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1. Introduction

Function spaces of generalized smoothness have been introduced and con-
sidered, in particular since the middle of the seventies of the last century, by
several authors from different points of view and different degrees of gener-
ality. We refer, for instance, to Goldman [9, 10], Kalyabin [13, 14], Merucci
[16], Cobos and Fernandez [4], the survey by Kalyabin and Lizorkin [12],
Leopold [15], Edmunds and Triebel [6, 7] and Moura [17, 18].

From the standpoint of a Fourier analytic characterization, the recent work
by Farkas and Leopold [8] represents a unified and general approach on this
topic. Following their approach, we see that, under certain conditions, the
Besov spaces of generalized smoothness can be analogously characterized via
approximation and by means of differences.

2. Preliminaries

2.1. General notation. In this paper we shall adopt the following general
notation: N denotes the set of all natural numbers, N0 = N∪{0}, R

n, n ∈ N,
denotes the n-dimensional real Euclidean space and R = R

1. We use the
equivalence “∼” in

ak ∼ bk or φ(r) ∼ ψ(r)

always to mean that there are two positive numbers c1 and c2 such that

c1ak ≤ bk ≤ c2ak or c1φ(x) ≤ ψ(x) ≤ c2φ(x)
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2 S. MOURA

for all admitted values of the discrete variable k or the continuous variable
x, where (ak)k, (bk)k are non-negative sequences and φ, ψ are non-negative
functions. If a ∈ R then a+ := max(a, 0). We consider here only function
spaces defined on R

n; so for convenience we shall usually omit the “R
n” from

their notation.

2.2. Sequences. In this subsection we explain the class of sequences we
shall be interested in and some related basic results.

A sequence γ = (γj)j∈N0
of positive real numbers is said to be admissible if

there exist two positive constants d0 and d1 such that

d0 γj ≤ γj+1 ≤ d1 γj, j ∈ N0. (1)

For an admissible sequence γ = (γj)j∈N0
, let

γ
j
:= inf

k≥0

γj+k

γk
and γj := sup

k≥0

γj+k

γk
, j ∈ N0. (2)

Then clearly γ
j
γk ≤ γj+k ≤ γkγj for any j, k ∈ N0. In particular, γ

1
and γ1

are the best possible constants d0 and d1 in (1), respectively. Then, the lower
and upper Boyd indices of the sequence γ are defined, respectively, by

s(γ) := lim
j→∞

log γ
j

j
and s(γ) := lim

j→∞

log γj

j
. (3)

The above definition is well posed: the sequence (log γj)j∈N is sub-additive
and hence the right-hand side limit in (3) exists, it is finite (since γ is an
admissible sequence) and it coincides with infj>0 log γj/j. The correspond-
ing assertions for the lower counterpart s(γ) can be read off observing that

log γ
j
= − log(γ−1)j.

The Boyd index s(γ) of an admissible sequence γ describes the asymptotic
behaviour of the γj’s and provides more information than simply γ1 and,
what is more, is stable under the equivalence of sequences: if γ ∼ τ , then
s(γ) = s(τ) as one readily verifies. The same applies to the lower counterpart.

Observe also that for each ε > 0 there are two positive constants c1 = c1(ε)
and c2 = c2(ε) such that

c1 2(s(γ)−ε)j ≤ γ
j
≤ γj ≤ c2 2(s(γ)+ε)j, j ∈ N0. (4)

Examples 2.1. We consider some examples of admissible sequences.
(i) The sequence γ = (γj)j∈N0

,

γj = 2sj (1 + j)b (1 + log(1 + j))c
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with arbitrary fixed real numbers s, b and c is a standard example of an
admissible sequence with s(γ) = s(γ) = s.
(ii) Let Φ : (0, 1] → R be a slowly varying function (or equivalent to a
slowly varying one) in the sense of [1]. Then, for each s ∈ R the sequence
γ = (2sjΦ(2−j))j∈N0

is an admissible sequence. Also here we have s(γ) =
s(γ) = s.
(iii) In view of Proposition 1.9.7 of [2], the case γ = (2sjΨ(2−j))j∈N0

, where
now Ψ is an admissible function in the sense of [6] (i.e. a positive monotone
function defined on (0, 1] such that Ψ(2−2j) ∼ Ψ(2−j), j ∈ N0), can be
regarded as a special case of (ii).

