Xi X](a)).
Since
THo [X;, X] =[X/,0l0cIl=001I
and
Moo, 0la= [O’Z{,O]A\Oﬂ' =0om,
we have that ITo[V;, Z]74 = (II(a), Ox(p(a)), Ori(a)), that is, condition (2) holds.
Now, we suppose that Z,Z" € TI'(KerIl). Then, Z(a) = (a,0(p(a)), X (a))
and Z'(a) = (a,0'(p(a)), X'(a)), with X, X" € XV(A), [Ioo = 0o 7 and
I[Too' =0omx. Thus,
Z, Z'7a(a) = (a, [0,0]4(p(a)), [X, X'](a)).
Since
THo[X,X'|=00Il and ITo[o,0']4 =00,

we can conclude that ITo [Z, Z']74 = (II(a), Ox(p(a)), Ori(a))- O

Now, we prove the main result of this section.

Proposition 4.3. The map Hlrsa : TA — TA isa homomorphism of Lie
algebroids over Il : A — A. Therefore, T A is a reduced Lie algebroid of T A.

Proof. We first remark that T1l o prq = prz© II. In fact, if (a,b,v) € TA,
then

T o pra(a,b,v) = TI(v) = py;(Il(a),(b), T (v)) = prz o I(a, b, v).

Now, let us prove that (2.4) holds. Let V and V' be two sections of 7 A.
Then, according to Lemma 4.1, there exist functions f;,g; € C*(A) and
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projectable sections V;, W; € I'(T A) such that V =Y. f;Vi + Z; and W =
>.i9iWj + Zs, where Z1,Z5 € ['(KerIl), Vi(a) = (a,0:(p(a)), Xi(a)) and
Wi(a) = (a,5j(p(a)), Y;(a)), with: IIo 0; = oiom Ilog =¢iom TI(X;) =
Xjoll and TTI(Y;) = Y/ o Il. Thus, the II-projections of V' and W are given
by

ﬁoV:Zfz’(V/OH) and ﬁoW:Zgj(W;oH),
with Vi(d') = (d', 0i(p(d')), Xi(a')) and Wi(a') = (a', ;(p(a')), ¥](a')) pro-

jectable sections of 7A. The bracket -, -]z of the sections V' and W is given
by

V. Wlra = Zfzgj Vi, Wj] TA+Z (pra(v)g;)W; — ZPTA )fi)Vi
+Zg][zl, A+ Zfz Vi, Zolra + (21, Zolza,

that is,

V. Wlzala) = Z(fzg»( ) (0, [0, 53](p(a)), [X:, Y;)(a))
+Z (pr4(v)g5)(@) (a, 5;(p(a)), Y(a))
— Z pra(w)fi)(a) (a,04(p(a)), Xi(a))
+ Z 9ilZ1, Wilza + Z filVi, Zolra + 121, Zolra,

for all a € A. Thus, by Lemma 4.2, we have

o [V.Wlra(a) = Z(figj)(a) (I(a), (ITe |04, ¢5]4) (p(a)), (T o [X, Y]) (a))
+ Z(pm(v)gj)(&) (I(a), (ITe ;) (p(a)), (TTL o Yj)(a))
- Z(pm(w)fi)(a) (I(a), (ITe 03)(p(a)), (TTLo Xi)(a)).
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Since the sections o; and ¢; are II-projectable and the vectors field X; and
Y; are T'Il-projectable, we may write

Mo [V,Wra(a) = 3 (fig;)(a) ((a), ([0, la o m)(p(a)), ([X, Y]] o T)(a))
+ 3 (pra(®)g))(a) (I(a). (5] o ) (p(a)), (¥}  TT)(a)
= > (pra(w)f)(@) ((a), (o7 o m)(p(a)), (X! 0 )(a)) ,

that is,

ITo [V, W]ra(a) = Z(fz’%)( ) (I(a), ([, <14 © p)(T(a)), [X7, Y]] (T1(a)))
+Z (pra(v)g;)(a) (I(a), (5} 0 P)(11(a)), Y] (Il(a)))
—Z pra(w)fi)(a) ((a), (o} 0 p)(I(a)), X;(Il(a))) .

Therefore,

Mo [V,W]ra = Zfzg] Wi, AOH)JFZ(PTA(V)QJ')(W}OH)
—Z PTA OH) D

Note that, since II is surjective we could have shown the condition of ho-
momorphism (2.4) only on projectable sections of 7 A of the form V;(a) =
(a,04(p(a)), Xi(a)), with Il o 0; = 0} o7 for o} € F(A\) and TTI(X;) = X/ oIl
for X! € X(A). This proposition is a particular case of a more general result
obtain in [17].

