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Abstract: The concepts of upper and lower semicontinuity in pointfree topology
were introduced and first studied by Li and Wang in 1997. However Li and Wang’s
treatment does not faithfully reflect the original classical notion. In this note, we
present algebraic descriptions of upper and lower semicontinuous real functions, in
terms of frame homomorphisms, that suggest the right alternative to the definitions
of Li and Wang. This fixes the discrepancy between the classical and the pointfree
notions and turns out to be the appropriate notion that makes the Katětov-Tong
Theorem provable in the pointfree context without any restrictions.
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1. Introduction

Since the usual space R of real numbers is sober, continuous real functions
X → R on a space X are completely described by frame homomorphisms
L(R) → OX, defined on the frame L(R) of reals. Upper semicontinuous real
functions (that is, continuous maps X → Rl, where Rl denotes the space
(R, Tl) of real numbers with the lower topology) and lower semicontinuous
real functions (that is, continuous maps X → Ru, where Ru denotes the space
(R, Tu) of real numbers with the upper topology) are also important classes
of continuous maps.

In the category of locales, the concepts of upper and lower semicontin-
uous real functions were introduced and first studied by Li and Wang [8].
However, Li and Wang’s treatment does not faithfully reflect the original
classical notion: an upper (resp. lower) semicontinuous real function on the
frame OX of open sets of a space X does not necessarily describe an upper
(resp. lower) semicontinuous real function on X. This explains the need to
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insert some assumption in the statements of the pointfree generalizations of
some classical results dealing with semicontinuous real functions (cf. [10] and
[3]).

Indeed, since the spaces Rl and Ru are not sober, upper and lower semi-
continuous real functions on X are not represented by, respectively, frame
homomorphisms Ll(R) → OX and Lu(R) → OX, defined on the lower frame
Ll(R) and the upper frame Lu(R) of reals.

This raises the question whether there are nice algebraic descriptions of
upper and lower semicontinuity, in terms of frame homomorphisms. In these
notes we show that such descriptions do indeed exist. These descriptions
lead us to the appropriate pointfree notions of semicontinuous real functions.

The crucial idea behind our approach is to take the bitopological point of
view: spaces Rl and Ru are not sober but the bispace (R, Tl, Tu) of reals is
sober.

2. Background

Pointfree topology regards the points of a space as subsidiary to its open
sets and deals with “lattices of open sets” abstractly defined as follows:

A frame (also locale) is a complete lattice L satisfying the infinite distribu-
tive law

x ∧
∨

S =
∨

{x ∧ s | s ∈ S}

for every x ∈ L and every S ⊆ L, and a frame homomorphism is a map
h : L → M between frames which preserves the respective operations ∧
(including the top element 1) and

∨

(including the bottom element 0). Frm

is then the corresponding category of frames and their homomorphisms. For
general information on frames and locales we refer to [5] and [9].

By the algebraic nature of frames, there is the notion of a congruence on a
frame L, as an equivalence relation θ on L which is a subframe of L × L in
the obvious sense, and the corresponding quotient frame L/θ is then defined
just as quotients are always defined for algebraic systems, making the map
L → L/θ taking each x ∈ L to its θ-block a frame homomorphism. The
lattice of frame congruences on L under set inclusion is a frame, denoted by
CL. This is the analogue, in the pointfree context, of the Skula modification
of a topological space. A good presentation of the congruence frame is given
by Frith [4]. Here, we shall need the following properties:
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(1) For any x ∈ L, ∇x and ∆x are, respectively, the congruences defined by
{(a, b) ∈ L×L | a∨x = b∨x} and {(a, b) ∈ L×L | a∧x = b∧x}. The
∇x are called closed and the ∆x open. Each ∇x is complemented in CL
with complement ∆x. We use the symbol ¬ to denote complementation
in CL.

