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ABSTRACT. We consider a Dirichlet problem in divergence form withislate growth,
modeled on the(x)-Laplace equation. We obtain existence and uniqueness efitaopy
solution forL! data, extending the work of Bénilat al. [5] to nonconstant exponents, as
well as integrability results for the solution and its gextti The proofs rely crucially oa
priori estimates in Marcinkiewicz spaces with variable exponent.
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1.Introduction

Partial differential equations with nonlinearities invislg nonconstant expo-
nents have attracted an increasing amount of attentioncenteyears. Perhaps
the impulse for this comes from the sound physical appbeetin play, perhaps
it is just the thrill of developing a mathematical theory wné&DEs again meet
functional analysis in a truly two-way street.

The development, mainly bytRicka [28], of a theory modeling the behavior
of electrorheological fluids, an important class of non-ievan fluids, seems to
have boosted a still far from completed effort to study andanstand nonlinear
PDEs involving variable exponents. Other applicationatesto image processing
(cf. [8]), elasticity (f. [31]), the flow in porous mediacf. [4] and [21]), and prob-
lems in the calculus of variations involving variationalagrals with nonstandard
growth (f. [31], [27], and [1]). This, in turn, gave rise to a revival dietinter-
est in Lebesgue and Sobolev spaces with variable expohendrigins of which
can be traced back to the work of Orlicz in the 1930’s. An act@f recent ad-
vances, some open problems, and an extensive list of reiegsaran be found in
the interesting survey by Dieningt al. [14]. Meanwhile, among several other
contributions, the introduction by Sharapudinov [29] a# ttuxemburg norm and
the work of KowaCik and Rakosnk [23], where many of the basic properties of
these spaces are established, were crucial developments.
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2 M. SANCHON AND J.M. URBANO

In this paper, we consider a problem with potential appiocest to the model-
ing of combustion, thermal explosions, nonlinear heat ggian, gravitational
equilibrium of polytropic stars, glaciology, non-Newtani fluids, and the flow
through porous media. Many of these models have alreadydresyized for con-
stant exponents of nonlinearitgf( [12], [10], [9], [18], [30], and the references
therein) but it seems to be more realistic to assume the exjido be variable.

Let Q be a smooth bounded domainki and consider the elliptic problem

—div(a(z, Vu)) = f(z) in  Q, (1)
u = 0 on 0,
wheref € L'(Q) anda : Q x RV — RY is a Caratkodory function (that is,

a(-,€) is measurable oft, for every¢ € RY, anda(x, -) is continuous oY, for
almost everyr € (2), such that the following assumptions hold:

a(x,€) - € > blEP, (2)
for almost every: € ) and for everyt € RY, whereb is a positive constant;
ja(z,€)] < Bj(x) + €, (3)

for almost everyr € € and for every¢ € RY, wherej is a nonnegative function
in LP'0)(Q) andg > 0;

(a(z, &) —a(z,§)) - (§—¢) >0, (4)
for almost everyr € Q and for everyt, ¢’ ¢ RY, with ¢ #£ ¢'.

Hypotheses (2)—(4) are the natural extensions of the clEssssumptions in the
study of nonlinear monotone operators in divergence forntémstanip(-) = p
(cf. [26]).

Concerning the exponept-) appearing in (2) and (3), we assume it is a mea-
surable function(-) : 2 — R such that

p(-)e Wh=(Q) and 1< ess inf p(x) < ess supp(z) < N.  (5)
ze e
These assumptions allow us, in particular, to exploit tmefiwnal analytical prop-
erties of Lebesgue and Sobolev spaces with variable exp(sesection 2) aris-
ing in the study of problem (1).

By aweak solutiorof (1) we mean a function € W, (Q) such that(-, Vu) €

L (©)and

loc
/ a(x,Vu)-Vydr = / f(x)pdx, forall e C;°(Q). (6)
0 0
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A weak energy solutiois a weak solution such thate Wol’p(')(Q).
The model case for (1) is the Dirichlet problem for fi{e:)-Laplacian operator
Ay = div(|Vu P =2Vy),

—Aypnu = f(z) in €,
{ . )u =0 on 0. (7)

This and other related problems (whegftés replaced by a nonlinear function de-
pending onu) have been studied recently in several papeftsfor example, [16]
for existence and uniqueness or [17] fodlHler continuity) in the framework of
weak energy solutions. These results require the assumibtad the right hand
side f has enough integrability.

Assuming thatf is merely inL(€2), we need to work with entropy solutions,
which are more general than weak solutions. The notion abpygtsolution was
introduced by Bnilanet al. [5] for problem (1) in the framework of a constant
p(-) = p, and existence and uniqueness was established, togetihesame es-
timates for the solution and its weak gradient. Using esa@nthe same tools,
Alvino et al. [3] proved existence of an entropy solution for elliptic plems with
degenerate coercivity, still in the context of constantagents.

