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1. Introduction

Given a finite alphabet A, a subshift of AZ is a non-empty compact subset
of AZ that is closed for the shift operation and its inverse. There is a natural
bijection between subshifts and non-empty factorial prolongable languages.
The subshift is called sofic if the corresponding language is rational. Two
subshifts are conjugate if there is a shift commuting homeomorphism between
them. It is an open question whether there is an algorithm for deciding if two
sofic subshifts are conjugate or not. The shift equivalence is a notion strictly
weaker than conjugacy. For a long time it was an open problem whether the
two notions coincided or not [22, 23]. The shift equivalence between sofic
subshifts is decidable [21].

Pseudovarieties of semigroups are usefull for classifying varieties of rational
languages, via Eilenberg’s correspondence theorem [17]. A more refined clas-
sification of rational languages using pseudovarieties of ordered semigroups
was successfully introduced by Pin [29]. It is natural to ask which pseudovari-
eties define classes of sofic subshifts closed for taking conjugate subshifts. To
be more precise, for a pseudovariety V of ordered semigroups let S (V) be the
class of sofic subshifts whose (ordered) syntactic semigroup lies in V, where
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the syntactic semigroup of a subshift is the syntactic semigroup of the corre-
sponding factorial prolongable language. In this paper it is proved that if V

contains the pseudovariety Sl− of commutative idempotent monoids in which
the neutral element is a global minimum, then S (V ∗ D) is closed for tak-
ing conjugate subshifts. After obtaining this result, the author has recently
observed that its unordered version can be easily deduced from Theorem 2.7
in [14], which is a theorem about ζ-semigroups as recognition structures for
sofic subshifts. Conversely, we prove that if S (V ∗ D) is closed for taking
conjugate subshifts then V contains LSl− and S (V) = S (V ∗ D).

One of the most successful approaches in the research on pseudovarieties
of semigroups over the last two decades involves profinite methods, namely
through the study of free and relatively free profinite semigroups. The el-
ements of free profinite semigroups are sometimes called profinite words or
pseudowords. They can be seen as a generalization of ordinary words. The
equational description of pseudovarieties by means of formal identities be-
tween pseudowords established by Reiterman [35] is one of the seminal moti-
vations for the profinite approach in the study of pseudovarieties. The author
developed in [15] some tools for using pseudowords in the study of subshifts.
With them he obtained some new conjugacy invariants. The present paper
is a sequel of [15], namely through the exploration of one of its main in-
strumental results, which appears here in Theorem 2.9. The exploration of
links between the theory of profinite semigroups and concepts from symbolic
dynamics began with the papers [2, 5]. Almeida also established in [3] a
connection between the minimal subshifts over a given alphabet and the cor-
responding free profinite semigroup, which leads to a better understanding
of the structure of such semigroups.

The search of conjugacy invariants in the syntactic semigroup of a sofic
subshift is also made in [9], where a shift equivalence invariant is introduced,
which defines a hierarchy of irreducible sofic subshifts, and it is proved that
the first level of the hierarchy is the class of almost finite type subshifts. This
class has practical interest for coding theory, and for several reasons it is a
meaningful class above the class of irreducible finite type subshifts, as stated
in [9]; see [25, Chapter 13.1] and [8].

The paper is organized as follows. Section 2 is dedicated to preliminary
definitions and results, some of which are recovered from [15]. Section 3
contains the results describing which classes defined by pseudovarieties of
semigroups are closed for taking conjugate subshifts. Section 4 is dedicated
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to the characterization of some significant classes of sofic subshifts defined
by pseudovarieties by the way described in Section 3. We deduce a new
proof of the conjugacy invariance of the class of almost finite type subshifts
by showing that they are the irreducible members of S (LInv). Finally, in
Section 5 we prove that the conjugacy invariants that we established are also
shift equivalence invariants, with a proof depending on the previous results
about conjugacy invariance.

Our main reference for symbolic dynamics is the book of Lind an Mar-
cus [25]. For background on classical semigroup theory, rational languages
and finite automata see for example [28]. For the study of pseudovarieties in
a profinite semigroup theory perspective, see the introductory text [4].

2. Preliminaries

2.1. Subshifts and codes. Let A be an alphabet. All alphabets in this
paper are assumed to be finite. The semigroup of finite non-empty words
(or blocks) on letters of A is denoted by A+; the empty word is denoted by
1 and A∗ is the monoid A+ ∪ {1}. The set of words over A with length n
is An. Let AZ be the set of sequences of letters of A indexed by Z. The
shift in AZ is the bijective function σA (or just σ) from AZ to AZ defined
by σA((xi)i∈Z) = (xi+1)i∈Z. We endow AZ with the product topology with
respect to the discrete topology of A. Note that AZ is a compact Hausdorff
space. From here on compact will mean both compact and Hausdorff. A
shift dynamical system or subshift of AZ is a non-empty closed subset X of
AZ such that σA(X ) ⊆ X and σ−1

A (X ) ⊆ X . A factor of (xi)i∈Z is a finite
sequence xixi+1 · · · xi+n−1xi+n, where i ∈ Z and n ≥ 0. If X is a subset of
AZ then we denote by L(X ) the set of factors of elements of X . A subset
K of a semigroup S is factorial if it is closed for taking factors, and it is
prolongable if for every element u of K there are a, b ∈ S such that aub ∈ K.
It is easy to prove that the correspondence X 7→ L(X ) is a bijection between
the subshifts of AZ and the non-empty factorial prolongable languages of A+.

A code G between the subshifts X of AZ and Y of BZ is a continuous
function G : X → Y such that G ◦ σA = σB ◦ G. Note that the identity
transformation of a subshift is a code, the composition of two codes is a
code and the inverse of a bijective code is a code. A bijective code is called a
conjugacy. Two subshifts are conjugate if there is a conjugacy between them.
A conjugacy invariant is a property of subshifts that is preserved for taking



4 ALFREDO COSTA

conjugate subshifts. See [25] for the definition and computation of ordinary
conjugacy invariants like the zeta function and the entropy.

It is well known [19] that a map G : X ⊆ AZ → Y ⊆ BZ is a code
between subshifts if and only if there are k, l ≥ 0 and a map g : Ak+l+1 → B
such that G(x) = (g(x[i−k,i+l]))i∈Z. We say that g is a block map of G with
memory k and anticipation l. The code G depends only on the restriction
of g to Ak+l+1 ∩ L(X ). We use the notation G = g[−k,l] : X → Y . If
n ≥ l, m ≥ k and h : Am+n+1 → B is defined by h(a−ma−m+1 . . . an−1an) =
g(a−ka−k+1 . . . al−1al), with ai ∈ A, then h is a block map of G with memory
m and anticipation n. In particular, one can choose a block map with equal
memory and anticipation.

