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ABSTRACT: We consider a Dirichlet problem in divergence form with variable growth,
modeled on thep(x)-Laplace equation. We obtain existence and uniqueness of anentropy
solution forL1 data, extending the work of Bénilanet al. [5] to nonconstant exponents, as
well as integrability results for the solution and its gradient. The proofs rely crucially ona
priori estimates in Marcinkiewicz spaces with variable exponent.
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1.Introduction
Partial differential equations with nonlinearities involving nonconstant expo-

nents have attracted an increasing amount of attention in recent years. Perhaps
the impulse for this comes from the sound physical applications in play, perhaps
it is just the thrill of developing a mathematical theory where PDEs again meet
functional analysis in a truly two-way street.

The development, mainly by R̊užička [28], of a theory modeling the behavior
of electrorheological fluids, an important class of non-Newtonian fluids, seems to
have boosted a still far from completed effort to study and understand nonlinear
PDEs involving variable exponents. Other applications relate to image processing
(cf. [8]), elasticity (cf. [31]), the flow in porous media (cf. [4] and [21]), and prob-
lems in the calculus of variations involving variational integrals with nonstandard
growth (cf. [31], [27], and [1]). This, in turn, gave rise to a revival of the inter-
est in Lebesgue and Sobolev spaces with variable exponent, the origins of which
can be traced back to the work of Orlicz in the 1930’s. An account of recent ad-
vances, some open problems, and an extensive list of references can be found in
the interesting survey by Dieninget al. [14]. Meanwhile, among several other
contributions, the introduction by Sharapudinov [29] of the Luxemburg norm and
the work of Kov́ačik and Ŕakosńık [23], where many of the basic properties of
these spaces are established, were crucial developments.
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In this paper, we consider a problem with potential applications to the model-
ing of combustion, thermal explosions, nonlinear heat generation, gravitational
equilibrium of polytropic stars, glaciology, non-Newtonian fluids, and the flow
through porous media. Many of these models have already beenanalyzed for con-
stant exponents of nonlinearity (cf. [12], [10], [9], [18], [30], and the references
therein) but it seems to be more realistic to assume the exponent to be variable.

Let Ω be a smooth bounded domain inR
N and consider the elliptic problem

{

−div(a(x,∇u)) = f(x) in Ω,
u = 0 on ∂Ω,

(1)

wheref ∈ L1(Ω) anda : Ω × R
N → R

N is a Carath́eodory function (that is,
a(·, ξ) is measurable onΩ, for everyξ ∈ R

N , anda(x, ·) is continuous onRN , for
almost everyx ∈ Ω), such that the following assumptions hold:

a(x, ξ) · ξ ≥ b|ξ|p(x), (2)

for almost everyx ∈ Ω and for everyξ ∈ R
N , whereb is a positive constant;

|a(x, ξ)| ≤ β(j(x) + |ξ|p(x)−1), (3)

for almost everyx ∈ Ω and for everyξ ∈ R
N , wherej is a nonnegative function

in Lp
′(·)(Ω) andβ > 0;

(a(x, ξ) − a(x, ξ′)) · (ξ − ξ′) > 0, (4)

for almost everyx ∈ Ω and for everyξ, ξ′ ∈ R
N , with ξ 6= ξ′.

Hypotheses (2)–(4) are the natural extensions of the classical assumptions in the
study of nonlinear monotone operators in divergence form for constantp(·) ≡ p
(cf. [26]).

Concerning the exponentp(·) appearing in (2) and (3), we assume it is a mea-
surable functionp(·) : Ω → R such that

p(·) ∈ W 1,∞(Ω) and 1 < ess inf
x∈Ω

p(x) ≤ ess sup
x∈Ω

p(x) < N. (5)

These assumptions allow us, in particular, to exploit the functional analytical prop-
erties of Lebesgue and Sobolev spaces with variable exponent (see section 2) aris-
ing in the study of problem (1).

By aweak solutionof (1) we mean a functionu ∈ W 1,1
0 (Ω) such thata(·,∇u) ∈

L1
loc(Ω) and

∫

Ω

a(x,∇u) · ∇ϕ dx =

∫

Ω

f(x)ϕ dx, for all ϕ ∈ C∞
0 (Ω). (6)
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A weak energy solutionis a weak solution such thatu ∈ W
1,p(·)
0 (Ω).

The model case for (1) is the Dirichlet problem for thep(x)-Laplacian operator
∆p(x)u := div(|∇u|p(x)−2∇u),

{

−∆p(x)u = f(x) in Ω,
u = 0 on ∂Ω.

(7)

This and other related problems (wheref is replaced by a nonlinear function de-
pending onu) have been studied recently in several papers (cf., for example, [16]
for existence and uniqueness or [17] for Hölder continuity) in the framework of
weak energy solutions. These results require the assumption that the right hand
sidef has enough integrability.