The main purpose of this paper is to extend the results ino[8 monconstant
p(+). Defining the truncation functioi; by

Ti(s) := max{—t,min{t,s}}, s€R,
we start by extending the notion of entropy solution to peob(1) as follows:

Definition 1. A measurable function is an entropy solution to proble(d) if, for
everyt > 0, Ty(u) € W, " (Q) and

[ atw.Va) Viu - ) do < [ f@) Tiu =) do (®)
Q Q)

for all p € W *(Q) N L®(Q).

A function u such that7}(u) € Wol’p(')(Q), for all t > 0, does not necessar-
ily belong to Wol’l(Q). However, it is possible to define its weak gradient (see
Proposition 5 below), still denoted Byuw.

Let us introduce the following notation: given two boundedasurable func-
tionsp(-),q(-) : © — R, we write

q()<p() i essinf(p(z) —q(z)) > 0.
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Our main result is

Theorem 1. Assumd2)—(5) and f € L'(2). There exists a unique entropy solu-
tion u to problem(1). Moreover,|u|?") € L'(Q), forall 0 < ¢(-) < q(-), and
IVu|?®) € L1(Q), forall 0 < ¢(-) < ¢1(+), where

o) = P Mel) 1), ©

The proof of this result will be decomposed into several sté&jrst, we obtaia
priori estimates for entropy solutions in Marcinkiewicz spacdh wariable expo-
nent. Despite the fact that the theory of functional spadtswariable exponentis
developing quickly, the extension of classical MarcinkieExspaces is, to the best
of our knowledge, undertaken here for the first time. Fronsé¢hestimates, we
derive uniform bounds in Lebesgue spaces of variable exjdoean entropy so-
lution and its weak gradient (see Corollaries 1 and 2 inse@). The uniqueness
follows from choosing adequate test functions in the emtropndition (8) and
using thea priori estimates. Finally, the existence is obtained by passirigeto
limit in a sequence of weak energy solutions of adequateoxppated problems.

Our other theorem concerns weak solutions and extendsshésebtained by
Boccardo and Gallait [6, 7] in the context of a constapf:) = p.

Theorem 2. Assumé2)—<5) and f € L}(Q2). Letqy(-) andg;(-) be given by9).
If 2 —1/N < p(-), then there exists a unique weak solutionf (1). Moreover,
we LIOQ), forall 1 < g(-) < qof-), andu € W(Q), forall 1 < ¢()) <
@ ().

We remark thaty (-), defined in (9), equals one fp(-) = 2 — 1/N, and hence,
by Theorem 1, the entropy solutiarbelongs taV," (Q) if 2 — 1/N < p(-).

In this paper we always assume thfat L!(€2); increasing the integrability of
f one expects to obtain more regularity but, for variable egombs, most results
In this direction are still missing.

A few comments about known regularity results for the camstaponent case,
in terms of the integrability of the right hand sideare in order. Assumg(-) = p
is constant, the right hand sigec L™(2), for somem > 1, and letu be the
unique solution of problem (1). Define the numbers

_ N £/ Np
TENp-ne1 M TSN

wherep* = Np/(N — p) is the Sobolev exponent. The following assertions hold:

and ¢ () =
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(A1): If 1 < m < max(1,m) thenu is anentropysolution,|u|? € L'(£2),

forall 0 < ¢ < qo, and|Vu|? € L}(Q), forall 0 < g < ¢q1, where
_ Nm(p-1) _ Nm(p-1)
D= Ny M BT TN

(note that, whemn = 1, these numbers coincide with the ones defined in
(9), since we are assuming thdt) = p is constant).

(A2): If max(1,7m) < m < 7 thenu is aweaksolution andu € W, (Q)
(note thaty; > 1).

(A3): If m < m < N/pthenu is aweak energwgolution andu € W(}’“(Q)
(note thaty; > p).

(A4): If m > N/pthenu is a boundedveak energgolution.

The first and last assertions are proved by Alvetoal. [3]. The second one
follows from the results of Boccardo and Gal&6, 7] and the third is a conse-
guence of a result by Kinnunen and Zhou [22, Thm. 1.6]. Its®&nown that if
m > Np' thenu € Cit(Q), a result due to DiBenedetto [10].

For a variable exponent(-) much less is known. Iff ¢ W70 (Q) or, in
particular, if f € L™ (Q), wherem(-) := (p(-)*), the existence and uniqueness
of a weak energy solution to problem (1) is a straightforwgederalization of the
results obtained by Fan and Zhang [16] for the model probl&m (

Recently, Acerbi and Mingione [2] derived Cal@er-Zygmung type estimates
for (1), extending previous results of DiBenedetto and Meahf[11] for the model
problem (7) andy(-) = p constant. Using their estimates it is easy to prove the
following result.