Given an alphabet A and k ≥ 1, consider the alphabet Ak. To avoid
ambiguities, we represent an element w1 . . . wn of (Ak)+ (with wi ∈ Ak) by
〈w1, . . . , wn〉. For k ≥ 0 let Φk be the function from A+ to (Ak+1)∗ defined
by

Φk(a1 . . . an) =

{
1 if n ≤ k,

〈a[1,k+1], a[2,k+2], . . . a[n−k−1,n−1], a[n−k,n]〉 if n > k,

where ai ∈ A and a[i,j] = aiai+1 . . . aj−1aj. It is easy to see that, if X is a

subshift of AZ and i, j ≥ 0 are such that i + j = k, then the restriction of

the code Φ
[−i,j]
k to X is a conjugacy between X and Φ

[−i,j]
k (X ). A one-block

code is a code having a block map with memory and anticipation zero.

Remark 2.1. For every code G there are one-block codes G1 and G2 such
that G1 is a conjugacy and G = G2 ◦G

−1
1 .

Proof : For a code G = g[−k,k] : X → Y let G1 be the inverse of the restriction

Φ
[−k,k]
2k : X → Φ

[−k,k]
2k (X ) and let G2 = g[0,0] : Φ

[−k,k]
2k (X ) → Y .

A subshift X is sofic if L(X ) is rational. We call graph-automaton to an
automaton such that all states are initial and final. An automaton is essential
if all states lie in a bi-infinite path of the automaton. One can see that X is
sofic if and only if L(X ) is recognized by an essential finite graph-automaton.
We say that a graph-automaton presents the subshift X if it recognizes L(X ).

A subshift X of AZ is irreducible if for all u, v ∈ L(X ) there is w ∈ A∗ such
that uwv ∈ L(X ). Irreducibility is a conjugacy invariant. A sofic subshift
is irreducible if and only if it is presented by a strongly connected finite
graph-automaton [18].
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A subshift of AZ is of finite type if there is a finite subset F of A+ such that
L(X ) = A+ \ A∗FA∗. Note that finite type subshifts are sofic. A subshift
presented by a finite graph-automaton in which every letter acts in at most
one state is called an edge subshift. The subshifts of finite type are precisely
those that are conjugate with an edge subshift. The following result is well
known (see [25, Theorem 2.1.8]).

Proposition 2.2. A subshift X is of finite type if and only if there is n ≥ 0
such that whenever uv, vw ∈ L(X ) and v has length greater than n, then
uvw ∈ L(X ).

The Krieger cover of a sofic subshift X is the essential graph-automaton
obtained from the minimal automaton of L(X ) by deleting states that do
not lie in bi-infinite paths. Call Krieger edge subshift of X the edge subshift
obtained from the Krieger cover of X by labeling with different letters differ-
ent arrows in its graphical representation. Krieger proved in [24] that if X
and Y are conjugate sofic subshifts, then their Krieger edge subshifts are also
conjugate. If the sofic subshift X is irreducible then its Krieger cover has a
unique terminal strongly connected component which is a graph-automaton
presenting X [11]. This graph-automaton is named the Fischer cover of X .

2.2. Pseudowords. A compact semigroup is a semigroup endowed with a
compact topology for which the semigroup operation is continuous; if more-
over the topology is zero-dimensional (that is, generated by open sets that are
closed) then we say that it is a profinite semigroup. In [4] we can find other
equivalent definitions of profinite semigroup. Note that finite semigroups are
profinite with respect to the discrete topology. Given an alphabet A, there

is a profinite semigroup Â+, in which A+ embeds as a dense subsemigroup,
such that for every map ϕ from A into a profinite semigroup S, there is a

unique continuous homomorphism ϕ̂ : Â+ → S whose restriction to A is ϕ.

The semigroup Â+ is, up to isomorphism of compact semigroups, the unique
profinite semigroup with this property; for that reason it is called the free

A-generated profinite semigroup. For constructions of Â+ see [4]. The defi-

nition of the free A-generated profinite monoid Â∗ is similar to that of Â+.

Considering the empty word as an isolated point of Â+∪{1}, we see Â+∪{1}

as being Â∗.

Let w be a pseudoword of Â+. For a ∈ A, we say that a is a letter of w if
a is a factor of w. A prefix (respectively, suffix ) of w is a pseudoword u of
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Â∗ such that w = uπ (respectively, w = πu) for some π in Â∗. For n ≥ 1, let

A<n be the set of words of A+ with length less than n. If w ∈ Â+ \A<n then
w has a unique prefix and a unique suffix of length n, denoted respectively
by in(w) and tn(w) [1]. If w ∈ A<n then we define in(w) = tn(w) = w.

Let us consider within the alphabet A = {a1, . . . , an} with n elements the

order in which ai is the i-th letter. Let π ∈ Â+. For a profinite semigroup
S, denote by πS the n-ary operation on S that maps (s1, . . . , sn) ∈ Sn to

the image of π by the unique continuous homomorphism ϕ : Â+ → S such
that ϕ(ai) = si. Note that if ψ : S → T is a continuous homomorphism
between profinite semigroups then ψ(πS(s1, . . . , sn)) = πT (ψ(s1), . . . , ψ(sn)).
In absence of confusion we may drop the index S in πS(s1, . . . , sn) and write
π(s1, . . . , sn).

The next lemma generalizes to pseudowords the way how a word appears
as a factor of a finite product of finite words.

Lemma 2.3 ([5, Lemma 7.2]). Let X = {x1, . . . , xn} be an alphabet with
n elements with the order in which xi is the i-th letter. Let A be also an
alphabet. Consider pseudowords w ∈ X̂+ and v1, . . . , vn ∈ Â+. Suppose that
u is a finite factor of w

Â+(v1, . . . , vn). Then u is either a factor of some
vi or w has a factor xi0xi1 . . . xikxik+1

(with xij ∈ X) such that u factors as
u = ui0vi1 . . . vikuik+1

where ui0 is a suffix of vi0 and uik+1
is a prefix of vik+1

.

The following lemma is easily proved using the fact that the closure of a
rational language is open [4, Theorem 3.6].

Lemma 2.4 ([15]). If L is a factorial rational language of A+ then the closure

of L in Â+ is factorial.

If s is an element of a profinite semigroup S, then sn! converges to the
unique idempotent in the closure of the subsemigroup generated by s; this
idempotent is denoted by sω. Let e and f be idempotents of S. We say that
an element u of S is bounded by e and f (by this order) if u = euf . An
element is idempotent-bound if it is bounded by some pair of idempotents.

In [1, Lemma 10.6.1] it is proved that Φk : A+ → (Ak+1)∗ has a unique

continuous extension Â+ → ̂(Ak+1)
∗
, which we also denote by Φk. For a map

g : A2k+1 → B let ĝ be the unique continuous monoid homomorphism from
̂(A2k+1)

∗
into B̂∗ that extends g. Denote by ḡ the map ĝ ◦ Φ2k. The coding

process described by g is extended to every pseudoword of Â+ by ḡ. For all
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u, v ∈ Â+ we have:

ḡ(uv) = ḡ(u)ḡ(t2k(u)v) = ḡ(u i2k(v))ḡ(v) = ḡ(u ik(v))ḡ(tk(u)v).