Remark 2.2. The examples above have in common the fact that their upper
and lower Boyd indices coincide. However, this is not in general the case.
Examples 2.2.6 and 2.2.7 of [8], due to Kalyabin, show that an admissible
sequence has not necessarily a fixed main order.

2.3. Function spaces of generalized smoothness. Let N = (Nj)j∈N0

be an admissible sequence with N 1 > 1 (recall (2)). In particular N is a
so-called strongly increasing sequence (cf. [8, Def. 2.2.1]), which guarantees
the existence of a number k0 ∈ N0 such that

Nk ≥ 2Nj for any k, j such that k ≥ j + k0. (5)

It should be noted that the sequence N = (Nj)j∈N0
plays the same role as

the sequence (2j)j∈N0
in the classical construction of the spaces Bs

pq and F s
pq.

This will be clear from the following considerations.
For a fixed sequence N = (Nj)j∈N0

, as above, we define the associated
covering ΩN = (ΩN

j )j∈N0
of R

n by

ΩN
j = {ξ ∈ R

n : |ξ| ≤ Nj+k0
}, j = 0, · · · , k0 − 1,

and

ΩN
j = {ξ ∈ R

n : Nj−k0
≤ |ξ| ≤ Nj+k0

}, j ≥ k0,

with k0 according to (5).

Definition 2.3. For a fixed admissible sequence N = (Nj)j∈N0
with N 1 > 1,

and for the associated covering ΩN = (ΩN
j )j∈N0

of R
n, a system ϕN = (ϕN

j )j∈N0

will be called a (generalized) partition of unity subordinated to ΩN if:
(i)

ϕN
j ∈ C∞

0 and ϕN
j (ξ) ≥ 0 if ξ ∈ R

n for any j ∈ N0;
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(ii)
supp ϕN

j ⊂ ΩN
j for any j ∈ N0;

(iii) for any α ∈ N
n
0 there exists a constant cα > 0 such that for any j ∈ N0

|DαϕN
j (ξ)| ≤ cα (1 + |ξ|2)−|α|/2 for any ξ ∈ R

n;

(iv) there exists a constant cϕ > 0 such that

0 <
∞∑

j=0

ϕN
j (ξ) = cϕ <∞ for any ξ ∈ R

n.

Before turning to the definition of the Besov spaces of generalized smooth-
ness let us recall that S denotes the Schwartz space of all complex-valued
rapidly decreasing infinitely differentiable functions on R

n equipped with the
usual topology and by S ′ we denote its topological dual, the space of all tem-
pered distributions on R

n. If f ∈ S ′, then Ff and F−1f denote the Fourier
and the inverse Fourier transform of f , respectively. For ϕ ∈ S and f ∈ S ′

we will use the notation ϕ(D)f = [F−1(ϕFf)]. Furthermore, if 0 < p ≤ ∞
and 0 < q ≤ ∞ then Lp and ℓq have the standard meaning and, if (fj)j∈N0

is
a sequence of complex-valued Lebesgue measurable functions on R

n, then

‖(fj)j∈N0
|ℓq(Lp)‖ =

( ∞∑

j=0

‖fj | Lp‖
q
)1/q

with the appropriate modification if q = ∞.

Definition 2.4. Let N = (Nj)j∈N0
be an admissible sequence with N 1 > 1

and ϕN a system of functions as in Definition 2.3. Let 0 < p, q ≤ ∞ and
σ = (σj)j∈N0

be an admissible sequence. Then the Besov space of generalized
smoothness Bσ,N

p,q is the set of all tempered distributions f such that the quasi-
norm

‖f |Bσ,N
p,q ‖ := ‖(σj ϕ

N
j (D)f)j∈N0

|ℓq(Lp)‖

is finite.