Proposition 1. Assumdg2)5)and f € Lm(')(Q), where

loc
Np(-)q
m . ::
= NGO - D+ 000
The unique weak energy solutiarof (1) satisfieg VulP) € L ().

with q > 1. (10)

We note that the functiom(-) defined in (10) satisfies
m(-) <m(-) <N, forallg>1.

As an immediate consequence, one obtair%EsI/Vlég(')(Q), forall r(-) € L>(2),

if f € LY.(Q). We note that, in the case of constant exponents, Propoditio
states that fof € Li’.(Q), with m > 7, we haveu € W% (Q). Moreover, as a
consequence of Sobolev embedding, it follows that > (Q) if m > N/p. We

oc
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thus recover local versions of assertions (A3) and (A4).réfoee, to obtain (A3)
and (A4) using this reasoning, it would be necessary to paogbal version of
Proposition 1 for a nonconstaaqt:).

Finally, since Theorem 1 guarantees the existence and emésgs of an entropy
solution for (1), the extension of (Al) and (A2) for varialdgponents only re-
guiresa priori estimates for such a solution. We feel that the techniquedete
to obtain such estimates are slight modifications of the aisesl in section 3 in
the L' case but this extension remains open.

The paper is organized as follows. In section 2, we recalldisf@nitions of
Lebesgue and Sobolev spaces with variable exponent andefdh®r properties.
Then, we introduce Marcinkiewicz spaces with variable &g and establish
their relation with Lebesgue spaces. In section 3, we olat@inori estimates for
an entropy solution and its weak gradient. In section 4, veeg@uniqueness of
entropy solutions. Finally, in section 5, we consider agpnate problems and,
using thea priori estimates, we establish the existence results.

2.Marcinkiewicz spaces with variable exponent

In this section, we define Marcinkiewicz spaces with vagad{ponent and in-
vestigate their relation with Lebesgue spaces. To the Besirdknowledge, this
definition is considered here for the first time and the prigeobtained are new.

We start with a brief overview of the state of the art conaagriiebesgue spaces
with variable exponent, and Sobolev spaces modeled upan tGé/en a measur-
able functiomp(+) : Q — [1, +o0), we will use the following notation throughout
the paper:

p_ :=essinfp(x) and  p, :=esssupp(x).
e zef)
We define the Lebesgue space with variable expofént2) as the set of all
measurable functions: 2 — R for which the convex modular

o) = [ ) da
Is finite. If the exponent is boundeik., if p, < oo, then the expression
[ullp) :=inf {A > 0: gy (u/X) <1}

defines a norm i?() (), called the Luxemburg norm. One central property of
LP0)(Q) is that the norm and the modular topologies coincige, 0p() (ty) — 0
if and only if [|u,||,., — 0. The spacdL”")(2),]| - ||, is a separable Banach
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space. Moreover, if_ > 1 then L) (Q) is uniformly convex, hence reflexive,
and its dual space is isomorphic8 ) (Q2), wherel /p(z) +1/p/(z) = 1. Finally,
we have Hblder inequality:

/uv dx
Q

forallu € LPO)(Q) andv € LP1)(Q).
Now, let

1 1
< (p_ + p_'> Hqu(-)HUHp’(')? (11)

W) = {u e L20©) : [Vul € 20() }.
which is a Banach space equipped with the norm
[llipe) = ullpe) + 1Vullp)-

By W, *")(Q) we denote the closure 65°(Q2) in W1#0)(Q).
The proof of the following result can be found in [19].

Proposition 2 (Poincaé type inequality) Assumd < p_ < p,. < +oo. There
exists a constant’, depending only of2, such that

/ ‘u‘p(x) dr < C/ \Vu\p(x) dx, forallue W(}’p("(ﬁ). (12)
9) Q

Proposition 3 (Sobolev embedding)._et 2 be an open bounded set with a Lips-
chitz boundary and let(-) : 2 — [1, c0) satisfy(5). Then we have the following
continuous embedding

Wwirh(Q) — L O(Q), (13)

wherep*(-) = ]év_ng'(),) .

This result still holds for a merely log-tider continuous(-) (cf. [13]).
Now, we give a useful result in order to apply Sobolev ineiuétf. [15]).

Lemma 1. Letp(-) andq(-) be measurable functions such thégt) € L>°(Q2) and
1 < p(x)q(z) < +oo, fora.e.x € Q. Letf € L1(Q), f 0. Then

Hf”i{)q(.) < |Hf‘p(.)”q(-) < Hf”i(_.)q(.) if Hf”p(-)q(-) <1, (14)

LA < WFPO gy ATy T L e = 1
In particular, if p(-) = p is constant then

PNy = 110
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This closes our brief tour of Lebesgue and Sobolev spacésvariable expo-
nent. Let’s now consider Marcinkiewicz spaces with vaga&xponent. To the
best of our knowledge, the next definition is new.