This property is easily seen to be true when we have Φ2k instead of ḡ, which

suffices to prove the general case since A+ is dense in Â+.
Given a subshift X of AZ, let Mir(X ) be the set of pseudowords whose

finite factors belong to L(X ). We call Mir(X ) the mirage of X in Â+. Note

that Mir(X ) is a union of J -classes. We have L(X ) ⊆ Mir(X ). In general

Mir(X ) and L(X ) are different, when X is sofic [15].

Lemma 2.5 ([15]). Let G = g[−k,k] : X → Y be a code. Then ḡ((L(X )) ⊆
L(Y) ∪ {1} and ḡ(Mir(X )) ⊆ Mir(Y) ∪ {1}.

Lemma 2.6 ([15]). Let G = g[−k,k] : X ⊆ AZ → Y ⊆ BZ be a conjugacy and

let G−1 = h[−l,l] : Y → X be its inverse. Consider an element v of Â+. If r
and s are words of length k + l such that rvs ∈ Mir(X ) then v = h̄ḡ(rvs).

2.3. The syntactic semigroup of a sofic subshift. A binary relation
K in a semigroup S is stable if r K s implies tr K ts and rt K st for all
r, s, t ∈ S. The semigroup congruences are the stable equivalence relations.
Let L be a language of A+. The following quasi-order, called syntactic order,
is stable:

v ≤L u⇔ [∀x, y ∈ A∗, xuy ∈ L⇒ xvy ∈ L].

The equivalence relation generated by ≤L is a semigroup congruence, the
syntactic congruence of L. The quotient of A+ by the syntactic congruence
of L is called the syntactic semigroup of L. We denote it by Syn(L). Let δL
be the canonical homomorphism from A+ into Syn(L). Consider in Syn(L)
the relation also denoted ≤L (or simply ≤) such that δL(v) ≤L δL(u) if and
only if v ≤L u. It is a well-defined partial order. An ordered semigroup is
a semigroup equipped with a partial order stable for multiplication. The
syntactic semigroup of L equipped with the partial order ≤L is an ordered
semigroup, which in absence of confusion is also denoted Syn(L) and named
syntactic semigroup of L. The language L is rational if and only if Syn(L) is
finite, in which case δL has a unique extension to a continuous homomorphism

δ̂L : Â+ → Syn(L).
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Lemma 2.7 ([15]). Let u and v be elements of Â+. If L is a rational language
of A+ then

δ̂L(v) ≤L δ̂L(u) ⇔
[
∀x, y ∈ Â∗, xuy ∈ L⇒ xvy ∈ L

]
.

Let X be a subshift of AZ and let Syn(X ) be the syntactic semigroup of

L(X ). We denote respectively by δX and δ̂X the homomorphisms δL(X ) and

δ̂L(X ). The subshift AZ is usually named the full shift of AZ; its syntactic
semigroup is trivial. Suppose that X is not the full shift. Then Syn(X )
is a non-trivial semigroup with a zero denoted by 0. One can easily prove
that δX (u) = 0 ⇔ u /∈ L(X ) for all u ∈ A+ [12]. This implies that if X is

sofic then δ̂X (u) = 0 ⇔ u /∈ L(X ) for all u ∈ Â+. The zero is the maximal
element of Syn(X ) for ≤L(X ), because if u ∈ A+ \L(X ) then xuy /∈ L(X ) for
all x, y ∈ A∗.

Lemma 2.8. Let G = g[−k,k] : X ⊆ AZ → Y ⊆ BZ be a conjugacy between
sofic subshifts. Let u be an idempotent-bound element of Mir(X ). If ḡ(u) ∈
L(Y) then u ∈ L(X ).

Proof : Let h be a block map of G−1 with memory and anticipation l. Let

e and f be idempotents of Â+ such that u = euf , and let r = ik+l(e) and
s = tk+l(f). Then there are e0, f0 such that u = re0uf0s. By Lemma 2.6

we have e0uf0 = h̄ḡ(u), thus u is a factor of h̄ḡ(u). Since ḡ(u) ∈ L(Y), by

Lemma 2.5 we have h̄ḡ(u) ∈ L(X ). Hence u ∈ L(X ) by Lemma 2.4.

Theorem 2.9 ([15]). Let G = g[−k,k] : X ⊆ AZ → Y ⊆ BZ be a conjugacy

between sofic subshifts. Let e and f be idempotents of Â+. Let u and v be

elements of Â+ such that u = euf , v = evf , u ∈ L(X ) and v ∈ Mir(X ).

Then δ̂X (v) ≤ δ̂X (u) if and only if δ̂Y(ḡ(v)) ≤ δ̂Y(ḡ(u)).

2.4. Pseudovarieties of ordered semigroups. A pseudovariety of or-
dered semigroups is a class of finite ordered semigroups closed for taking
subsemigroups, finite direct products and images of order-preserving homo-
morphisms of semigroups. A pseudovariety of semigroups is a pseudovariety
of ordered semigroups closed for taking images of homomorphisms of semi-
groups; since the identity map is a homomorphism, the order takes no role in
this notion, which therefore corresponds to the usual notion of pseudovariety
of (unordered) semigroups. The class Com of finite commutative semigroups
is a pseudovariety of semigroups. The definitions of pseudovariety of ordered
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monoids and pseudovariety of monoids are made similarly, using the notions
of submonoid and homomorphism of monoid. The class Sl− of commuta-
tive ordered monoids such that every element is idempotent and greater or
equal than the neutral element is a pseudovariety of ordered monoids. It
is not a pseudovariety of monoids. The smallest pseudovariety of monoids
containing Sl− is the class Sl of commutative monoids whose elements are
idempotents. If V is a pseudovariety of ordered semigroups or monoids then
the class LV of semigroups whose submonoids are in V is a pseudovariety of
ordered semigroups.

For an alphabet A, let π and ρ be elements of Â+. We say that the formal
inequality π ≤ ρ is a pseudoidentity over A. The formal equality π = ρ is seen
as the set of pseudoidentities {π ≤ ρ, ρ ≤ π}. If S is a profinite ordered semi-
group with order ≤S, then we say that S satisfies the pseudoidentity π ≤ ρ
if for all n-tuples (s1, . . . , sn) in Sn we have πS(s1, . . . , sn) ≤S ρS(s1, . . . , sn).
A class V is a pseudovariety of ordered semigroups if and only if there is
a set Σ of pseudoidentities (possibly over distinct alphabets) such that V

is the class of finite ordered semigroups satisfying all pseudoidentities in
Σ [31, 27]. We denote by [[Σ]] the pseudovariety V defined by Σ, and we then
say that Σ is a basis of pseudoidentities for V. Furthermore, V is a pseudova-
riety of semigroups if and only if it has a basis of formal equalities between
pseudowords [35]. Similar definitions and results hold for pseudovarieties of
ordered monoids, with the obvious changes. For example,

Sl− = [[xy = yx, x2 = x, 1 ≤ x]],

LSl− = [[zωxzωyzω = zωyzωxzω, zωxzωxzω = zωxzω, zω ≤ zωxωzω]].