Remark 2.5. Note that if 0 < p < ∞ then the Triebel-Lizorkin space of
generalized smoothness F σ,N

p,q is defined in an analogous way, by interchanging
the roles of the Lp and ℓq quasi-norms.
If σ = (2sj)j∈N0

, with s a real number, and N = (2j)j∈N0
then the spaces

Bσ,N
p,q coincide with the usual Besov spaces Bs

p,q and F σ,N
p,q coincide with the

usual Triebel-Lizorkin spaces F s
p,q. If we let σ = (2sjΨ(2−j))j∈N0

, where
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Ψ is an admissible function in the sense of [6, 7](see Example 2.1–(iii)),

the corresponding Besov space coincide with the space B
(s,Ψ)
p,q introduced by

Edmunds and Triebel in [6, 7] and also considered by Moura in [17, 18]. A
similarly observation holds for the F -counterpart.

3. Characterization by approximation

Let N = (Nj)j∈N0
be an admissible sequence with N 1 > 1 (recall (2)) and

k0 ∈ N0 as in (5). Let 0 < p ≤ ∞ and

UN
p :=

{
a = (aj)j∈N0

: aj ∈ S ′ ∩ Lp, supp Faj ⊂ {y : |y| ≤ Nj+k0
}, j ∈ N0

}
.

Theorem 3.1. Let σ = (σj)j∈N0
be an admissible sequence, 0 < p, q ≤ ∞,

and N = (Nj)j∈N0
be an admissible sequence with N 1 > 1, as above.

Suppose that s(σ) s(N)−1 > n(1/p− 1)+. Then

Bσ,N
p,q =

{
f ∈ S ′ : ∃ a = (aj)j∈N0

∈ UN
p such that f = lim

k→∞
ak in S ′ and

‖f |Bσ,N
p,q ‖a := ‖a0|Lp‖ + ‖(σk(f − ak))k∈N|ℓq(Lp)‖ <∞

}
.

Furthermore,

‖f |Bσ,N
p,q ‖X := inf ‖f |Bσ,N

p,q ‖a

where the infimum is taken over all admissible systems a ∈ UN
p , is an equiv-

alent quasi-norm in Bσ,N
p,q .

Proof : First of all let us remark that, taking into account the inequalities in
(4), if s(σ) s(N)−1 > δ ≥ 0 then

(
σ−1

j N
δ
j

)
j∈N

∈ ℓu for any u ∈ (0,∞].

Step 1. In this step we prove that ‖ · |Bσ,N
p,q ‖X can be estimated from above

by ‖ · |Bσ,N
p,q ‖. Let f ∈ Bσ,N

p,q and let (ϕN
j )∞j=0 be a generalized partition of

unity, according to Definition 2.3. Then

ak :=
k∑

j=0

ϕN
j (D)f −→ f in S ′ as k → ∞.
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Moreover, ak ∈ S ′ ∩ Lp and supp Fak ⊂ {y : |y| ≤ Nk+k0
}, k ∈ N0. Hence,

a = (ak)k∈N0
∈ UN

p . Let p̄ := min(1, p) and put ϕN
l ≡ 0 if −l ∈ N. Then

σk ‖f − ak|Lp‖ ≤ σk

( ∞∑

j=k+1

‖ϕN
j (D)f |Lp‖

p̄
)1/p̄

≤
( ∞∑

m=1

σ−p̄
m σp̄

k+m ‖ϕN
k+m(D)f |Lp‖

p̄
)1/p̄

. (6)

If 0 < q ≤ p̄ , from (6) and using the fact that (σ−1
j )j∈N0

∈ ℓq, we get

( ∞∑

k=1

σq
k ‖f − ak|Lp‖

q
)1/q

≤
( ∞∑

k=1

∞∑

m=1

σ−q
m σq

k+m ‖ϕN
k+m(D)f |Lp‖

q
)1/q

≤ ‖(σ−1
j )j∈N0

|ℓq‖ ‖f |Bσ,N
p,q ‖ ≤ c ‖f |Bσ,N

p,q ‖.