(2) ∇L := {∇x | x ∈ L} is a subframe of CL. Let ∆L denote the sub-
frame of CL generated by {∆x | x ∈ L}. The triple (CL,∇L, ∆L) is
a biframe. This is the analogue, for frames, of the Salbany bitopolog-
ical space (X,OX, CX), defined for every topological space (X,OX)
(where CX denotes the topology on X generated by the closed sets of
(X,OX)).

(3) The correspondence x 7→ ∇x defines an isomorphism L → ∇L, whereas
the map x 7→ ∆x is a dual poset embedding L → ∆L taking finitary
meets to finitary joins and arbitrary joins to arbitrary meets.

The fact that Frm is an algebraic category (in particular, one has free
frames and quotient frames) also permits a procedure familiar from tradi-
tional algebra, namely, the definition of a frame by generators and relations:
take the quotient of the free frame on the given set of generators modulo the
congruence generated by the pairs (u, v) for the given relations u = v. So, in
the context of pointfree topology the reals may be introduced independent
of any notion of real number, by defining the following suitable frame [6] (cf.
[1]):

The frame of reals is the frame L(R) generated by all ordered pairs (α, β)
where α, β ∈ Q, subject to the relations

(R1) (α, β) ∧ (γ, δ) = (α ∨ γ, β ∧ δ),
(R2) (α, β) ∨ (γ, δ) = (α, δ) whenever α ≤ γ < β ≤ δ,
(R3) (α, β) =

∨

{(γ, δ) | α < γ < δ < β},
(R4) 1 =

∨

{(α, β) | α, β ∈ Q}.

By the familiar adjoint situation between frames and topological spaces

Top
O

//

Frm
Σ

oo (2.1)

we have a natural isomorphism

Frm(L,OX)
∼
→ Top(X, ΣL). (2.2)
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For L = L(R), since the spectrum ΣL(R) is homeomorphic to the usual space
R of reals ([1], Proposition 1), one obtains

Frm(L(R),OX)
∼
→ Top(X, R).

This shows that continuous real functions on a space X may be represented
as frame homomorphisms h : L(R) → OX, and hence regarding the frame
homomorphisms L(R) → L, for a general frame L, as the continuous real
functions on L provides a natural extension of the classical notion (see [1]
for a detailed account).

3. Semicontinuous real functions

Let Ll(R) and Lu(R) denote the subframes of L(R) generated by, respec-
tively, elements (−, α) :=

∨

β∈Q(β, α) and (α,−) :=
∨

β∈Q(α, β) (α ∈ Q).
Note that Ll(R) ∼= Tl and Lu(R) ∼= Tu. It should be also pointed out that,
in [8], Ll(R) and Lu(R) are denoted by Lu(R) and Ll(R), respectively. Here
we interchange, with respect to the notation used by Li and Wang (and also
by the second author in [10]) the upper frame and the lower frame of re-
als, in order to be in accordance with the usual terminology for spaces. Li
and Wang [8] defined upper (resp. lower) semicontinuous real functions on a
frame L as frame homomorphisms h : Ll(R) → L (resp. h : Lu(R) → L).

Since Rl is not sober, ΣLl(R) ≇ Rl. Indeed, besides the points ξx : Ll(R) →
2 (x ∈ R), there is the point ξ−∞ : Ll(R) → 2 given by ξ−∞(−, α) = 1 for
every α ∈ Q. (Recall that a point of a frame L is a frame homomorphism
ξ : L0 → 2 where 2 denotes the two-element frame {0 < 1}). So, the
spectrum ΣLl(R) of Ll(R) is homeomorphic to the space R−∞ = R ∪ {−∞}
with opens [−∞, α) (α ∈ R). Of course, Rl being not sober, there is no frame
L such that ΣL ∼= Rl; the frame Ll(R), defined by Li and Wang, is the frame
whose spectrum best approximates the space Rl.