A variety of languages is a family W that associates to each finite alphabet
A a set WA+ of rational languages of A+ with the following properties:

(1) for every alphabet A, the set WA+ is closed for taking a finite number
of unions and intersections;

(2) for every alphabet A, if L ∈ WA+ then for every a ∈ A the languages
{w ∈ A+ : aw ∈ L} and {w ∈ A+ : wa ∈ L} belong to WA+;

(3) if ϕ : A+ → B+ is a homomorphism and L ∈ WB+ then ϕ−1(L) ∈
WA+.

For a pseudovariety V of ordered semigroups let V be the class of languages
whose syntactic semigroup belongs to V. The correspondence V → V is
a bijection between pseudovarieties of ordered semigroups and varieties of
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languages [29], and VA+ is closed for taking complements in A+, for an
arbitrary alphabet A, if and only if V is a pseudovariety of semigroups [17].

The locally testable languages of A+ are the languages that can be obtained
from the languages of the form A∗wA∗, wA∗ and A∗w, where w ∈ A+, ap-
plying a finite number of unions, intersections and complements in A+. The
following characterization is a fundamental result in finite semigroup theory.

Theorem 2.10 ([13, 26]). The class of locally testable languages is the variety
of languages corresponding to LSl.

J.-E. Pin and P. Weil proved in [34] an ordered version of Theorem 2.10.
The negatively locally testable languages of A+ are the languages that can
be expressed with a finite number of unions and intersections of languages of
the form A+ \A∗wA∗, A+ \ wA∗, A+ \A∗w and A+ \ {w}, with w ∈ A+.

Theorem 2.11 ([34]). The class of negatively locally testable languages is
the variety of languages corresponding to LSl−.

3. Invariant pseudovarieties

For a class C of ordered semigroups, let S (C) be the class of subshifts whose
syntactic semigroup is in C. We say that a class of subshifts is a conjugacy
invariant if it is closed for taking conjugate subshifts. In this section we
identify all conjugacy invariants S (V) such that V is pseudovariety of ordered
semigroups.

Proposition 3.1. Let G = g[0,0] : X ⊆ AZ → Y ⊆ BZ be a one-block
conjugacy. Let ρ and π be pseudowords over an alphabet X with n elements
such that the finite factors of π are factors of ρ, and such that ρ = eρf and

π = eπf for some idempotents e and f of X̂+. If Syn(Y) satisfies π ≤ ρ,
then so does Syn(X ).

Proof : Suppose that Syn(X ) does not satisfy π ≤ ρ. Then there is a n-tuple
(s1, . . . sn) of elements of Syn(X ) such that πSyn(X )(s1, . . . sn) � ρSyn(X )(s1, . . . sn).

For each i let wi be a word of A+ such that δX (wi) = si. Because δ̂X is a con-

tinuous homomorphism, we have δ̂X (π(w1, . . . wn)) � δ̂X (ρ(w1, . . . wn)). Then

δ̂X (ρ(w1, . . . wn)) 6= 0, because 0 is the maximal element of Syn(X ). Hence

ρ(w1, . . . wn) ∈ L(X ). By Lemma 2.3 this implies π(w1, . . . wn) ∈ Mir(X ),
because the finite factors of π are factors of ρ. Then, since ρ(w1, . . . wn) and
π(w1, . . . wn) are bounded by the idempotents e(w1, . . . , wn) and f(w1, . . . , wn),
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from Theorem 2.9 we deduce δ̂Y ḡ(π(w1, . . . wn)) � δ̂Y ḡ(ρ(w1, . . . wn)). Hence,

since δ̂Y ḡ is a continuous homomorphism, we have

πSyn(Y)(δ̂Y ḡ(w1), . . . δ̂Y ḡ(wn)) � ρSyn(Y)(δ̂Y ḡ(w1), . . . δ̂Y ḡ(wn)).

Let us recall that a graph is a 4-tuple Γ = (V (Γ), E(Γ), α, β) such that
V (Γ) and E(Γ) are disjoint sets, and α, β are maps from E(Γ) to V (Γ). The
elements of V (Γ) and E(Γ) are the vertices and the edges of Γ, respectively.
We say that an edge x goes from u to v if α(x) = u and β(x) = v. If
β(x) = α(y) then x and y are said to be consecutive. Denote by A(Γ) the
alphabet E(Γ)∪V (Γ). Let ζΓ be the unique continuous homomorphism from

Ê(Γ)+ to Â(Γ)+ that sends an element x from E(Γ) to α(x)ωx β(x)ω. We

say that an element of Ê(Γ)+ is a Γ-profinite-path if every factor of π with
length two is a product of consecutive edges of Γ. Two Γ-profinite-paths π
and ρ are coterminal if α(i1(π)) = α(i1(ρ)) and β(t1(π)) = β(t1(ρ)).

Proposition 3.2. Let Γ be a finite graph. Let π and ρ be coterminal Γ-
profinite-paths. Suppose that every letter of π is a letter of ρ. Then the class
S ([[ζΓ(π) ≤ ζΓ(ρ)]]) is a conjugacy invariant.

Proof : Let n and m be the number of edges and vertices of Γ, respectively.
Let xi be the i-th edge of Γ, and let yj be the j-th vertex, with 1 ≤ i ≤ n
and 1 ≤ j ≤ n. Denote by αi and βi the integers such that α(xi) = yαi and
β(xi) = yβi.

By the Remark 2.1, we are reduced to the case where there is a one-block
conjugacyG = g[0,0] : X → Y . Let u be a finite factor of ζΓ(π). By Lemma 2.3
there is i such that xi is a factor of π and u is a factor of yω

αixiy
ω
βi, or there are

i, j such that xixj is a factor of π and u is a factor of (yω
αixiy

ω
βi)(y

ω
αjxjy

ω
βj). The

arguments for the first case are include in the second case, so we only consider
the later. Since π is a Γ-profinite-path, the edges xi and xj are consecutive.
Hence βi = αj and u is a finite factor of yω

αixiy
ω
βixjy

ω
βj. Again by Lemma 2.3,

u is a finite factor of yω
αixiy

ω
βi or of yω

αjxjy
ω
βj . These pseudowords are factors

of ζΓ(ρ), because every letter of π is a letter of ρ. Hence every finite factor
of ζΓ(π) is a factor of ζΓ(ρ). Since π and ρ are coterminal, the pseudowords
ζΓ(π) and ζΓ(ρ) are bounded by some idempotents yω

i0
and yω

j0
. Therefore, by

Proposition 3.1, if Syn(Y) satisfies ζΓ(π) ≤ ζΓ(ρ) then so does Syn(X ).
Conversely, suppose that Syn(X ) satisfies ζΓ(π) ≤ ζΓ(ρ). Let A and B

be the alphabets of X and Y , respectively. Let h be a block map of G−1
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with memory and anticipation k. Let t1, . . . , tn, c1, . . . , cm ∈ Syn(Y). The
remaining of the proof amounts to show that