The statement of Proposition 4.3 means that dz 40 (Il|74)* = (II|74)*od 5,
where d74 and d ; are the exterior derivatives of the Lie algebroids 7 A and
TA respectively. Moreover, one can easily prove that the Lie algebroid
structure on 7 A is the unique structure for which Il|74 : 7A — TAis a
homomorphism of Lie algebroids over I1: A — A

By hypothesis, II is a homomorphism of Lie algebroids, 7.e. dj o IT* =
II*od ;. We also have that ps : 7A — A is a homomorphism of Lie algebroids
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50, dra o ps = p3oda. Then, d7ao0 (Ilopy)* = (Il o py)* o dy, that is, Ais a
reduced Lie algebroid of 7 A.

4.1. Lie algebroids with symmetry. Let & be a representation of the
Lie group G in the Lie algebroid (A, p,[-,:]4) in the sense of [4]. Suppose
that ® and its contragradient representation define free and proper actions

of G on the fibre bundles (A,p, M) and (A*, 7, M), respectively. In these
conditions = (&, &, T'P) defines a Lie algebroid representation of G in the
Lie algebroid prolongation 7 A of A [20], that is

Proposition 4.4. The morphism ® : G — Aut(T A) is a Lie algebroid
representation of the Lie group G on the Lie algebroid T A.

®,(TA) CTA. Let (a,b,v) € T,A, then ®,(a, ) (Dy(a), @,(b), TP,y(v)),
with @, := ®(g). Since p(a) = p(b), ¢4(p(a)) = ( )), where ¢, is the base
map of ®,; then po ®y(a) = poP,y(b). We have Tp(T(b (v)) =T(po®,)(v) =
To,0Tp(v) =Tepg0p(b), since @, is a Lie algebroid representation, and then
Tp(T®y(v)) = p(Py(b)). Therefore Oy(a,b,v) € T () A.

Now, in order to show that 5 is an automorphism of Lie algebroids, we
need to prove that T'® 0p74 = pTAo(ID and R, ([V1, Valr4)=[Ry(V1), Ry(Va)] 74
for all Vi,V € T(T A), where Ry(V) = ®,0V o ®,1 for all V € T(T A). For
the first condition, we have, for all (a,b, U) e 1T,A,

pra 0 ®y(a,b,v) = pra(Py(a), @4(b), T®y(v)) = T®y(v) = T®, 0 pra(a,b,v)
Suppose now that Vi, V, € T'(T A) are projectable sections, that is V;(a) =
(a,0i(p(a)), Xi(a)), i = 1,2. Then R,(V;)(a) = (a,R(c)(p(a))), X/(a)) where
R(o) = ®y000¢," and X] = T®,0 X; 0 Py for i = 1,2. Since

Ry([Vi, Valra)(a) = (a, @y([o1, 02]a) (041 (p(a))), TR4([ X1, Xo]) (g1 (a))),

a € A, and ®, and T'®, are homomorphisms of Lie algebroids, we conclude
Ry([Vi,Valza)(a) = (a,[Ry(o1), Ry(02)]a)(p(a))), [X1, X5](a))
= [Ry(V1), Ry(V2)l7a(a). O

Let II be the canonical projection of A onto A/G. We know (see [4])
that A/G is endowed with a vector bundle structure in such a way that

Proof. First of all we need to prove that 5 = ®(g) preserves T A, i.e.
(b

(I, ) : (A,p, M) — (A/G, P, ]\/4\) is a surjective submersion of vector bun-
dles. Moreover, A/G is endowed with a Lie algebroid structure such that
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I1 is a homomorphism of Lie algebroids. Thus, by Proposition 4.3, II|z4
is a homomorphism of Lie algebroids over Il and 7(A/G) is a reduced
Lie algebroid of 7A. One can easily prove that II is ®-invariant, that is
Ho®, =1I for all g € G; we just have to note that II is ®-invariant and so
TTlo T(I) =T(Ilo ®,) = T1I for all g € G. Moreover,

Proposition 4.5. For each a € A,
(i) the map I, : T,A — T (A/G) is a isomorphism;
(ii) the fibre Tjy(A/G) is isomorphic to the fibre (T A/G)

Proof. (i) Let (a,b,v), (a,V',v") € T,A such that II,(a,b,v) = I,(a,b, v'),
that is, (II(a), II(b), TT(v)) = (II(a), [I(b"), TTI(v")). So II(b) = II(b') and
TTI(v) = TTI(¢v"). Since II is the canonical projection defined by the Lie
algebroid representation ® of the Lie group G on A, there exists g € GG such
that b = ®,(V'). Then, p(b) = po @,(V'), that is, p(a) = ¢, 0 p(b') = ¢4(p(a))
where ¢, is the base map of ®, that defines a free and proper action of the
Lie group G on the vector bundle p : A — M. Therefore, g = e and so b = V'.