The following examples show that semicontinuous real functions on spa-
tial frames do not necessarily represent semicontinuous real functions on the
corresponding space:

Examples 3.1. (1) For any space X, the upper semicontinuous real function
h : Ll(R) → OX, defined by h(−, α) = X for every α ∈ Q, corresponds to
the continuous mapping f : X → R−∞ given by f(x) = −∞ (x ∈ X).
(2) For X being the usual space of reals R, the upper semicontinuous real
function h : Ll(R) → OX, defined by h(−, α) = (−eα, eα) for every α ∈ Q,
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corresponds to the continuous mapping f : X → R−∞ given by f(x) = log |x|
if x 6= 0, f(0) = −∞.

Recall that a space is sober if for each meet-irreducible U ⊆ X there is
exactly one x ∈ X such that U = X \{x}. This condition is a conjunction of
two requirements, namely the T0 condition and the weak soberness condition
[11] “for each meet-irreducible U ⊆ X there exists an x ∈ X such that

U = X \ {x}”.
It is well known that sober spaces Y are characterized by the fact that

continuous mappings X → Y are in a natural bijection with the frame ho-
momorphisms OY → OX. More precisely [11]:

A space Y is T0 if and only if for each frame homomorphism h : OY → OX
there is at most one continuous map f : X → Y such that h = O(f).

A space Y is weakly sober if and only if for each frame homomorphism h :
OY → OX there is at least one continuous map f : X → Y such that
h = O(f).

Therefore, since Ru and Rl are both T0 but not sober, the correspondences

X
f

−→ Ru ∈ Top
O
 ORu

O(f)
−→ OX ∈ Frm (3.1)

and

X
g

−→ Rl ∈ Top
O
 ORl

O(g)
−→ OX ∈ Frm (3.2)

are one-to-one but not onto.

Remark 3.2. For each x ∈ X, let px : OX → 2 be given by px(U) = 1 if and
only if x ∈ U . It is obvious that, for each upper semicontinuous f : X → R

and for each x ∈ X, the set {α ∈ Q | px(O(f)(−, α)) = 1} is bounded below.

Conversely, for each map h : Ll(R) → OX let h̃ : X → R−∞ be defined by

h̃(x) = inf{α ∈ Q | px(h(−, α)) = 1}, (3.3)

where the inf means the infimum in R ∪ {−∞}.

Proposition 3.3. If h preserves arbitrary joins then:

(1) h̃−1([ −∞, α)) = h(−, α).
(2) If {α ∈ Q | px(h(−, α)) = 1} is bounded below for every x ∈ X, then

h̃ : X → R and it is upper semicontinuous.
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Proof.

(1) The inclusion h̃−1([ −∞, α)) ⊆ h(−, α) is obvious. The reverse inclu-
sion is also obvious since, by hypothesis, h(−, α) = h(

∨

β<α(−, β)) =
⋃

β<α h(−, β).

(2) By (1), it remains to show that h̃ is bounded. Let x ∈ X. Of course
h̃(x) > −∞, because {α ∈ Q | px(h(−, α)) = 1} is bounded below.
On the other hand, since X = h(1) = h(

∨

α∈Q(−, α)) =
⋃

α∈Q h(−, α),

the set {α ∈ Q | x ∈ h(−, α)} is non-empty, that is, h̃(x) < +∞, for
every x ∈ X.

�

As an immediate consequence of Proposition 3.3 and Remark 3.2 we then
have the following:

Corollary 3.4. Upper semicontinuous mappings f : X → R are in a bijective
correspondence (via O) with the frame homomorphisms h : Ll(R) → OX
such that {α ∈ Q | px(h(−, α)) = 1} is bounded below for every x ∈ X. �

Remark 3.5. If X is sober then the points of OX are precisely {px | x ∈ X}.
In this case, the condition, in Corollary 3.4, that {α ∈ Q | px(h(−, α)) = 1}
is bounded below for every x ∈ X means that {α ∈ Q | p(h(−, α)) = 1} is
bounded below for every point p of OX.

Putting L = Ll(R) in (2.2), we get Frm(Ll(R),OX)
∼
→ Top(X, R−∞). Since

any upper semicontinuous mapping f : X → R may be seen as a continuous
map f : X → R−∞, we may embed Top(X, Rl) in Top(X, R−∞).