If q > p̄ , from (6) by using the triangle inequality with respect to ℓq/p̄ and

(σ−1
j )j∈N0

∈ ℓp̄ , we obtain

( ∞∑

k=1

σq
k ‖f − ak|Lp‖

q
)1/q

≤
{ ∞∑

m=1

σ−p̄
m

( ∞∑

k=1

σq
k+m ‖ϕN

k+m(D)f |Lp‖
q
)p̄/q}1/p̄

≤ ‖(σ−1
j )j∈N0

|ℓp̄‖ ‖f |Bσ,N
p,q ‖ ≤ c ‖f |Bσ,N

p,q ‖

(with the usual modification if q = ∞). Since we also have

‖a0|Lp‖ = ‖ϕN
0 (D)f |Lp‖ ≤ c ‖f |Bσ,N

p,q ‖,

then

‖f |Bσ,N
p,q ‖a ≤ c ‖f |Bσ,N

p,q ‖, f ∈ Bσ,N
p,q .

Step 2. Let f ∈ S ′ and a = (ak)k∈N0
∈ UN

p be such that

f = lim
k→∞

ak in S ′ and ‖f |Bσ,N
p,q ‖a <∞.

Let l0 = l0(N) ∈ N be such that N l0
1 > N 1 and let µ0, µ ∈ S be positive

functions such that

µ0(ξ) = 1 if |ξ| ≤ N1, supp µ0 ⊂ {ξ ∈ R
n : |ξ| ≤ N 1N1}

and

µ(ξ) = 1 if N
−1
1 ≤ |ξ| ≤ N 1, supp µ ⊂ {ξ ∈ R

n : N−l0
1 ≤ |ξ| ≤ N l0

1 }.



ON SOME CHARACTERIZATIONS OF BESOV SPACES OF GENERALIZED SMOOTHNESS 7

For each j ∈ N define µj(ξ) := µ(N−1
j ξ), ξ ∈ R

n. Putting al ≡ 0 if −l ∈ N,
we have

µk(D)f =
∞∑

j=1−l0−k0

F−1[µkF(ak+j − ak+j−1)], k ∈ N0,

and hence, with p̄ as in step 1, we get

‖µk(D)f |Lp‖ ≤
( ∞∑

j=−1

‖F−1[µkF(ak+j − ak+j−1)]|Lp‖
p̄
)1/p̄

, k ∈ N0. (7)

Recall that supp F(ak+j − ak+j−1) ⊂ {ξ : |ξ| ≤ Nk+j+k0
}. By hypothesis

s(σ) s(N)−1 > n(1/p− 1)+, so that we can choose a real number λ satisfying
s(σ) s(N)−1 > λ−n/2 > n(1/p− 1)+. Then the inequality (13) of [19, 1.5.2,
p. 28] yields

‖F−1[µkF(ak+j − ak+j−1)]|Lp‖

≤ c ‖µk(Nk+j+k0
·)|Hλ

2 ‖ ‖ak+j − ak+j−1|Lp‖, k ∈ N0, (8)

where c is a positive constant independent of k and j. Using Proposition 1
of [5, p. 33] we obtain, for k ∈ N,

‖µk(Nk+j+k0
·)|Hλ

2 ‖ = ‖µ(Nk+j+k0
N−1

k ·)|Hλ
2 ‖

≤ c1
(
Nk+j+k0

N−1
k

)λ−n
2 ‖µ(a·)|Hλ

2 ‖ ≤ c2N
λ−n

2

j (9)

where a = a(N) and c1, c2 are positive constants independent of j and k. In
an analogous way, for k = 0 we also have