π(cωα1t1c
ω
β1, . . . , c

ω
αntnc

ω
βn) ≤ ρ(cωα1t1c

ω
β1, . . . , c

ω
αntnc

ω
βn). (3.1)

Since 0 is the maximal element of Syn(Y), we only consider the case where
the right side is different from 0. Since the letters of π are letters of ρ, we
can assume that every edge of Γ is a letter of ρ. Then for all i ∈ {1, . . . , n}
we have cωαitic

ω
βi 6= 0. For every i ∈ {1, . . . , n} and j ∈ {1, . . . , m}, there

are τi, γj ∈ B̂+ such that δ̂Y(τi) = ti and δ̂Y(γj) = cj. Then δ̂Y(γω
αiτiγ

ω
βi) =

cωαitic
ω
βi 6= 0, thus γω

αiτiγ
ω
βi ∈ L(Y). Consider the pseudowords

ej = h̄(tk(γ
ω
j ) γω

j ik(γ
ω
j )), wi = h̄(tk(γ

ω
αi) · γ

ω
αiτiγ

ω
βi · ik(γ

ω
βi)).

Observe that wi = eαiwieβi. The pseudoword tk(γ
ω
αi) · γ

ω
αiτiγ

ω
βi · ik(γ

ω
βi) is a

factor of γω
αi · γ

ω
αiτiγ

ω
βi · γ

ω
βi = γω

αiτiγ
ω
βi, thus it belongs to L(Y) by Lemma 2.4.

Hence wi ∈ L(X ) by Lemma 2.5, and ḡ(wi) = γω
αiτiγ

ω
βi by Lemma 2.6. Then,

since δ̂Y ḡ is a continuous homomorphism,

for θ ∈ {π, ρ}, θ(cωα1t1c
ω
β1, . . . , c

ω
αntnc

ω
βn) = θ(δ̂Y ḡ(w1), . . . , δ̂Y ḡ(wn))

= δ̂Y ḡ(θ(w1, . . . , wn)). (3.2)

Because wi = eαiwieβi and ej is idempotent, for θ ∈ {π, ρ} we have

δ̂X (θ(w1, . . . , wn)) = θ(δ̂X (eα1)
ωδ̂X (w1)δ̂X (eβ1)

ω, . . . , δ̂X (eαn)
ωδ̂X (wn)δ̂X (eβn)

ω).

Therefore, since Syn(X ) satisfies ζΓ(π) ≤ ζΓ(ρ), we have

δ̂X (π(w1, . . . , wn)) ≤ δ̂X (ρ(w1, . . . , wn)). (3.3)

Let u be a finite factor of ρ(w1, . . . , wn). By Lemma 2.3 there is i such that u
is a factor of wi, or there are i, j such that xixj is a factor of ρ and u is a factor

of wiwj. In the first case we have u ∈ L(X ) because wi ∈ L(X ). Consider
the second case. Since wiwj = wieβiwj, we conclude that u is a factor of
wieβi = wi or a factor of eβiwj, by Lemma 2.3. Since xixj is a factor of ρ,
we have βi = αj, thus eβiwj = wj. Hence u is a factor of wi or of wj, which

are both elements of L(X ), thus u ∈ L(X ). Hence ρ(w1, . . . , wn) ∈ Mir(X ).

Since ρ(cωα1t1c
ω
β1, . . . , c

ω
αntnc

ω
βn) 6= 0, by (3.2) we have ḡ(ρ(w1, . . . , wn)) ∈ L(Y).

Then by Lemma 2.8 the pseudoword ρ(w1, . . . , wn) belongs to L(X ). Hence

we also have π(w1, . . . , wn) ∈ L(X ) by (3.3).
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For θ ∈ {π, ρ} the pseudowords wi0 = ei0wi0 and wj0 = wj0fj0 are respec-
tively a prefix and a suffix of θ(w1, . . . , wn), thus θ(w1, . . . , wn) is bounded
by the idempotents ei0 and fj0. From (3.3) and Theorem 2.9 we conclude

that δ̂Y ḡ(π(w1, . . . , wn)) ≤ δ̂Y ḡ(ρ(w1, . . . , wn)). By (3.2) this is the same
as (3.1).

A semigroupoid is a graph endowed with an associative rule of composition
between consecutive edges. A morphism of semigroupoids is a morphism
of graphs that respects the rule of composition. Sets and semigroups can
be viewed as one-vertex graphs and semigroupoids, respectively. Just like
a finite set A defines a unique free profinite A-generated semigroup, a finite
graph Γ defines a unique free profinite Γ-generated semigroupoid, denoted by

Γ̂+ [6, 20]. The two concepts coincide when Γ is a set. Then there is a unique

continuous semigroupoid morphism εΓ : Γ̂+ → Ê(Γ)+ whose restriction to

E(Γ) is the identity. The image of the edges of Γ̂+ by εΓ is the set of Γ-
profinite-paths.

We refer the reader to [30] for a straightforward introduction to the notions
of ordered semigroupoid and pseudovariety of ordered semigroupoids. Since
an intersection of pseudovarieties of ordered semigroupoids is also a pseudova-
riety of ordered semigroupoids, if V is a pseudovariety of ordered semigroups
then we can consider the smallest pseudovariety of ordered semigroupoids
containing V, called the global of V and denoted by gV. Given a finite graph

Γ, let π and ρ be coterminal edges of Γ̂+; the formal triple (π ≤ ρ; Γ) is called
a pseudoidentity over Γ; we say that a semigroupoid S satisfies (π ≤ ρ; Γ)

if ϕ(π) ≤ ϕ(ρ) for all continuous morphisms of semigroupoids ϕ : Γ̂+ → S.
In the same way as with semigroups, every pseudovariety of ordered semi-
groupoids is defined by a set of pseudoidentities over finite graphs. This is
explicitly proved in [6, 20] for the unordered case, and in [31, 27] for pseu-
dovarieties of ordered semigroups; the proof for the general case is a routine
based in those cases.

For an ordered semigroup S, let SE be the ordered semigroupoid defined
as follows: the vertices are the idempotents of S, the edges from e to f are
the triples (e, s, f) such that s = esf , the composition of edges is given by
(e, s, f)(f, t, g) = (e, st, g), and (e, s, f) ≤ (e, t, f) if and only if s ≤ t.

In [33, 30] the reader can find information about the semidirect product
between two pseudovarieties of ordered semigroups. For this paper it is only
necessary to know that such semidirect product is itself a pseudovariety of
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semigroups, together with some more facts that we shall provide. We are
interested in semidirect products in which the second factor is one of the
pseudovarieties Dk = [[yx1 . . . xk = x1 . . . xk]] with k ≥ 1, or D =

⋃
k≥1 Dk =

[[yxω = xω]].

Theorem 3.3 (Delay Theorem). Let V be a pseudovariety of ordered semi-
groups containing some non-trivial monoid. Let S be a finite semigroup.
Then S ∈ V ∗ D if and only if SE ∈ gV.