Definition 2. Letq(-) be a measurable function such that > 0. We say that a
measurable function belongs to the Marcinkiewicz spas&’() (Q) if there exists
a positive constant/ such that

/ 1@ qr < M, forall ¢ > 0.
{ul>t}

We remark that for(-) = ¢ constant this definition coincides with the classical
definition of the Marcinkiewicz spack/?(2) (cf. [25]). Moreover, it is clear that
u € M(Q)if [ultt) € LY(Q). Indeed,

/ 110 dy < / u|?®) dz,  forallt > 0.
{Ju|>t} Q

In particular,L¢")(Q) ¢ MI0)(Q), for all ¢(-) > 1.

For constant exponents it is straightforward to prove soonieds reciproque: if
u € M"(2) then|u|? € L'(Q2), forall0 < ¢ < r. The following result extends this
assertion to the nonconstant setting; unlike the consts#,dhe proof presents
some difficulties.

Proposition 4. Letr(-) andq(-) be bounded functions such that ¢(-) < r(+)
and lete := (r — q)_ > 0. Ifu € M"0)(Q), then

M
/ 1) de < 20 + (re — )2
9) €

where M is the constant appearing in the definition &f)(Q). In particular,
M™O(Q) ¢ LID(Q), forall 1 < ¢(-) < r(-).

Proof: Noting that0 < ¢(-) < r(:) — ¢, we define the a.e. differentiable function

o(t) = t"@=¢dy, forallt > 0.
{lu[>t}

Writing its derivative as

1
(t) = / (r(z) — )"~ dy — lim — / $r@ = 4o
{Jul>t} o b S peiu<ty
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we obtain
d
—— |u|r(%)_6 dr = lim— / =€ dy
At J{ju>y o b Jg h<|u|<t}

< l1m ““dx
hlo h {t—h<|u|§t}

- / (r(z) — )@ dr — J(8).
{luf0)

Using the previous inequality and remarking that o(t) < M/t<, for all t > 0,
sinceu € M"0)(Q), we derive the estimate

/ |u|q(1?) dr
)

< \QH/ @ d

\QH/ <—i/ | ()€ dx) dt

1 dt J{jup>ty

< |9 +/ (/ (r(x) — e)t" @1 dg — @’(25)) dt
1 {Jul>t}

>~ 1
< \Q\+(r+—e>/ pr (/ ' dx) dt + (1)
1 {Ju|>t}

M
< 2|Q|+(r+—e)/ dt
1

te—i—l

M
= 2|Q| + (7"+ —€)—
€
and the result follows. ]

3.A priori estimates

We start with the existence of the weak gradient for everysuesble function
u such thatl;(u) € W&’p(')(ﬁ), forall ¢ > 0.

Proposition 5. If u is a measurable function such tHB{(«) € W&’p(')(Q), for all
t > 0, then there exists a unique measurable functiof? — R such that

UX{jul<ty = VI;(u) fora.e.xz € Q, and forallt > 0,
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wherey g denotes the characteristic function of a measurablefsatloreover, if
u belongs to¥, ' (€2), thenw coincides with the standard distributional gradient
of u.

Proof: The result follows from [3, Theorem 1.5], sin@&(u) € Wol’p(')(Q) C
W, P (), forall t > 0. m

The next result provides estimates in Marcinkiewicz spdeesl hence, by
Proposition 4, in Lebesgue spaces) for an entropy solufigh)o

Proposition 6. Assum&2)<5) and f € L'(Q). If u is an entropy solution of1)
then, for every > 0, there exist positive constant$, M’, and~, depending only
one, p(-), N, and{2, such that

-
/ @/ @)= g0 < Np (HJ;H1> + M, forallt > 0.
{lul>t}

Proof: Takingy = 0 in the entropy inequality (8) and using (2), we obtain

b/|VTt(u)|p(I) dr < / a(x,Vu) - Vu dx
Q {lu|<t}
< / F(2) Ty(u) do < ¢ £,
Q

for all t > 0. Therefore, defining’ := T;(u)/t, we have, for alk > 0,
1
[ 1w do = 1 [ 19n00pe o < a o= L
Q

On the other hand, using Sobolev inequality (13) and Lemm&elestimate

/ @@ gy / @)/ @) g @)
(>t} (=1}
< / (17 )™
Q

< Htl/p’(-)w

(15)

p*(-)

Oy
()

a/p
< ( / v () daz) . (8)

< C“¢
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pi i PO > 1 p- it IVEPOR) ||
a = and G =
pt if ([P Op]e <1 pe I [[V(EPOR) 0