‖µ0(Nj+k0
·)|Hλ

2 ‖ ≤ cN
λ−n

2

j . (10)

Inserting (8), (9) and (10) in (7), leads us to

‖µk(D)f |Lp‖ ≤ c
( ∞∑

j=1−l0−k0

N
(λ−n

2
)p̄

j ‖ak+j − ak+j−1|Lp‖
p̄
)1/p̄



8 S. MOURA

(with the understanding that N j ≡ 1 if −j ∈ N). If 0 < q ≤ p̄, it follows

∞∑

k=0

σq
k ‖µk(D)f |Lp‖

q

≤ c1

∞∑

k=0

σq
k

∞∑

j=1−l0−k0

N
(λ−n

2
)q

j ‖ak+j − ak+j−1|Lp‖
q

≤ c2 ‖(N
(λ−n

2
)

j σ−1
j )j∈N0

|ℓq‖
q

∞∑

m=0

σq
m ‖am − am−1|Lp‖

q

≤ c3 ‖a0|Lp‖ + c4

∞∑

m=0

σq
m ‖f − am|Lp‖

q, (11)

where we have used the fact that (N
(λ−n

2
)

j σj
−1)j∈N0

∈ ℓq, which is a conse-
quence of the choice of λ. On the other hand, if q > p̄, reasoning as in step
1, we obtain

∞∑

k=0

σq
k ‖µk(D)f |Lp‖

q

≤ c1 ‖(N
(λ−n

2
)

j σ−1
j )j∈N0

|ℓp̄‖
q

∞∑

m=0

σq
m ‖am − am−1|Lp‖

q

≤ c2 ‖a0|Lp‖ + c3

∞∑

m=0

σq
m ‖f − am|Lp‖

q (12)

(with the usual modification if q = ∞). Using now the Theorem 4.2.2 of [8],
by (11) and (12) we get, for any q ∈ (0,∞],

‖f |Bσ,N
p,q ‖ ≤ c ‖f |Bσ,N

p,q ‖a, f ∈ Bσ,N
p,q ,

where c is a positive constant independent of the chosen system a = (ak)k∈N0
.

Therefore,

‖f |Bσ,N
p,q ‖ ≤ c ‖f |Bσ,N

p,q ‖X , f ∈ Bσ,N
p,q .

Remark 3.2. For N = (2j)j∈N0
and σ = (2sj)j∈N0

or σ = (2sjΦ(2−j))j∈N0

(cf. (i) and (ii) of Examples 2.1), the above theorem coincide with Theorem
2.5.3(i) of [19] and Theorem 2.4 of [11], respectively.
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A characterization as above is valid for the space F σ,N
p,q , replacing the condi-

tion s(σ) s(N)−1 > n(1/p − 1)+ by s(σ) s(N)−1 > n(1/min(p, q) − 1)+ and
interchanging the roles of the Lp and ℓq quasi-norms.

4. Characterization by differences

Next we recall the definition of differences of functions. If f is an arbitrary
function on R

n, h ∈ R
n and k ∈ N, then

(∆k
hf)(x) :=

k∑

j=0

(
k

j

)
(−1)k−j f(x+ jh), x ∈ R

n.

Note that ∆k
h can also be defined iteratively via

(∆1
hf)(x) = f(x+ h) − f(x) and (∆k+1

h f)(x) = ∆1
h(∆

k
hf)(x), k ∈ N.

Furthermore, the k-th modulus of smoothness of a function f ∈ Lp, 1 ≤ p ≤ ∞,
k ∈ N, is defined by

ωk(f, t)p = sup
|h|≤t

‖∆k
hf |Lp‖, t > 0.

Theorem 4.1. Let 0 < p, q ≤ ∞, σ = (σj)j∈N0
and N = (Nj)j∈N0

be admissi-
ble sequences, the latter satisfying N 1 > 1, such that s(σ) s(N)−1 > n(1/p− 1)+.
Let M ∈ N with M > s(σ) s(N)−1. Then

Bσ,N
p,q =

{
f ∈ Lmax(1,p) :

‖f |Bσ,N
p,q ‖(M) := ‖f |Lp‖ +

( ∞∑

j=0

σq
j ωM(f,N−1

j )q
p

)1/q

<∞
}
.