The Delay Theorem for pseudovarieties of ordered semigroupoids was proved
in [30] in another version, when V is a pseudovariety of ordered monoids, but
its proof also holds for the version presented here.

Theorem 3.4. If V is a pseudovariety of ordered semigroups containing Sl−

then S (V ∗ D) is a conjugacy invariant.

Proof : Let Σ be a basis of pseudoidentities for gV. Let S be a finite semi-
group. By the Delay Theorem, we have S ∈ V∗D if and only if SE ∈ gV. On
the other hand, SE satisfies (π ≤ ρ; Γ) if and only if S satisfies ζΓ(εΓ(π)) ≤
ζΓ(εΓ(ρ)). Therefore,

V ∗ D =
⋂

(π≤ρ;Γ)∈Σ

[[ζΓ(εΓ(π)) ≤ ζΓ(εΓ(ρ))]].

By Proposition 3.2 we only have to show that all letters of εΓ(π) are letters
of εΓ(ρ). Suppose that there is a letter z that is a factor of εΓ(π) but not of
εΓ(ρ). Since gV contains Sl−, it contains the two-element monoid M = {0, 1}
such that 0 is a zero and 1 ≤ 0 (in fact Sl− is generated by M). Hence M
satisfies (π ≤ ρ; Γ). Since M is a one-vertex semigroupoid, that means that
M satisfies εΓ(π) ≤ εΓ(ρ). Let ϕ be the unique continuous homomorphism

from Ê(Γ)+ to M such that ϕ(z) = 0 and ϕ(x) = 1 if x is a letter distinct
from z. Then 0 = ϕ(εΓ(π)) ≤ ϕ(εΓ(ρ)) = 1, which is absurd.

Corollary 3.5. If V is a pseudovariety of ordered semigroups or monoids
containing Sl− then S (LV) is a conjugacy invariant.

Proof : We have LV = LV ∗ D, for any pseudovariety V (in [1, Proposition
10.6.13] we find a proof for the unordered case easily adaptable for the ordered
case).



PSEUDOVARIETIES DEFINING CLASSES OF SOFIC SUBSHIFTS 15

Example 3.6. Let X and Y be the irreducible sofic subshifts with the follow-
ing presentations:

X • b
##

a

��

•a
''

b 44

c **

• a
ww

doo

•

a

WW
c

;;

Y • c
##

a

��

•a
''

b 44

c **

• a
ww

doo

•

a

WW b

;;

The pseudovariety V = [[x3 = x2]] contains Sl, thus S (LV) is a conjugacy
invariant. We have X /∈ S (LV), since δX (aba)3 = 0 6= δX (aba)2 and
δX (a) Syn(X ) δX (a) is a submonoid of Syn(X ). On the other hand, with
some calculations we conclude that Y ∈ S (LV). Hence X and Y are not
conjugate. The subshifts X and Y have equal entropy, zeta function and
Krieger edge shift. Moreover, the invariant for sofic subshifts obtained in
[15, Theorem 4.12] is the same in X and Y. This invariant is also related
with the syntactic semigroup.

Example 3.7. The classes S (LSl), S (Com ∗ D) and S (LCom) are all dis-
tinct. Consider the following sofic subshifts:

X : •
c //

a

��
•

d //

b

��
•

a

�� e // •

b

��
Y : •

c //

a

��
•

d //

a

��
•

b

�� e // •

b

��

We can decide if a subshift belongs to Com ∗ D, since Thérien and Weiss
proved that Com ∗ D = [[yωx1z

ωx2y
ωx3z

ω = yωx3z
ωx2y

ωx1z
ω]] [36]. Making

some computations, we conclude that X ∈ S (LCom) \ S (Com ∗ D) and
Y ∈ S (Com ∗ D) \ S (LSl). In particular X and Y are not conjugate.

We proceed with the determination of all conjugacy invariants of the form
S (V), with V a pseudovariety of ordered semigroups.

Proposition 3.8. Let V be a variety of languages. If V contains all the
languages of the form A∗wA∗ with w ∈ A+ and A an alphabet, then V also
contains the languages of the form wA∗, A∗w or {w}.

Proof : Let V be the pseudovariety of ordered semigroups corresponding to
V. If Σ is a basis of pseudoidentities for V, then V =

⋂
(π≤ρ)∈Σ[[π ≤ ρ]]. It

follows that it suffices to assume that V = [[π ≤ ρ]] for some pseudowords



16 ALFREDO COSTA

π, ρ over an alphabet X = {x1, . . . , xn}. Let b a letter which is not in X, and
let B = X ∪ {b}. Let L = B∗b ik(ρ)B

∗. Then L ∈ VB+, and so

δ̂L(π) = π(δ̂L(x1), . . . , δ̂L(xn)) ≤ ρ(δ̂L(x1), . . . , δ̂L(xn)) = δ̂L(ρ).

Therefore δ̂L(bπ) ≤ δ̂L(bρ). Since bρ ∈ L, it follows from Lemma 2.7 that

bπ ∈ L. Then there are z, t ∈ B̂∗ such that bπ = zb ik(ρ)t. Suppose that

z 6= 1. Then there is z′ ∈ B̂∗ such that bπ = bz′ bik(ρ)t. In an equality
between pseudowords, equal prefixes (and suffixes) can be canceled [1, Ex-
ercise 10.2.10]. Therefore π = z′ bik(ρ)t, which is impossible since b is not a
factor of π. Hence z = 1 and bπ = bik(ρ)t, and so ik(π) = ik(ρ). Similarly,
tk(π) = tk(ρ). Since k is arbitrary, it follows that π = ρ, or π and ρ are both
infinite pseudowords.

For an alphabet A and an element w of A+, let L be one of the sets

{w}, wA∗ or A∗w. Its closure L in Â+ equals, respectively, {w}, wÂ∗ or

Â∗w. Let z1, . . . , zn ∈ A+ and x, y ∈ Â∗. Let u = xπ(z1, . . . , zn)y and
v = xρ(z1, . . . , zn)y. Then u = v or u and v are both infinite pseudowords
such that ik(u) = ik(v) and tk(u) = tk(v) for all k ≥ 1. Therefore u ∈ L

if and only if v ∈ L. Hence π(δ̂L(z1), . . . , δ̂L(zn)) = ρ(δ̂L(z1), . . . , δ̂L(zn)) by
Lemma 2.7. Since the words zi are arbitrary, this means that the syntactic
semigroup of L satisfies π = ρ, and so L ∈ V.

The version of Proposition 3.8 for varieties corresponding to pseudovarieties
of (unordered) semigroups was proved in [16], with arguments depending on
the fact that such varieties are closed for complementation.

Proposition 3.9. Let V be a pseudovariety of ordered semigroups. If S (V)
is a conjugacy invariant then V ⊇ LSl−. Moreover, if V is a pseudovariety of
semigroups then V ⊇ LSl.