Now, we note that
/|v ORI do < [ ((VERE ]+ v
Q

< o+l (/ ‘th/p’(x)|p(w) ‘wp(ﬂc) dx—l—/tp(x)_l |V¢‘P(9€) dx)
Q Q
< op+l (I + Ml) , (17)

using (15) for the last inequality and defining
[ / V@) @) @) gy
Q

p(z)
po= esstup{ (lzgjaf;)‘) } : (18)

which is finite due to (5), and note that, for- 0, we have

Now, define

(log t)P™) < (1ogt)P+<< p+> Pl forallt > e. (19)

efe

Using the definition of, (19), (12), and (15), we arrive at

L[ (1)
() oy e ae
P+

apy eB/a p(x)

—) ¢ T, d

<eﬁe> /Q‘ )l d

ap\ " Bo v

—X) ¢Plec / VT () [P da

eBe Q

< M MtP/® (20)

A
~+ | =3

A
~+ | =3

forall t > e, whereC’ is a constant depending only 65 and

M2 = ]5 <—>p+ Cl. (21)
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From (17) and (20), we obtain
/ ‘v(tl/p’($)¢)‘P(x) dx S 2p+—1M1t65/a (Mg + teﬁ%) : for all ¢ 2 e.
Q
Finally, from (16) and the last inequality,

1 a/ﬁ
/ ROy < <2p+—1M1 <M2+ Eﬁ/a»
{Jul>t} t

P+ 1 a/B
< « p+—1HfH1 ~ % !
< C (2 G e "+ ~a

Hw

< M 2 , forallt > e, (22)
* P+ pi/p_
€Ep—

pi/p— it (fllh=0

pr/py i [fll <b.

"}/:

For0 < t < e, we have
/ @) g0 < |Qf ®P) —s 0p
{lu[>t}

and, combining both estimates, the result follows. |

Remark 1. Recalling from (9) that
o) = Np()=1) _pl)"
N—=p()  »p()
Proposition 6 yields: € M)(Q), for all 0 < ¢(-) < go(-). We note that for
p(-) = p we have that the constait, defined in (21) is zero, and hence, from
(22), one obtaing € M% (), with
Np—-1) _p"
N-p p’
recovering the result obtained in [5]. For the nonconstasécit remains an open
problem to show that € M%) (Q).

qo =

Remark 2. We stress that the dependence of the constdnasidy onp(-) occurs
solely through the constangts, p,, andp given by (18).
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As a consequence of Proposition 4 and Proposition 6 we otitaifollowing
result.

Corollary 1. Assumé2)—(5)and f € L}(Q). Let

N(p()—1) _p()
D = = , 23
©0)= "N 00 20 =9)
If u is an entropy solution to problefi), thenu € Li0)(Q), for all ¢(-) such that
0 < q(+) < qo(-). Moreover, there exist constantg), M1, andy, depending only

onp(-), q(+), NV, and?, such that

0
/\u\q@ dz < 2|Q| + M, <|‘€“1> + M. (24)
Q

Proof: Let0 < ¢(-) < ¢o(-) and defing := (¢ — ¢)_ > 0. By Proposition 6,

~
/ th(x)—5/2 de < M <Hf|‘1> + M’, forall ¢t > 0,
{lul>t}

b

whereM, M’, and~ are positive constants, depending onlyson(-), N, ands?.
From Proposition 4, we have

q(x) 2 Hle ! /
|ul da:§2\Q\+(QO—5)+5 M (= + M},
Q

since(qy — §/2 — q)_ = /2 > 0; estimate (24) now follows with

M M’
My = 2((]0 — 5)4_7 and M; = 2((]0 — 5)+T

Now, we provea priori estimates in Marcinkiewicz spaces for the weak gradient
of an entropy solution.

Proposition 7. Assumeg2)~(5) and f € L(Q). Letu be an entropy solution of
(1). If there exists a positive constaihf such that

/ 1) de < M, forallt > 0, (25)
{lul>1}

then|Vu|*®) € M0)(Q), wherea(-) = p(-)/(q(-) + 1). Moreover,

/ 1) do < HleJrM, forall t > 0.
{ITule0)>t} b
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Proof: Using (25), the definition of(-), and (15) which still holds in this setting,
we have

/ #10) dop < / #9®) gy + / +4)
{|Vulo@ >t} {|Vulo@ >3] jul<t} {Jul>t}

< / pa(x) <|V“|a(x)>p(x)/a(x) de + M
R t

1
= —/ VT3 (u) [P da + M
tJ {Jul<ty

< H];H1+M, forallt > 0.

As a consequence of Proposition 4, Proposition 6, and Pitopog, we obtain
the following result.