Now, we prove that v = v'. We have v —v' € Ker T,II. In these conditions,
Ker T,IT is generated by the fundamental vector fields in a € A, defined by
the free and proper action associated to the representation ® of G on A. So,
v=1"+3 . N\X"(a), where X' represents the elements of a basis of the Lie
algebra g of G. Since b = ¥/, we know that T,p(v) = T,p(v'), then

Tap Z)\ Tup XA( )) = Tap(?)/),

that is,

Z NTup(Xy(a)) = 0.

But >, M T,p(X(a)) = 0 is equivalent to .. \; X},(m) = 0, where p(a) = m
and X}, is the fundamental vector field in M associated to the element X'
of g. Since the fundamental vector fields associated to elements of a basis of
g are independent, then, all \; are null. Therefore, v = v’

(ii) The Lie algebroid representation ® = (®,®,T®) defines a free and
proper action of the Lie group G on the Lie algebroid 7 A. Therefore, the
canonical projection Il : 7A — 7 A/G is in each point of A an isomorphism.
So, T,A ~ (T A/G)(, and therefore by (i) T;,(A/G) ~ (TA/G)jy, for each
a€ A [
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For example, consider a principal fibre bundle P(M, G) and the gauge alge-
broid associated (T'P/G, p, M) (see [14]). The canonical projection I : TP —
TP/G determines a homomorphism of Lie algebroids |zrp) : T(TP) —
T(TP/G) over 1I. Let ¢ be the (right) action of the group G on P. Then,
®(g) := T¢, defines a Lie algebroid representation of the group G in T'P.
Thus, ® = (®,®,TP) is a Lie algebroid representation of the group G in
T(TP)=T(TP). By the above proposition 7 (TP)/G = T (T P/G), that is,
T(TP)/G = T(TP/G). In the recent paper of M. de Léon et al. [11], the
above results for gauge algebroids are proved by a different approach.

5. Reduction of a Lagrangian dynamics

Let (A,p, M) and (ﬁ, D, M ) be vector bundles endowed with the Lie al-
gebroid structures (p, [-,-]4) and (p,[-,-];), respectively, and suppose that
(I, 7) : (A,p, M) — (fAl, D, ]\/4\) is a surjective submersion of vector bundles
that is a homomorphism of Lie algebroids.

A function F' € C*(A) is said to be II-invariant if there exists a function
f e Coo(g) such that FF = f oIl for ; this is equivalent to say that its
differential dF belongs to the annihilator of Ker T1I.

Next, given a dynamical system in A defined by a regular and Il-invariant
Lagrangian function L € C*(A), we will show how the dynamics is reduced.
The following results generalize those obtained in [20] for the reduction of
dynamics on Lie algebroids with symmetry.

Lemma 5.1. The morphism 11 intertwines the vertical endomorphism S in
TA with the vertical endomorphism S"in TA, and the Liouville section A
of T A is Il-related with the Liouville section A" of T A, i.e.

MoS=S50ll and oA = A"oll
Proof. Let a € A, then
(0" () = (I(a),0, TIL(D, ).
Since

TIY)f = S(F o M) (a+ 10) g = o F(TI(a) + £T1(5)) g

for all f € C*(A), we have
TT(by ) = (T1(b))fy(a)-
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Therefore, B

(6" () = (11(0))" (I(a)). (5.1)
From the above equality, we show that [ o S = S" o Il. In fact, for each
(a,b,v) € T,A, we have that

S oIl(a,b,v) = S'(I(a), II(b), T,II(v))

By (5.1) we conclude that S"oII(a, b, v) = I1(b" (a))
us prove that ITo A = A’ o II. We have IT o A(a) =
From (5.1), we may write

ITo A(a) = (I1(a))" (TI(a))
and therefore Il o A(a) = A'(Il(a)) = A’ o l(a) for all a € A. O

(T1(0))" (TI(a)).
=Ilo S(abv) Now, let
II(a" (a)), for all a € A.