In conclusion, we have

Frm(Ll(R),OX) oo
≃

// Top(X, R−∞)

Frm(Ll(R),OX)b
oo

≃
//

⊂

OO

Top(X, Rl)

⊂

OO

where Frm(Ll(R),OX)b denotes the family of all frame homomorphisms h :
Ll(R) → OX for which {α ∈ Q | px(h(−, α)) = 1} is bounded below for
every x ∈ X. This shows why the definitions introduced by Li and Wang are
more general than the classical ones.
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4. The bitopological approach

Recall that a bitopological space [7] (briefly, bispace) is a triple (X, T1, T2)
in which X is a set and the Ti are topologies on X. A bicontinuous map f :
(X, T1, T2) → (Y,U1,U2) is a map f : X → Y such that f : (X, Ti) → (Y,Ui)
is continuous for i = 1, 2. The bispaces with these maps form the category
BiTop.

Recall also that a biframe [2] is a triple (L0, L1, L2) where L1 and L2 are
subframes of the frame L0, which together generate L0. A biframe homo-
morphism, f : (L0, L1, L2) −→ (M0, M1, M2), is a frame homomorphism
f : L0 −→ M0 which maps Li into Mi (i = 1, 2) and BiFrm denotes the
resulting category.

There is a contravariant functor O : BiTop → BiFrm given as follows: for
a bispace (X, T1, T2), O((X, T1, T2)) = (T1 ∨ T2, T1, T2), where T1 ∨ T2 is the
coarsest topology on X finer than T1 and T2, and O acts on a map f by
taking f -preimages of open sets.

There is also the contravariant spectrum functor Σ : BiFrm → BiTop given
as follows: for a biframe L = (L0, L1, L2), Σ(L) = (ΣL0, {Σa : a ∈ L1}, {Σb :
b ∈ L2}), where ΣL0 is the set of all points of the frame L0, and Σx = {ξ ∈
ΣL0 | ξ(x) = 1}; for each biframe map h : L → M , the bicontinuous map
Σ(h) : Σ(M) → Σ(L) is defined by Σ(h)(ξ) = ξ ◦ h. The functor Σ is a
right adjoint to O [2]. The fixed objects in this dual adjunction are the sober
bispaces and the spatial biframes, respectively.

Additional information concerning bispaces and biframes may be found in
[2].

The following basic result suggests to look at semicontinuity from a bitopo-
logical point of view.

Proposition 4.1. For each topological space (X,OX) and each f : X → R,
the following are equivalent:

(i) f is upper semicontinuous.
(ii) The map f : (X,OX, CX) → (R, Tl, Tu) is bicontinuous.

Proof. Let f : X → R be upper semicontinuous. Then, of course, f :
(X,OX) → Rl is continuous. On the other hand, f−1((α, +∞)) is equal to

f−1(
⋃

β>α

[β, +∞)) =
⋃

β>α

f−1([β, +∞)) =
⋃

β>α

(X \ f−1((−∞, β))) ∈ CX,
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thus f : (X, CX) → Ru is also continuous.
The converse is obvious. �

Let us denote the bitopological spaces (X,OX, CX) and (R, Tl, Tu) briefly
by, respectively, S(X) and R. The proposition above asserts that

Top(X, Rl) ≃ BiTop(S(X), R). (4.1)

But, by the adjoint situation between biframes and bitopological spaces

BiTop
O

//

BiFrm
Σ

oo (4.2)

we have a natural isomorphism

BiTop((X, T1, T2), Σ(L, L1, L2))
∼
→ BiFrm((L, L1, L2),O(X, T1, T2)). (4.3)

Combining this, for

(L, L1, L2) = (L(R), Ll(R), Lu(R))

and

(X, T1, T2) = (X,OX, CX),

with the isomorphism Σ(L(R), Ll(R), Lu(R)) ≃ (R, Tl, Tu) (now the bispace
(R, Tl, Tu) is sober), we obtain