Corollary 2. Assuméd2)~5)and f € L}(Q). Let
NGO -1
If u is an entropy solution of problegl) then|Vu|¢") € L'(Q), for all ¢(-) such

that 0 < ¢(-) < ¢(-). Moreover, there exist constanid,, Ms, M,, and -,
depending only op(-), ¢(+), N, and{2, such that

H];Hl + M <H];H1>7+M4, (26)

Proof: Let0 < ¢(-) < ¢i(-) and define := (¢1 — ¢)_ > 0. Since
() _
QI() qo()+1QO( )7
with ¢o(-) given by (23), we have tha{-) defined by
N p()

qo() —o+1

By Proposition 7 (and using also Proposition 6), we have|*() ¢ Mw)—e((Q),
with a(-) = p(-)/(q(-) — o+ 1), and

.,
/{ }tq0<x>—@ dr < Hj;”l M (HJ;”l> M, forallt>o0,
[Vau|o() >t

/ IVu|!®) de < 2|Q| + M,
0

r(-),  satisfies (go—7)- > o.
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whereM, M', andy are positive constants, depending only©mp(-), N, and?.
From Proposition 4, we have, sintg —r — o) > 0,

/|Vu|q(x) dx = /\Vu\a(x)r(x) dx
0 0

qoy — (o —7)= [ fl N )
< A+ = e { b +M<T) *M}’

and the result follows with
_ G0 — (90 —7)-
((JO — 00— 7”)—

M, ., Mz = MDM,, and M, = M/Mg.

4.Uniqueness of entropy solutions

In this section we establish the uniqueness of an entropyisnl extending the
result obtained in [5] for a constant exponent.

Theorem 3. Assumg2)}5) and f € L'(Q). If u andv are entropy solutions of
(1) thenu = v, a.e. in{Q2.

Proof: Let h > 0. We write the entropy inequality (8) corresponding to thieiso
tion u, with T),v as test function, and to the solutionwith 7« as test function.
Upon addition, we get

/ a(x,Vu) - V(u— Tho) dx + / a(x,Vv) - V(v —Thu) dz
{lu—Thv[<t} {lv—Thul<t}
< / F(@) (T — Th) + Ti(w — Tyw)) d. (27)
0
Define

By ={lu—v| <t |v] <h},
Ey = Elﬂ{|u|§h}, and Es = Elﬂ{|U|>h}
We start with the first integral in (27). Using assumption (¢ obtain

/ a(x,Vu) - V(u—Ty) dz > / a(x,Vu)-V(u—v)dz
{Ju—Trv|<t} B

> /E2 a(zx,Vu) - V(u—v) dr — /E3 a(x,Vu) - Vv dz. (28)
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By assumption (3) and &lder inequality (11), we estimate the last integral in the
above expression as follows

/ a(x,Vu)-Vvdz| < <](:z:) + |Vu|p(x)_1> V| dx
Es

Es

=2 (H‘ij’(') - H‘vu‘p(@_l 70 {h<|u|§h+t}> Vel iz (29)

The last expression converges to zeroha®ends to infinity, by Proposition 6,
inequality (14), and the following bound for an entropy s w

V@ dz < a(z, V) - Vo dz < & |1 £l
b ’ p 111
{h<|w|<h+t} {h<|w|<h+t}

which follows from takingy = Tj(w) as test function in the entropy inequality
(8). Therefore, from (28) and (29), we obtain

/ a(x,Vu) - V(u—"Tyw)de > I+ / a(xz,Vu) - V(u—v) dz, (30)
{lu—Thv|<t} E,

wherel converges to zero dstends to infinity. We may adopt the same procedure
to treat the second integral in (27) and obtain

/ a(x,Vov)-V(v—Thu) de > I1 —/ a(x,Vv)-V(u—v)dz, (31)
{lv=Thu|<t} E,

wherel I converges to zero dstends to infinity.
Next, we consider the right hand side of inequality (27).ihgthat

Ti(u—Tpw) + Ti(v — Thu) =0 in - {|u] < h, |v| < h},
we obtain

|/Q f(z) (Tt(u — Tyw) + Ty(v — Thu)> J

§2t</ \f\dx+/ mm«).
{[ul>h} {[v[>h}

Since, both mea§|u| > h} and meag|v| > h} tend to zero a& goes to infinity
(by Proposition 6), the right hand side of inequality (2fids to zero as goes to
infinity. From this assertion, (27), (30), and (31) we obtéattingh — +oc,

/ (a(z, Vu) —a(x,Vv)) - V(u—v)dx <0, forallt> 0.
{lu—v|<t}

By assumption (4), we conclude thdt = Vo, a.e. in).
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Finally, from Poincag inequality (12), we have
L/UW#WWWWng/Hﬂﬂm—vmmﬂwzﬂ,fmmH>Q
Q Q
and hence, = v, a.e. in). |

5.Existence of weak and entropy solutions
Let (f.), be a sequence of bounded functions, strongly converging to
LY(©2) and such that
[falls < [[f]l1, foralln. (32)

We consider the problem

—div(a(z, Vu)) = fu(x) in  Q,
{ u = 0 on 0f). (33)

It follows from a standard modification of the arguments if,[Theorem 4.2]
that problem (33) has a unique weak energy solutipre Wol’p(')(Q). Our aim
IS to prove that these approximate solutianstend, asn goes to infinity, to a
measurable function which is an entropy solution of the limit problem (1). We
will divide the proof into several steps and use as main toeatpriori estimates
for u,, and its gradient obtained in section 3. Much of the reasoisifiased on
the ideas developed in [7], [5], and [3]; although some ofdlguments are not
new, we have decided to present a self-contained proof &ésalke of clarity and
readability.