The main result of this section is:

Theorem 5.2. Let us suppose that the Lagrangian L € C*(A) of a dynam-
ical system in the Lie algebroid A is reqular and Il-invariant, that is, there
exists | € Coo(ﬁ) such that L = [ o II. Then, the following conditions are
satisfied:

(i) if Ep and E] are the energies of the dynamics on the Lie algebroids A

and A respectively, then E] o1l = Ey;
(ii) if 0, and 0; are the Cartan 1-forms deﬁned by L and | on the Lie

algebroids A and A respectively, then 11 9’ = 0. As a consequence,

we have that T W) = wr;
(iii) the induced Lagrangian [ is reqular;
(iv) if Vi and V] are the solutions of the dynamics on the Lie algebroids

A and on A respectively, then I1 o Vi, = V/ ol1l.

Therefore, the dynamics in A induced by a reqular and ll-invariant La-
grangian L = [ o Il reduces to the Lagrangian dynamics in A given by .

Proof. (i) We have E] := p;7(A")l — . Then,
Eyoll(a) = pr3(A")l o 1l(a) = lo1l(a) = prz(A'(11(a)))l — L(a).
for all a € A. By Lemma 5.1 we have
EjoTl(a) = p77(I(A(a)))l — L(a)
and by p,; oIl =TIl o p74 we obtain

EjoIl(a) = Tl o pra(A(a))l — L(a) = pra(A(a))(lo1I) — L(a)
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for all a € A. Therefore, Ej oIl = EJ.
(i) Let us prove that II 6 = 6. If V € T, A, then

I6/(V) = G(TI(V)) = dy 4l o S (TI(V)).
and using the results of the Lemma 5.1 we may write
TO(V)=draloTlo S(V) =T odgral o S(V).
But T o dra=ds;o0 ﬁ*, and then
Mo(V)=d, ;0 10S(V)=d,;LoS(V)=0r(V),

that is, ﬁ*«% = 1. Thus, by definition of the Cartan 2-form we deduce
MW = —1II (d;;0;). The exterior derivative commutes with the morphism
I, so
Dw = —dra(IT6) = —drsoby = wr.
(iii) If L € C*°(A) is regular then wy is symplectic. By the above condition

we have I w; = wp, then, w; is also symplectic because II is a surjective

morphism. So the reduced Lagrangian [ € C*°(A) is regular.
(iv) We have

Mwj(Ve, X) = wi((V2), I(X)) = i[(V)Wf(TI(X),  (5.2)
for all X € I'(7 A). On the other hand,
T w(Vi, X) =wr(Vi, X) = i(Vi)wp(X) = draEr(X). (5.3)

Since F; = Ej oIl = II EJ, then by (5.2) and (5.3) we have
i(T(V2))wi(TH(X)) = (drao T )EY(X) = (IT 0dy 1) B{(X) = dy;E(TI(X)),

for all X € I'(TA). So II(Vy) is a global solution of the dynamics in 7 A.
Once L is regular so is [, then the Cartan 2-form wj is symplectic and so the

dynamical equation has just one solution. Therefore, II(V;) = V/, that is,
MoV, = V/olIl. O

In general, the regularity of [ does not imply the regularity of L. However,
in the case of Lie algebroids with symmetry, since I is an isomorphism in each
fibre, we have that a projectable Lagrangian L = [ oIl in A is regular iff the
reduced Lagrangian [ in A/G is regular. Moreover, if Fl : A — A* denotes
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~

the Legendre transformation associated with the Lagrangian [ € C*°(A) we
have

FL(@)(b) = 5 L(a -+ 18)]iy = “U(11(a) + T1(0)]—o = FUI(@))(T1(8)

for all a,b € A, then FL = 11" o Fl o Il.

We can weaken the conditions of the Theorem 5.2, by considering a II-
invariant (possibly degenerated) Lagrangian L € C*°(A) that admits a global
dynamics, i.e. there exists a globally defined section V' of 7 A satisfying the
equation i(V)wy = draEr. With these hypotheses we have

i(IH(V))w) = dr 3,

that is, the reduced dynamics admits a global solution given by II(V). If
the solution of the initial dynamics V' is a SODE, then the solution of the
reduced dynamics is a SODE too, because

SITI(V)) = TI(S(V)) = TI(A) = A,

Of course, if the Cartan 2-form w] is symplectic then TI(V) is always a SODE.
In this case, Im S’ = Ker S’ is a Lagrangian subspace with respect to w; be-

cause wy(S'(X),S'(Y)) =0forall X, Y € T A, that is, dim Im ' = sdim TA.