(with the usual modification if q = ∞) in the sense of equivalent quasi-norms.

Remark 4.2. It can be easily verified that, for any a ∈ (0,+∞),

‖f |Bσ,N
p,q ‖(M) ∼ ‖f |Lp‖ +

( a∫

0

(
Λ(t−1)ωM(f, t)p

)q dt

t

)1/q

where Λ : (0,∞) → (0,∞) is an admissible function – according to [3, Def.
2.2.1] – such that Λ(z) ∼ Λ(Nj) = σj, z ∈ [Nj, Nj+1], j ∈ N0.
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Proof : Step 1. In this step we shall prove that there exists a positive constant
c such that

‖f | Bσ,N
p,q ‖(M) ≤ c ‖f | Bσ,N

p,q ‖ (13)

holds for all f ∈ Bσ,N
p,q . If f ∈ Bσ,N

p,q with s(σ) s(N)−1 > n(1/p − 1)+, then
f ∈ Lmax(1,p) and

‖f | Lp‖ ≤ c ‖f | Bσ,N
pq ‖, (14)

for some positive constant c which does not depend on f . This is a conse-

quence of Corollary 3.18 of [3], as (σ−1
j N

n( 1

p
−1)+

j ) ∈ ℓq′ in this case.

With (ϕN
j )j∈No

being a generalized partition of unity according to Definition
2.3 we have, with convergence in Lp,

f =
∞∑

j=0

ϕj(D)f. (15)

Let a > n/p. If k ∈ N0 then for each ̺ ∈ R
n with |̺| ≤ N−1

k and
j ∈ {0, · · · , k} we have

|∆M
̺

(
ϕN

j (D)f
)
(x)| =

∣∣∣
M∑

ℓ=0

(
M

ℓ

)
(−1)M−ℓ

(
ϕN

j (D)f
)
(x+ ℓ̺)

∣∣∣

≤
∣∣∣

M∑

ℓ=0

(
M

ℓ

)
(−1)M−ℓ

∑

|β|≤M−1

Dβ
(
ϕN

j (D)f
)
(x)

β!
(ℓ̺)β

∣∣∣

+
∣∣∣

M∑

ℓ=0

(
M

ℓ

)
(−1)M−ℓ

∑

|α|=M

Dα
(
ϕN

j (D)f
)
(xj,̺)

α!
(ℓ̺)α

∣∣∣

≤ c1N
−M
k sup

|y−x|≤N−1

k

∑

|α|=M

∣∣Dα
(
ϕN

j (D)f
)
(y)

∣∣

≤ c2N
M
j N−M

k sup
|y−x|≤N−1

k

sup
z∈Rn

∣∣(ϕN
j (D)f

)
(y − z)

∣∣

1 + |Nj+1z|a

≤ c3N
−M
k−j (ϕN∗

j f)a(x), (16)

where (ϕN∗
j f)a denotes the Peetre’s maximal functions. Besides Taylor’s ex-

pansion we have used the fact that
∑M

ℓ=0

(
M
ℓ

)
(−1)M−ℓℓm = 0 for any m ∈ N0

with m < M , and Theorem 1.3.1 of [19, p. 16] for the third inequality. Hence,
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for j ∈ N0,

sup
|̺|≤N−1

k

‖∆M
̺

(
ϕN

j (D)f
)
| Lp‖ ≤ c min(1, N−M

k−j ) ‖(ϕ
N∗
j f)a | Lp‖ (17)

where c > 0 is a constant independent of f .
Suppose that 0 < p ≤ 1 (otherwise one has to modify the calculations

below in an obvious way – similarly to the proof of the previous theorem),
then, by (15) and (17), we get

sup
|̺|≤N−1

k

‖∆M
̺ f | Lp‖

p ≤
∞∑

j=0

sup
|̺|≤N−1

k

‖∆M
̺ (ϕM

j (D)f) | Lp‖
p

≤ c
k∑

j=0

N−Mp
k−j ‖(ϕN∗

j f)a | Lp‖
p + c

∞∑

j=k+1

‖(ϕN∗
j f)a | Lp‖

p. (18)