We start by proving that the sequer(es,),, of solutions of problem (33) con-
verges in measure to a measurable function

Proposition 8. Assumé2)—(5), f € L*(Q), and(32). Letu,, € W(}’p(')(Q) be the
solution of (33). The sequencey,), is Cauchy in measure. In particular, there
exists a measurable functieansuch that:,, — « in measure.

Proof: Let s > 0 and define
Ey = {Jun| > t}, By :={|un| > t}, and By := {|T}(un) — Ty(um)| > s},
wheret > 0 is to be fixed. We note that
{|un — up| > s} C By U Ey U Es,
and hence,
meas{|u, — u,,| > s} < meas(E;) + meas Ey) + meas(E;).  (34)
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Lete > 0. Using (32) and the uniform bound given by Proposition 6, ivease
t = t(e) such that

meas F1) <e¢/3 and meask;) < ¢/3. (35)

On the other hand, taking = 0 in the entropy condition (8) fou,,, yields
0 b

using (2) and (32). Therefore, we can assume, by Sobolev duatrige (13), that
(Ti(uy)), is a Cauchy sequence it#")(Q), for all 1 < ¢(-) < p*(-). Conse-
guently, there exists a measurable functiosuch that

Ty(uy) — Ty(uw), in LO(Q) and a.e.

(\Tt<un> - ﬂ(umﬂ)q“) i <

S

t, foralln >0, (36)

Thus,

meas(F;) < /

Q

Wl m

for all n,m > ng(s, ¢).
Finally, from (34), (35), and the last estimate, we obtaat th

meas{|u, — u,| > s} <e, foralln,m > ny(s,e), (37)
i.e, (u,), is a Cauchy sequence in measure. [

In order to prove that the sequenCe€u,), converges in measure to the weak
gradient ofu we need two technical lemmas. The first one, is an extension of
Lemma6.1in [5].

Lemma 2. Let (v,), be a sequence of measurable functionsu, IEonverges in
measure ta and is uniformly bounded in?") (), for somel < ¢(-) € L>®(Q),
thenv,, — v strongly inL(2).

Proof: Note first thatZ")(Q) ¢ L% (), and hence we may assums,), to be
uniformly bounded inL¢-(€2). Using this fact and Hider inequality, we obtain

/ [V — vy | d / U — vy d.I—I—/ [V, — vy | d
Q {lom—vn|<s} {lvm—vn[>s}

Qs + meag{|vm — va| > s [[vm — vall
Qs + C meag{|vm — va| > sHV, (38)

IA A

forall s > 0.
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Taking s small enough in (38) and using the convergence in measure, of,
we obtain that, for alt > 0, there exists,, = ny(¢) such that|v,, — v, ||; < e, for
all m,n > ng(e). |

The second technical lemma is a standard fact in measureytfefo[20]).

Lemma 3. Let (X, M, 1) be a measure space such thatX') < +oco. Consider
a measurable function : X — [0, +oc] such that

p{z € X :y(x) =0}) = 0.
Then, for every > 0, there exist® > 0 such that

u(A) <e,  forall Ae M with / v dp < 0.
A

We can now prove the convergence in measure of the weak gtagdibe last
ingredient in the proof of existence.

Proposition 9. Assumé2)(5), f € L}(Q2), and(32). Letu,, € W(}’p(')(Q) be the
solution of (33). The following assertions hold:

() Vu, converges in measure to the weak gradieni.of
(ii) a(x, Vu,) converges ta(xz, Vu) strongly inL'(Q).
(iii) a(z, Vu) € L1O(Q), forall 1 < ¢(-) < N/(N —1).
(iv) v and Vu satisfy(24) and (26).