BiTop(S(X), R)
∼
→ BiFrm((L(R), Ll(R), Lu(R)),OS(X)). (4.4)

On the other hand, OS(X) = (OX ∨ CX,OX, CX) is isomorphic to the
congruence biframe (C(OX),∇(OX), ∆(OX)) of the frame OX [4]. Hence

Top(X, Rl) ≃ BiFrm((L(R), Ll(R), Lu(R)), (C(OX),∇(OX), ∆(OX))).
(4.5)

But, for a general frame L, we have:

Proposition 4.2. For any frame L, there is a bijection from

A := BiFrm

(

(L(R), Ll(R), Lu(R)), (CL,∇L, ∆L)
)

into

B :=
{

f : Ll(R) → ∇L ∈ Frm |
∨

α∈Q

¬f(−, α) = 1
}

,

given by Φ :h 7−→ h|Ll(R).
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Proof. Let h ∈ A. Then Φ(h) =h|Ll(R) ∈ B. Indeed,

1 = h(
∨

α∈Q

(α,−)) =
∨

α∈Q

h(α,−) ≤
∨

α∈Q

¬Φ(h)(−, α),

since

h(α,−) ∧ Φ(h)(−, α) = h(α,−) ∧ h(−, α) = h(0) = 0.

Conversely, consider f ∈ B and let Ψ(f) : L(R) → CL be defined by

Ψ(f)(α, β) = f(−, β) ∧
∨

γ>α

¬f(−, γ).

This is a frame homomorphism from L(R) into CL, since it transforms the
relations (R1)-(R4) into identities in CL:

(R1)

Ψ(f)(α, β) ∧ Ψ(f)(γ, δ) = f(−, β) ∧
(

∨

α′>α

¬f(−, α′)
)

∧ f(−, δ) ∧
(

∨

γ′>γ

¬f(−, γ′)
)

= f(−, β ∧ δ) ∧
∨

α′>α,γ′>γ

(¬f(−, α′) ∧ ¬f(−, γ′))

= f(−, β ∧ δ) ∧
∨

α′>α,γ′>γ

¬f(−, α′ ∨ γ′)

= f(−, β ∧ δ) ∧
∨

α′>α∨γ

¬f(−, α′) = Ψ(f)(α ∨ γ, β ∧ δ).

(R2) Let α ≤ γ < β ≤ δ. Then

Ψ(f)(α, β) ∨ Ψ(f)(γ, δ) =
(

f(−, β) ∧
∨

α′>α

¬f(−, α′)
)

∨
(

f(−, δ) ∧
∨

γ′>γ

¬f(−, γ′)
)

= f(−, δ) ∧
(

f(−, δ) ∨
∨

α′>α

¬f(−, α′)
)

∧

∧
(

f(−, β) ∨
∨

γ′>γ

¬f(−, γ′)
)

∧
(

∨

α′>α

¬f(−, α′)
)

= f(−, δ) ∧ (
∨

α′>α

¬f(−, α′)) = Ψ(f)(α, δ)

since f(−, β) ∨
∨

γ′>γ ¬f(−, γ′) ≥ f(−, β) ∨ ¬f(−, β) = 1.
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(R3)
∨

α<γ<δ<β

Ψ(f)(γ, δ) =
∨

α<γ<δ<β

(

f(−, δ) ∧
∨

γ′>γ

¬f(−, γ′)
)

=
∨

α<γ′<δ<β

(f(−, δ) ∧ ¬f(−, γ′))

=
∨

α<γ′<β

∨

γ′<δ<β

(f(−, δ) ∧ ¬f(−, γ′))

=
(

∨

α<γ′<β

¬f(−, γ′)
)

∧
(

∨

δ<β

(f(−, δ)
)

=
(

∨

α<γ′<β

¬f(−, γ′)
)

∧ f(−, β) = Ψ(f)(α, β).

(R4)
∨

α,β

Ψ(f)(α, β) =
∨

α,β

(

f(−, β) ∧
∨

γ>α

¬f(−, γ)
)

=
∨

β

(

f(−, β) ∧
∨

α

∨

γ>α

¬f(−, γ)
)

.