5.1. Examples of dynamical reduction.

1. Reduction of degenerated Lagrangian systems. In standard
classical dynamics, let us consider a Lagrangian L € C*(T'Q)) satisfy-
ing the following conditions (see [2]):

(A1) the Cartan 2-form wy, is presymplectic, i.e. it is a constant rank
closed form;

(A2) the Lagrangian L admits a global dynamics;

(A3) the foliation defined by wy is regular, i.e. the quotient space
TQ/Kerwy has a differentiable manifold structure and the pro-
jection IT : T'QQ — TQ/Kery is a surjective submersion, where
Or(X) = i(X)wr = wr(X,-) for all X € X(TQ).

Under these conditions, let p : T'() — () be the canonical projection

of T'() and let us suppose that:

(A4) the distribution D = Tp(Ker®y) defines a regular foliation of

Q, i.e. the space of the leaves @ = /D admits a structure of
differentiable manifold for which the canonical projection

m: () — (@ is a surjective submersion.
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We can prove that @Ere exists a unique vector bundle structure in the
quotient manifold T'Q) = T'Q/Ker &, such that po Il = 7w o p, where
p:TQ — Qis given by p([X]) = m(p(X)) for each X € T'Q) such that
II(X) = [X].

We know that the tangent bundle T'Q) is a Lie algebroid over @)
whose anchor is the identity map on T'() and whose Lie algebra struc-
ture in the set of sections is given by the usual bracket of vector
fields in @. If the surjective submersion of vector bundles (II,7) :

(TQ,p, Q) — (@,ﬁ, @) satisfies the conditions of the reduction the-

orem stated in [4], then the bundle TQ is endowed with a (reduced)
Lie algebroid structure, such that, (II,7) is a homomorphism of Lie
algebroids. From what we have prove so far, if L is Il-invariant, the
dynamics in T(TQ) = T (TQ) reduces to the dynamics in 77Q. In
other words, the dynamics solution in T'(7T'Q), given by a vector field
V' in T'Q), projects into a section of T f@ that satisfies the dynamics
equation in 77'(). In these conditions, we can conclude that there
exists a unique symplectic form w in Tfé\) such that wy =TT @ and,

therefore, w; = is a symplectic form. So the solution of the reduced
dynamics is a SODE, i.e. S'/(II(V)) = A.

2. Reduction of a principal fibre bundle. Let P(M,G) be a prin-
cipal fibre bundle. We saw in [4] that the gauge algebroid TP/G is
a reduced Lie algebroid of the tangent bundle T'P endowed with its
usual Lie algebroid structure, where the canonical projection (sur-
jective submersion) Il : TP — TP/G is a homomorphism of Lie
algebroids. Given a Il-invariant Lagrangian L = [ o Il € C*(TP)
with a global dynamics (solution) V on TP, we have that II(V) is a
global dynamics (solution) on TP/G, i.e. i(IL(V))w| = drrp/c)E;. It
V' =T1I(V) is a SODE, then the reduced dynamics equation is equiv-
alent to £y0; = drrp/c)l, with 8] = drrp/g)l 0 S'. In this case we
have T(TP)/G = T(TP/G).

6. Reduction of Nonholonomic systems on Lie algebroids

Let (A, p, M) and (f/l\, D, ]\/4\) be two vector bundles endowed with Lie alge-
broid structures (p, [-,-]4) and (p, [-,-] ;), respectively, and suppose that the



20 J.F. CARINENA, J.M. NUNES DA COSTA AND PATRICIA SANTOS

vector bundle morphism (II, ) : (A, p, M) — (fAl, D, ]\/4\) is a surjective sub-
mersion and a homomorphism of Lie algebroids. We have proved before that
IT induces a homomorphism of Lie algebroids between the prolongation of
the Lie algebroids A and f/l\,

Ol7a = (ILIL,TH)|74: TA — TA.
Let L € C*(A) be a regular Lagrangian of a dynamical system on A, which

Py

is Il-invariant (i.e. L = [ oIl for some | € C*(A)). As we have proved in
section 5, the reduced dynamics on A admits a global solution X; = TI(X}),

i(II(X,))w) = dp 7B,

where ﬁ*wf = wy, and ﬁ*El’ = FE;.

6.1. Nonholonomic systems on a Lie algebroid. The first time non-
holonomic systems in the framework of Lie algebroids is dealt with was in
[5].