Proof: (i) We claim that(Vu,), is Cauchy in measure. Indeed, ket- 0, and
consider
Ey = A{|Vu,| > h} U{|Vun| > h}, FEy:={|lu, — un| > t},
and
Es :=A{|Vu,| < h,|Vuy| < h, |u, —uy| <t |Vu, — Vu,| > s},
whereh andt will be chosen later. We note that
{IVu, — Vu,| > s} C E;U FEyU Ejs. (39)

Let e > 0. By Proposition 7, we may choodge = h(e) large enough such
that mea&F;) < ¢/3 for all n,m > 0. On the other hand, by Proposition 8
(see (37)), we have that méas) < ¢/3 for all n,m > ng(t,e). Moreover, by
assumption (4), there exists a real valued functjon() — [0, +oo| such that
meagz € Q: v(x) =0} =0and

(a(z, &) = a(x,£)) - (€ = &) = v(x), (40)
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forall ¢, & € RY such thaté|, |€'| < h, |€ —¢&'| > s, fora.e.x € Q (cf. [7]). Let
d = d(e) be given from Lemma 3, replacirgand A by ¢/3 and E5, respectively.
Using (40), the equation, and (32), we obtain

/ y(x) dr < / (a(x, Vuy) — alx, Vuy)) - V(u, — ) de < 2| f]|it <9,
By By

choosingt = /(4| f]1). From Lemma 3, it follows that me@B;) < ¢/3.
Thus, using (39) and the estimates obtainedHAgr E», and Ej, it follows that
meas${|Vu, — Vu,,| > s}) <, foralln,m > ny(s,€), proving the claim.

As a consequencéYVu, ), converges in measure to some measurable function
v. Finally, since(VTuy,), is uniformly bounded inL?")(Q), for all t > 0, it
converges weakly t& (Tiu) in L'(Q). Therefore,v coincides with the weak
gradient ofu (see Proposition 5).

(i) — (i) By part (i) and Nemitskii Theoremdf. [24, p. 20]), we obtain that
a(x, Vu,) converges ta(z, Vu) in measure. Moreover, using (3) we have

af, Vun)| < 8 (5(@) + Va7,

with j € LP"0(Q) ¢ LO(Q), forall 1 < ¢(-) < N/(N —1). By Corol-
lary 2 applied taz, and (32), we have th&tVu, |P)~1),, is uniformly bounded in
L1(Q), forall 1 < ¢(-) < N/(N — 1). Hence, using Lemma 2, we obtain that
a(x, Vu,) converges ta(z, Vu) strongly inL!(Q2), anda(z, Vu) € L1)(Q), for
all1 <g¢(-) < N/(N —1).

(iv) It follows taking the limit asn — +oc in Corollaries 1 and 2 applied ta,
and using (32). |

We finally proof the main theorems in this paper.

Proof (Theoreml). Fixt > 0, ¢ € W(}’p(')(Q) N L>(2), and choos&;(u,, — ¢)
as a test function in (6), with replaced by, to obtain

/ a(x, Vuy) - VIi(u, — @) dx = / fu(z) Ti(u, — @) de.
0 0

We note that this choice can be made using a standard demguynant. We
now pass to the limit in the previous identity. Concerning tight hand side, the
convergence is obvious singg converges strongly i! to f and Ti(u, — )
converges weakly-in >, and a.e., td;(u — ).
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Next, we write the left hand side as
/ a(x,Vuy,) - Vu, dx — / a(x,Vu,) -Veodr  (41)
{lun—ypl<t} {lun—pl<t}

and note tha{|u, — ¢| < t} is a subset of |u,,| < t + ||¢||~}. Hence, taking
s =1t + ||¢||, Wwe rewrite the second integral in (41) as

/ a(x, VTs(uy)) - Vo dz.
{lun—pl<t}

Sincea(x, VT,(u,)) is uniformly bounded iff L7 *)(Q))" (by assumption (3) and
(36)) and Proposition 9 (i), we have that it converges we#dkly(x, VTy(u)) in
(PO (Q))N. Therefore the last integral converges to

/ a(xz,Vu)) - Vo dz.
{lu—e|<t}

The first integral in (41) is nonnegative, by (2), and it cages a.e. by Propo-
sition 9. It follows from Fatou lemma that

/ a(x,Vu) - Vu dr < lim inf/ a(x, Vuy,) - Vu, dz.
{lu—pl<t} {lun—epl<t}

n—-+o00

Gathering results, we obtain

/ a(x,Vu) - VIi(u — ¢) dx < / f(x)Ti(u — ) dz,
0 0

l.e., u Is an entropy solution of (1).
The uniqueness follows from Theorem 3 and the regularityp@res from
Corollaries 1 and 2. |

Proof (Theoren?). Letu, € W(}’p(')(Q) be the solution of (33) and given by
Proposition 8. Using Proposition 9 (ii) and the strong cogeace inL' of the f,
to f, we obtain (6) passing to the limit in

/ a(x,Vu,) - Ve dr = / fn(x)p dz,
0 0
for all p € C§°(€2). From Corollary 2,

N(p(-) = 1)

u € W(}’Q(')(Q), forall 1 <gq(') < N_1

since2 — 1/N < p().
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The uniqueness follows from Theorem 3 and the integrakolity from Corol-
lary 1. |
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