Proof : Let V be the variety of languages corresponding to V. By Theo-
rem 2.11 and the dual of Proposition 3.8, to prove V ⊇ LSl− it suffices to
show that the languages of the form A+ \A∗wA∗ are in VA+.

For n ≥ 2, denote by B−
n the unique finite aperiodic ordered semigroup

(up to isomorphism) with a zero and with a unique non-null J -class having
n idempotents and just one idempotent in each R-class and in each L-class,
and where the order relation is given by s ≤ t if and only if s = t or
t = 0. Let B−

1 be the trivial semigroup. Let C be a two-letter alphabet. The
syntactic semigroup of CZ is trivial, thus CZ belongs to S (V). Therefore the



PSEUDOVARIETIES DEFINING CLASSES OF SOFIC SUBSHIFTS 17

conjugate subshift Φ
[0,1]
1 (CZ) also belongs to S (V). The syntactic semigroup

of Φ
[0,1]
1 (CZ) is isomorphic to B−

2 , thus B−
2 ∈ V. As is stated in [30], it is

not difficult to verify that B−
n is an ordered subsemigroup of an image by an

order-preserving homomorphism of a direct product of copies of B−
2 . Hence

B−
n ∈ V. It is easy to see that the syntactic semigroup of an irreducible edge

subshift whose corresponding presentation has n vertices is isomorphic to B−
n

(see the argument in the proof of Theorem 12 of [10]). Hence S (V) contains
all irreducible finite type subshifts, since they are conjugate with irreducible
edge subshifts.

Consider an alphabet A and an element w of A+. Let b be a letter not
in A, and consider the alphabet B = A ∪ {b}. Denote by ϕ the inclusion
homomorphismA+ → B+. The languageL = B+\B∗wB∗ is clearly factorial,
and it is prolongable because if u ∈ L then bub ∈ L. Moreover, if u and v are
elements of L then ubv ∈ L. Thus L defines an irreducible finite type subshift.
Hence L ∈ V. Since A+ \A∗wA∗ = ϕ−1(L), we have A+ \A∗wA∗ ∈ V.

The varieties of languages corresponding to pseudovarieties of semigroups
are closed for complementation. Then it follows from Theorems 2.10 and
2.11 that every pseudovariety of semigroups containing LSl− must contain
LSl.

The languages of finite type subshifts are negatively locally testable. There-
fore, from Proposition 3.9 we deduce that it is not possible to use an invariant
of the form S (V) to detect non-conjugate subshifts of finite type, where V

is a pseudovariety of ordered semigroups.
Before we go to the next proposition, we note that LSl− = LSl ∩ L[[1 ≤ x]],

thus S (LSl−) = S (LSl) ∩ S (L[[1 ≤ x]]).

Proposition 3.10. The classes S (LSl−), S (LSl) and S (L[[1 ≤ x]]) are
distinct.

Proof : It is proved in [32] that the syntactic semigroup of a language L of
A+ belongs to L[[1 ≤ x]] if and only if L is a finite intersection of languages
of the form A+ \ u0A

∗u1A
∗ · · · uk−1A

∗uk, with k ≥ 0 and ui ∈ A∗. Therefore,
if A is the two-letter alphabet {a, b}, the subshift X of AZ defined by the
factorial prolongable language A+ \ A∗abA∗a2bA∗ belongs to S (L[[1 ≤ x]]).
We have δX (b) = δX (b)2. Since ba2ba2b /∈ L(X ) and ba2b ∈ L(X ), we have
δX (b)ωδX (a2)δX (b)ωδX (a2)δX (b)ω 6= δX (b)ωδX (a2)δX (b)ω, thus X /∈ S (LSl).
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On the other hand, let Y be the subshift with the following presentation:

•

d

�� c // •

a

��

b

WW

b
)) •

a

��

b

WW

b

ii
c // •

e

��

We have cabac ∈ L(Y) and cac /∈ L(Y), thus δY(a) � δY(aba). Since δY(a) =
δY(a)2, we deduce that Y /∈ S (L[[1 ≤ x]]). One can verify that Y ∈ S (LSl).

A consequence of Propositions 3.9 and 3.10 is that there is not a pseudova-
riety of semigroups V such that S (LSl−) = S (V). More generally, we do
not know if there are distinct pseudovarieties of ordered semigroups V and W

such that S (V) is a conjugacy invariant and S (V) = S (W). On the other
for all k, l ≥ 1, if k 6= l then Dk 6= Dl, and one can prove that S (Dk) is the
class of the full shifts, which is not closed for taking conjugate subshifts.

Lemma 3.11. Let V be a pseudovariety of ordered semigroups containing
LSl− and let k be a positive integer. If L belongs to the variety of languages
defined by V ∗Dk then Φk(L) \ {1} belongs to the variety of languages defined
by V.

Proof : The variety of languages corresponding to W ∗ Dk is described in
[34, Theorem 4.22] when W is a pseudovariety of ordered monoids, but the
corresponding statement and proof also holds when W is a pseudovariety
of ordered semigroups, with obvious modifications. Let A≤k be the set of
words over A with length less or equal than k. Let V be the variety of
languages defined by V. By the referred version of [34, Theorem 4.22], the
language L \ A≤k is the union of a finite family (Ri)i∈I of sets of the form
Ri = piA

∗ ∩A∗si ∩Φ−1
k (Ki), with pi, si ∈ Ak+1 and Ki ∈ V(Ak+1)+. One can

easily verify that

Φk(L) \ {1} =
⋃

i∈I

[
(Φk(A

+) \ {1}) ∩ pi(A
k+1)∗ ∩ (Ak+1)∗si ∩Ki

]
.

The languages Φk(A
+) \ {1}, pi(A

k+1)∗ and (Ak+1)∗si are negatively locally
testable, hence they are in V(Ak+1)+. Therefore Φk(L) \ {1} ∈ V(Ak+1)+,
since Ki ∈ V(Ak+1)+ and V(Ak+1)+ is closed for finite intersections and
unions.
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Theorem 3.12. Let V be a pseudovariety of ordered semigroups. Then S (V)
is a conjugacy invariant if and only if V contains LSl− and S (V) = S (V∗D).

Proof : Suppose that S (V) is a conjugacy invariant. Then V contains LSl−

by Proposition 3.9. Let X be a subshift of AZ belonging to S (V ∗D). Since
V ∗ D =

⋃
k≥1 V ∗ Dk, there is k ≥ 1 such that X ∈ S (V ∗ Dk). The set

Φk(L(X )) \ {1} is the language of a subshift Y of (Ak+1)Z which is conjugate
with X . By Lemma 3.11 we have Y ∈ S (V), thus X ∈ S (V). Hence
S (V∗D) ⊆ S (V). The reverse inclusion follows from the fact that V ⊆ V∗W

for every pseudovariety W. The converse is an immediate consequence of
theorem 3.4.