Let us consider a system on the Lie algebroid A with nonholonomic con-
straints given by a vector subbundle B of A, where the submanifold B is de-
fined by the vanishing of a set of independent linear functions {¢, = @sv* |
a=1,...,k}. In a parallel way to the usual formalism in classical mechanics
on the tangent bundle (see e.g. [3]), the constrained system equations of
motion can be written in a global form

{ i(V)wr —draEr € S*((TB)")

V|B € TB, (6'1)

where
TB={(b,c,v) € Bx BxTB|p(b)=p(c), p(c) =Tp(v) withv € T, B} *

is a subbundle of pra|p : TgA — B and (T B)? C (7 A)* denotes the annihi-
lator of 7 B. The above formulation of the nonholonomic system in the Lie
algebroid A is called Chetaev formulation.

Note that V is a SODE of 7 A since 1-forms in S*((7 B)") are semibasic,
that is, vanishing on vertical sections of T A: S*(dra¢,) = 0¢,/0v"® XP. The
semibasic forms S*(dra¢,) are called reactions forces on the Lie algebroid

A.

*In order to simplify the text, we write p (resp. II and p) instead of p|p (resp. Il|p and p|p)
and we write p (resp. p) instead of p|5 (resp. plz).
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Definition 6.1. A nonholonomic constraint ¢ on a Lie algebroid is called
ideal if the Liouville section of 7A in B belongs to 7 B where B is the
subbundle of A defined by ¢ = 0, that is, £Ao¢ = drad(A) = 0.

With this definition of ideal constraint, we can show:

Proposition 6.2. When the constrains ¢, are ideal and V' is a solution of
(6.1), the energy of the system is conserved, that is, £y Ep = 0.

Proof. We have
LyErp = pra(V)EL = XN"S*(d1a¢) (V) = N'd7ada(S(V))
and, since V' is a SODE, then S(V) = A and
LvEL = Ndrade(A) = X" £adq.

But as the constraints were assumed to be ideal, the right hand term is zero.
O]

The solution of the nonholonomic system (6.1) is given by
V=V, +\Z,,

where V7, is a solution of the initial dynamics (without constraints), Z, is a
vertical section of 7 A given by i(Z,)wr = S*(dra¢,) and A* is a function on
A determined in such a way that V|g € TB, i.e. £y, =0 or pra(V)p, =0
foralla=1,..., k.

If (¢',...,¢" vl ...,v®) is a system of local coordinates of p : A — M as-
sociated with the choice of a basis of local sections {e, | @« =1,..,s}, the
Euler-Lagrangian equations of the constrained system (6.1) are:

{ qz — pz ava

d (OL\ _ i OL Be, vOL a9¢a
((?v‘l) =P aaqi+v Cha 3V'Y+)\ ove

dt
with \* € C*(A) for all a = 1,...,k. We can use a new set of local co-
ordinates adapted to the constraints, that is, let us consider a new set of
local coordinates in the Lie algebroid A, {(¢’,w®) |i=1,...,n, a =1,...,s},
associated with the basis of sections {f, | @ =1, ..., s} of A that satisfy:

—

we =d,(q,v) = @ag(q)vﬁ, v =V,(q, W) = \I'ag(q)wﬁ, (6.2)

for all « = 1, ..., s, where </I>; and \I/J; are linear functions in A associated to
the A-1-forms ®, and V,, respectively, that satisfies V,,3®3, = d,, and are
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defined by

Ik O(s—k)xk Is & O(s—k)xk
H — U —
< Agr Ag ’ By B ’
where the matrix A = (A9 Agg) is given by Ayp = ¢up for alla =1, ..., k and
B =1,...,s and the matrix B = (Bg; B2) is given by By = —A2_21A21 and
Byy = Ay;. We have the following relations between the local sections:
Ja = \Pﬂaeﬁv €a = (I)ﬂafﬁ'

In these new coordinates, the Euler-Lagrange equations of the nonholonomic
system on the Lie algebroid A are given by:

{ ¢ = p pPsw’
d ( 0L o i oL b.B OL
i Gws) = 0 aVsagy + W e

for all a = 1,...,s — k, where [f;, fa]la = ”ygdfg. These are, precisely, the
equations (5) obtained by Mestdag et al. in [18], because:

- oL - oL
b B _ b3
Tigws — W Gy
7 oL
= w' (", [f;, fala) v

oWa OV,;. OL
ag PV g e
Now, suppose that the subbundle B of A is a Lie subalgebroid of A, that
is, there exists an injective morphism ¢ : B — A such that ¢ is a homomor-
phism of Lie algebroids; we will represent the Lie algebroid structure of B by
(A, [',-]B)- In these conditions we have that 7 = (¢,¢,Tt)|7p : TB — TA
is a homomorphism of Lie algebroids. In fact, 70 V|g = V o for all
V € I'(TA) such that V| € I'(7TB) and [Vi|p, Va|glp € T'(TB) for all
sections V1, Vo € T A such that Vi|g, Va|p € I'(7 B). Then, we can prove that

r*(S*(drada)) =0 (6.3)

— WB(\IIBE\II(M—L Caa "+ ol 5V

Indeed

U (S%(draga)) = Sp(t"drada),
where Sp is the vertical endomorphism in 7 B; then, because ¢ is a homo-
morphism of Lie algebroids we have

P (8" (dradu)) = Shldrs(T'0n)),
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and then as 7°¢, = 0 we have proved that 7°(S*(dra¢,)) = 0.

Consider the set T4B = {(b,c,v) € B x A x TB | p(b) = p(c), plc) =
Tp(v) with v € T,B}. The bundle 7 : T4B — B, with 7(b,c,v) = b for all
(b,c,v) € TAB, is endowed with a Lie algebroid structure, induced by the
Lie algebroid structure in A, whose anchor is defined by o(b, c,v) =v € T.B
for all (b,c,v) € T,AB and the Lie bracket of projectable sections of T4B,
that is, of sections of the form V'(b) = (b, o(p(b)), X ((p(b)))), where o € T'(A)
and X € X(B) are such that Tpo X = poo, is defined in the usual way (see
section 3 in [18] and also [11]). Note that

v=I"01T (6.4)

where I : TB — TAB is defined by I(b,c,v) = (b,(c),v) and I[4 : T4B —
T A'is defined by I4(b, ¢, v) = (4(b), ¢, Tt(v)); both I4 and I are Lie algebroids
homomorphisms. In these conditions, we can give a geometric proof of the
relation (14) obtained by Mestdag et.al in [18]:

i(V|p)é0, = —8Ey, (6.5)

where 5,; = (IY)*0y, EL = (I"YY'Ep, § = I*odgap = drp o I* and where V is
the SODE solution to the constrained system (6.1). Indeed, by the system
(6.1) we can write

el 6.3
2 (i(V)wp — draBr) 2o,

that is,
(i(Vwy) = 1°(dgaByr) = 0L,
which is equivalent to
i(V|p)(T*wr) = 6Ey.
Since T*wy, = —7*(d7401) Y o drag((I4)*0.) = —80;, we obtain
i(V|p)d0, = —6Ey.
From the relation (6.5) we can write
i(V|p)drp(t0y) = —drp(T"EL),
which is equivalent to

i(VlB)dTBH— = _dTBEZ7



24 J.F. CARINENA, J.M. NUNES DA COSTA AND PATRICIA SANTOS
with 07 = 7°0;, and Fy = T"Ef, where L = Lo : B — R is a differentiable
function on B. Therefore,

i(V|p)wr = drpET, (6.6)

with wp = —d7rp07; in general this 2-form is degenerate.

6.2. Reduction of nonholonomic systems. Let B be a subbundle of A
given by ImIl|g, II|p(B) = B. Next, we will prove that the constrained
dynamics on A reduces into a dynamics on A whose solution is a section on

TB.

First of all, we will show that II(V|z) belongs to the subbundle 7B of
T3 A, with total space
TB\:{(b’,c’,v’)EE x B x TB | pY) = p(c), p(c) = Tp(v') with UETGIE},

where V' is the solution of the constrained dynamics on A that satisfies the
system (6.1). Let V(b) = (b,c,v) € T, B, then II(V) = (11(b), I1(c), TTI(v)).
Thus, p(I1(b)) = 7(p(b)) = 7w(p(c)) = p(Il(c)); on the other hand, we have

)

Tp(T1(v)) = T(pell)(v) =T(mop)(v)
= Tm(Tp(v)) = Tr(p(b))
= (poT)(b) = p(IL(b)).
Therefore, II(V|) € T B. Moreover, V' =TI(V) is a SODE since
S'(V) =S I(V)) =1(S(V)) =T(A) = A"
In the following result we prove that i(V")w;—d, 7 E] is equal to the reaction
force of the reduced system in A.