But
∨

α

∨

γ>α ¬f(−, γ) =
∨

γ ¬f(−, γ) = 1, hence
∨

α,β

Ψ(f)(α, β) =
∨

β

f(−, β) = f(
∨

β

(−, β)) = f(1) = 1.

Further, ΦΨ(f) = f . Finally, ΨΦ(h) = h. In fact, for any α ∈ Q,
ΨΦ(h)(−, α) is clearly equal to h(−, α) and ΨΦ(h)(α,−) =

∨

β>α ¬h(−, β)
is equal to h(α,−):

• h(−, β) is complemented in CL and h(−, β)∨h(α,−) = 1, thus h(α,−) ≥
¬h(−, β);

• h(α,−) = h(
∨

β>α(β,−)) =
∨

β>a h(β,−); since h(−, β)∧h(β,−) = 0,
then h(β,−) ≤ ¬h(−, β) and, consequently,

∨

β>a

h(β,−) ≤
∨

β>α

¬h(−, β).
�

Since the correspondence ∇a 7→ a gives an isomorphism ∇L ∼= L, we may
rewrite B as

{

f : Ll(R) → L ∈ Frm |
∨

α∈Q

∆f(−,α) = 1
}

. (4.6)
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From (4.1), (4.4), (4.6) and Proposition 4.2, it follows immediately that:

Corollary 4.3. Top(X, Rl) ≃ {f : Ll(R) → OX ∈ Frm |
∨

α∈Q ∆f(−,α) = 1}.
�

Similarly,

Top(X, Ru) ≃ {g : Lu(R) → OX ∈ Frm |
∨

α∈Q

∆g(α,−) = 1}.

Hence, the following are the right generalizations of the classical semicontin-
uous real functions, making them the natural substitute for the latter in the
context of pointfree topology:

Definition 4.4.

(1) An upper semicontinuous real function on a frame L is a frame homo-
morphism f : Ll(R) → L satisfying

∨

α∈Q ∆f(−,α) = 1.
(2) A lower semicontinuous real function on a frame L is a frame homo-

morphism g : Lu(R) → L satisfying
∨

α∈Q ∆g(α,−) = 1.

Remarks 4.5. (1) In particular, f : Ll(R) → 2 is upper (resp. lower)
semicontinuous if and only if f is a point of Ll(R) (resp. Lu(R)) different
from ξ−∞.
(2) For any upper semicontinuous f and any lower semicontinuous g, let f ≤ g
if f(−, α)∨g(β,−) = 1 whenever β < α, and let g ≤ f if f(−, α)∧g(α,−) = 0
for every α ∈ Q. By Proposition 2.2 of [10], any continuous real function
h : L(R) → L gives rise to an upper semicontinuous real function f := h|Ll(R)

and a lower semicontinuous real function g := h|Lu(R), satisfying f ≤ g and
g ≤ f . It is easy to see that continuous real functions on L are completely
represented by these pairs (f, g), with f upper semicontinuous and g lower
semicontinuous, such that f ≤ g and g ≤ f .

Under these definitions, the localic Katětov-Tong Theorem (Theorem 4.6
of [10]), as well as the results concerning the semicontinuous quasi-uniformity
of a frame (cf. [3]), has now precisely the same formulation as in the classical
context (for this recall that a normal frame is one in which x∨ y = 1 implies
the existence of a, b ∈ L such that x ∨ a = 1 = y ∨ b and a ∧ b = 0):

A frame L is normal if and only if for every upper semicontinuous
real function f : Ll(R) → L and every lower semicontinuous real
function g : Lu(R) → L with f ≤ g, there exists a continuous
real function h : L(R) → L such that f ≤ h ≤ g.
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This shows that the classical Katětov-Tong Theorem for normal spaces,
which is known to be the most important result concerning semicontinuous
real functions, is ultimately a result about normal frames, from which the
classical version readily follows.
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