4. Syntactic characterizations of some invariant classes

of irreducible sofic subshifts

For a pseudovariety V of ordered semigroups, let SI(V) be the class of
irreducible subshifts in S (V). Theorem 3.12 also holds for the operator SI .
If Sl− ⊆ V then SI(LV) is a conjugacy invariant by Corollary 3.5. There is
an infinity of such invariant classes:

Example 4.1. Consider the sequence (Xn)n≥1 of irreducible sofic subshifts
with the following presentations:

Xn : •
b //

a

��
•

b //

a

��
•

a

�� b // · · ·
b // •

a

�� b // •

a

��

c

ii (n b’s)

Then Xn ∈ SI(L[[xn+2 = xn+1]]) \ SI(L[[xn+1 = xn]], thus

SI(L[[x2 = x]]) $ SI(L[[x3 = x2]]) $ SI(L[[x4 = x3]]) $ · · · .

There are some relevant classes of irreducible sofic subshifts of the form
SI(V). We proceed with the description of some of them.

Proposition 4.2. Let X be a subshift of AZ. Then X is an irreducible
subshift of finite type if and only if X ∈ SI(LCom).

Proof : Every subshift of finite type is in S (LSl−), therefore it is also in
S (LCom). Conversely, suppose that X ∈ SI(LCom). Consider elements
u, v, w of A+ such that uv, vw ∈ L(X ) and v has length greater then the
cardinal of Syn(X ). We can see with a simple combinatorial argument [1,
Proposition 3.7.1] that there are v1, e, v2 ∈ A+ such that v = v1ev2 and δX (e)
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is an idempotent. Since e, uv1e, ev2w ∈ L(X ) and X is irreducible, there
are x, y ∈ A+ such that ev2w · x · e · y · uv1e ∈ L(X ). This means that
δX (ev2wxeyuv1e) 6= 0. Since the submonoid δX (e) Syn(X ) δX (e) of Syn(X ) is
commutative, we have

δX (eyuvwxe) = δX (eyuv1e)δX (ev2wxe) = δX (ev2wxe)δX (eyuv1e) 6= 0.

Hence eyuvwxe ∈ L(X ) and so uvw ∈ L(X ). From Proposition 2.2 we
conclude that X is a subshift of finite type.

Let A be the class of aperiodic semigroups. We have Sl ⊆ A and A = LA.
A code G : X → Y is aperiodic if, for all x ∈ X such that {n ∈ Z+ :
σn(x) = x} 6= ∅, the integer min{n ∈ Z+ : σn(x) = x} is equal to min{n ∈
Z+ : σn(G(x)) = G(x)}. The class SI(A) was characterized in [10] as being
the class of irreducible sofic subshifts that are the image of a subshift of
finite type by an aperiodic code. It was also proved in [10] that SI(A) is a
conjugacy invariant, using a weak version of the invariant obtained in [15,
Theorem 4.12].

Let Inv be the pseudovariety generated by semigroups of partial one-to-one
transformations. Ash [7] proved that Inv = [[xωyω = yωxω]]. An almost finite
type subshift is an irreducible sofic subshift whose Fischer cover does not
admit a labeled subgraph as in Figure 1 [8]. It was proved in [9] that the
almost finite type subshifts are in SI(LInv). We next prove the converse.
Note that SI(LInv) is a conjugacy invariant since Sl ⊆ Inv.

p u //

z

��
r quoo

z

��

p, q, r states, p 6= q, u, z ∈ A+.

Figure 1. Forbidden pattern in the Fischer cover of almost fi-
nite type subshifts.

Theorem 4.3. The class SI(LInv) is the class of almost finite type subshifts.

Proof : We prove the missing part. Suppose that X ∈ SI(LInv) and that X
is not of almost finite type. Let F be the Fischer cover of X . Then there
is in F a pattern as in Figure 1. Since F is strongly connected, it has paths
r → p and r → q labeled v and w. Then p · (zωuvzω)ω(zωuwzω)ω = q and

p · (zωuwzω)ω(zωuvzω)ω = p. The monoid δ̂X (z)ω ·Syn(X ) · δ̂X (z)ω is in Inv =
[[xωyω = yωxω]], thus (zωuvzω)ω(zωuwzω)ω and (zωuwzω)ω(zωuvzω)ω have the
same action on the states of F. Hence p = q. This is a contradiction.
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All examples of irreducible sofic subshifts that we have so far presented are
of almost finite type.

5. Shift equivalence

Let X be a subshift of AZ and let l ≥ 1 be an integer. Consider the alphabet
Al of the elements in A+ with length l. We can naturally embed (Al)+ in A+.
The set L(X )∩ (Al)+ is a non-empty factorial prolongable language of (Al)+,
thus it defines a subshift X l of (Al)Z. Recall that δX (u) is the equivalence
class of u in A+ for the syntactic congruence of L(X ). Consider an integer
l ≥ 1. It is easy to see that if u ∈ (Al)+ then δX l(u) = δX (u) ∩ (Al)+,
and so the map that sends δX l(u) into δX (u) is a well-defined one-to-one
homomorphism from Syn(X l) into Syn(X ). Hence we can consider Syn(X l)
as a subsemigroup of Syn(X ). The following lemma was proved in [15]. It
isolates and generalizes an argument in the proof of the last theorem of [10].

Lemma 5.1. Let X be a sofic subshift of AZ. For every l ≥ 1 there is l′ > l
such that the set of idempotent-bound elements of Syn(X ) is contained in
Syn(X l′).

Two subshifts X and Y are shift equivalent if there is l ≥ 1 such that X l and
Y l are conjugate. If X l and Y l are conjugate then for all k ≥ l the subshifts
X k and Yk are also conjugate. Conjugate subshifts are shift equivalent, but
the validity of the converse in the finite type case was a major open problem
for a long time, until Kim and Roush found examples showing that it was
false [22, 23]. There is an algorithm for deciding if two sofic subshifts are
shift equivalent or not, but it is very complicated [21].

Theorem 5.2. Let V be a pseudovariety of ordered semigroups. If S (V) is
a conjugacy invariant then it is also a shift equivalence invariant.

Proof : By Theorem 3.12, we have S (V) = S (V ∗ D), and V contains some
non-trivial monoid. By the Delay Theorem we have

S (V ∗ D) = {Z : Z is a sofic subsift and Syn(Z)E ∈ gV}.

Suppose that X and Y are shift equivalent sofic subshifts. Let l be an integer
such that X l and Y l are conjugate. Let l′ be as in Lemma 5.1. Since l′ > l,
the subshifts X l′ and Y l′ are conjugate. Therefore

Syn(X l′)E ∈ gV ⇔ Syn(Y l′)E ∈ gV.

But Syn(X )E = Syn(X l′)E and Syn(Y)E = Syn(Y l′)E.
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[5] J. Almeida and M. V. Volkov, Subword complexity of profinite words and subgroups of free

profinite semigroups. To appear in Int. J. Algebra Computation, 2005.
[6] J. Almeida and P. Weil, Profinite categories and semidirect products, J. Pure and Appl. Algebra

123 (1998) 1–50.
[7] C. J. Ash, Finite semigroups with commuting idempotents, J. Austral. Math. Soc., Ser. A 43

(1987) 81–90.
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