Lemma 6.3. i(V')w, — d,;E} € S*((TB)").
Proof. We know that
i(V)wL —draF € S*((TB)O)
So,
i(V)(IT'w)) — dra(IT E) € S*((TB)Y),
that is,
I [i(V')wj — dp2E]] € S*(TB)°).
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But V' is a SODE then i(V')w; — d;;E; is a semibasic 1-form. Therefore,

AN

there exists ® € (7 A)* such that
i(Vw) — dr 3 E] = S™(D).

Since II (S™(®)) € S*((TB)?) and o S = S’ o II, then, II (®) € (T B)".
Therefore, ® € (7 B)°. O
Thus, we have proved:

Theorem 6.4. The constrained dynamics on A reduces into a dynamics on
A whose solution satisfies

{ iV — dy 3 E] € S*((TB)?)
V,|§ cTB.

Since V =V + \*Z, then
VI =TI(V) =11(Vy) + II(\* Z,,),

where V/ = II(V7) is the SODE solution of the reduced dynamics with-
out constraints on 7A and II(\“Z,) is a vertical section of TA satisfying
iTI(AZ,))w] € S*((TAB)Y), that is, i(TI(A°Z,))w] = @ is a semibasic 1-
form such that II (®') = A*S*(d7ada).

Proposition 6.5. We have the following relation £y Er = £y E].
Proof. From the relation ﬁ*El’ = F, we have

LyvEp = drabr(V) = dra( E)(V).
The map II is a homomorphism of Lie algebroids, then

Ly By =T (drzB)(V) = dpE{(V),

that iS, fvEL = £V'EZ/' ]
As an immediate consequence we have that:

Corollary 6.6. The energy of the constrained system in A is conserved iff
the energy of the reduced system in A is conserved.
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6.3. Example: Non-Abelian Caplygin systems. A non-Abelian Caply-
gin system is a constrained system whose configuration space is a principal
fibre bundle 7 : P — M = P/G endowed with a connection given by the
constraint distribution H such that T'P = H & V', where V is the vertical
bundle; therefore, the constraints ¢, are linear in the velocities and the energy
of the system is conserved (see [3] and references therein). The Lagrangian
L € C*(TP) of the system is supposed to be regular and invariant for the
lifted action of the Lie group G on P, i.e. L =1[oll whereIl: TP — TP/G
is the canonical projection defined by the lift action. The constrained system
in TP can be formulated as follows:

{ i(Vwr — dprpy ErL € S*((TH)) .

V|H cTH (6'7)

The solution of the system is of the form V = Vi + \*Z, where V], is the
solution of the system without constraints and Z, is a vertical section of
T(TP) such that i(A\"Z,)wr, = AN S*(drrp)¢a) and Ly ¢, = 0.

The canonical projection Il : TP — TP/G maps the subbundle H of
A = TP onto the subbundle H = H/G = TM of A= TP/G, and it is a
homomorphism of Lie algebroids, [4]. Thus, the reduced constrained system
on TP/G has a solution that satisfies

{ i(Vw, — drirpjey E] € S™([T(TM)]°)

V’|TM S T(TM) . (6'8)

The horizontal lift of a vector field in M into a section of TP/G, /' : TM —
TP/G, is a Lie algebroid homomorphism because T'M is an integrable dis-
tribution of TP/G, then T'M is a Lie subalgebroid of TP/G. So we can also
formulate the system (6.8) as

i(V'|720)00) = —0E] + (9,

where ® = (II(\Z,))w; € S*(|[TH']") C T*(TP/G) is a semibasic 1-
form, / = I"P/%o ' : TH = T(TM) — T(TP/G) with I' : T(TM) —
TTP/G(TM) defined by I'(a,b,v) = (a,/(b),v) and 177G . TTPIG(TM) —
T(TP/G) defined by I"7/%(a,b,v) = (/(a),b, Ti(v)), and 6 = I"odyrriapan
= dp(rary © I'. So we have,

iV |\ran)drrar(0°0]) = —dran (0 E)) + 7 (9).
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Note that, /' 0, = 6; and /" Ej = E; with [ : TM — M defined by 1(Yy) =
Ly for all g = 7T( ), Yz € TzM, Where Y denotes the horizontal lift to
P of a vector field Y on M. Therefore,

i(V'|ran)wy = dran (U E)) — 7 (@

),
with w; = —dpras(Z76)). As in [3] we have i(V|7ar)d (') = 0, because

iV |ra)d (@) = (o V|rar) = (V') = w(TI(A"Z,), TI(V'))
= wL()\“Za,V') = 0.

Once this work has been finished we have realized that some similar results
had been announced in [6], and are given in [7] and [19]. We thank the authors
J. Cortés et.al for sending us the preprint [7] with their results.
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