With Λ as in Remark 4.2, it follows

‖f | Bσ,N
p,q ‖(M)q ≤ c1 ‖f | Lp‖

q + c1

∫ N−1

0

0

(
Λ(t−1)ωM(f, t)p

)q dt

t

≤ c1 ‖f | Lp‖
q + c1

∞∑

k=0

∫ N−1

k

N−1

k+1

(
Λ(t−1)ωM(f, t)p

)q dt

t

≤ c1 ‖f | Lp‖
q + c2

∞∑

k=0

σq
k ωM(f,N−1

k )q
p

≤ c1 ‖f | Lp‖
q + c3

∞∑

k=0

σq
k

( k∑

j=0

N−Mp
k−j ‖(ϕN∗

j f)a | Lp‖
p
)q/p

+ c3

∞∑

k=0

σq
k

( ∞∑

j=k+1

‖(ϕN∗
j f)a | Lp‖

p
)q/p

(19)
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(with the usual modification if q = ∞). By hypothesis M > s(σ) s(N)−1, so
that (4) entails (σjN

−M
j )j∈N0

∈ ℓu, for any u ∈ (0,∞]. Then we obtain

∞∑

k=0

σq
k

( k∑

j=0

N−Mp
k−j ‖(ϕN∗

j f)a | Lp‖
p
)q/p

≤ c ‖(σjN
−M
j )j∈N0

| ℓmin(1,p,q)‖
q

∞∑

j=0

σq
j ‖(ϕN∗

j f)a | Lp‖
q (20)

and also
∞∑

k=0

σq
k

( ∞∑

j=k+1

‖(ϕN∗
j f)a | Lp‖

p
)q/p

≤ c ‖(σ−1
j )j∈N0

| ℓmin(1,p,q)‖
q

∞∑

j=0

σq
j ‖(ϕN∗

j f)a | Lp‖
q. (21)

We insert (20) and (21) in (19). Then (13) is a consequence of Theorem 4.3.4
in [3] and (14).
Step 2. Let f ∈ Bσ,N

p,q . By Theorem 3.1,

‖f | Bσ,N
p,q ‖ ≤ c ‖f | Lp‖ + c

( ∞∑

j=1

σq
j Ep(Nj+k0

, f)q
)1/q

(22)

for some positive constant c and with

Ep(b, f) := inf ‖f − g | Lp‖

where the infimum is taken over all g ∈ S ′∩Lp such that supp ĝ ⊂ {y : |y| ≤ b}.
As there is a positive constant c (which depends on p and k) such that

Ep(b, f) ≤ c sup
|h|≤b−1

‖∆M
h f | Lp‖

for all b ≥ 1 and f ∈ Lp – cf. Prop. 2.5.12 of [19, p. 109] –, from (22) we get

‖f | Bσ,N
p,q ‖ ≤ c1 ‖f | Lp‖ + c2

( ∞∑

j=1

σq
j ω

M(f,N−1
j+k0

)q
p

)1/q

≤ c3 ‖f | Bσ,N
p,q ‖(M),

which completes the proof.
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Remark 4.3. For N = (2j)j∈N0
and σ = (2sj)j∈N0

or σ = (2sjΦ(2−j))j∈N0
(cf.

Examples 2.1(i),(ii)), the above theorem is covered by Theorem 2.5.12 of [19]
and Theorem 2.5 of [11], respectively. For 1 < p < ∞, 1 < q ≤ ∞ this type
of characterization has been obtained by Kalyabin in [14].
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