Assuming thatf is merely inL1(Ω), we need to work with entropy solutions,
which are more general than weak solutions. The notion of entropy solution was
introduced by B́enilanet al. [5] for problem (1) in the framework of a constant
p(·) ≡ p, and existence and uniqueness was established, together with some es-
timates for the solution and its weak gradient. Using essentially the same tools,
Alvino et al. [3] proved existence of an entropy solution for elliptic problems with
degenerate coercivity, still in the context of constant exponents.

The main purpose of this paper is to extend the results in [5] to a nonconstant
p(·). Defining the truncation functionTt by

Tt(s) := max {−t,min{t, s}} , s ∈ R,

we start by extending the notion of entropy solution to problem (1) as follows:

Definition 1. A measurable functionu is an entropy solution to problem(1) if, for
everyt > 0, Tt(u) ∈ W

1,p(·)
0 (Ω) and

∫

Ω

a(x,∇u) · ∇Tt(u− ϕ) dx ≤

∫

Ω

f(x) Tt(u− ϕ) dx, (8)

for all ϕ ∈ W
1,p(·)
0 (Ω) ∩ L∞(Ω).

A function u such thatTt(u) ∈ W
1,p(·)
0 (Ω), for all t > 0, does not necessar-

ily belong toW 1,1
0 (Ω). However, it is possible to define its weak gradient (see

Proposition 5 below), still denoted by∇u.
Let us introduce the following notation: given two bounded measurable func-

tionsp(·), q(·) : Ω → R, we write

q(·) ≪ p(·) if ess inf
x∈Ω

(p(x) − q(x)) > 0.
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Our main result is

Theorem 1. Assume(2)–(5) andf ∈ L1(Ω). There exists a unique entropy solu-
tion u to problem(1). Moreover,|u|q(·) ∈ L1(Ω), for all 0 ≤ q(·) ≪ q0(·), and
|∇u|q(·) ∈ L1(Ω), for all 0 ≤ q(·) ≪ q1(·), where

q0(·) :=
N(p(·) − 1)

N − p(·)
and q1(·) :=

N(p(·) − 1)

N − 1
. (9)

The proof of this result will be decomposed into several steps. First, we obtaina
priori estimates for entropy solutions in Marcinkiewicz spaces with variable expo-
nent. Despite the fact that the theory of functional spaces with variable exponent is
developing quickly, the extension of classical Marcinkiewicz spaces is, to the best
of our knowledge, undertaken here for the first time. From these estimates, we
derive uniform bounds in Lebesgue spaces of variable exponent for an entropy so-
lution and its weak gradient (see Corollaries 1 and 2 in section 3). The uniqueness
follows from choosing adequate test functions in the entropy condition (8) and
using thea priori estimates. Finally, the existence is obtained by passing tothe
limit in a sequence of weak energy solutions of adequate approximated problems.

Our other theorem concerns weak solutions and extends the results obtained by
Boccardo and Galloüet [6, 7] in the context of a constantp(·) ≡ p.

Theorem 2. Assume(2)–(5) andf ∈ L1(Ω). Let q0(·) andq1(·) be given by(9).
If 2 − 1/N ≪ p(·), then there exists a unique weak solutionu of (1). Moreover,
u ∈ Lq(·)(Ω), for all 1 ≤ q(·) ≪ q0(·), andu ∈ W

1,q(·)
0 (Ω), for all 1 ≤ q(·) ≪

q1(·).

We remark thatq1(·), defined in (9), equals one forp(·) ≡ 2 − 1/N , and hence,
by Theorem 1, the entropy solutionu belongs toW 1,1

0 (Ω) if 2 − 1/N ≪ p(·).

In this paper we always assume thatf ∈ L1(Ω); increasing the integrability of
f one expects to obtain more regularity but, for variable exponents, most results
in this direction are still missing.

A few comments about known regularity results for the constant exponent case,
in terms of the integrability of the right hand sidef , are in order. Assumep(·) ≡ p
is constant, the right hand sidef ∈ Lm(Ω), for somem ≥ 1, and letu be the
unique solution of problem (1). Define the numbers

m̄ :=
N

N(p− 1) + 1
and m̃ := (p∗)′ =

Np

N(p− 1) + p
,

wherep∗ = Np/(N − p) is the Sobolev exponent. The following assertions hold:
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(A1): If 1 ≤ m ≤ max(1, m̄) thenu is anentropysolution,|u|q ∈ L1(Ω),
for all 0 < q < q0, and|∇u|q ∈ L1(Ω), for all 0 < q < q1, where

q0 :=
Nm(p− 1)

N −mp
and q1 :=

Nm(p− 1)

N −m
.

(note that, whenm = 1, these numbers coincide with the ones defined in
(9), since we are assuming thatp(·) ≡ p is constant).

(A2): If max(1, m̄) < m < m̃ thenu is aweaksolution andu ∈ W 1,q1
0 (Ω)

(note thatq1 > 1).
(A3): If m̃ ≤ m ≤ N/p thenu is aweak energysolution andu ∈ W 1,q1

0 (Ω)
(note thatq1 ≥ p).

(A4): If m > N/p thenu is a boundedweak energysolution.

The first and last assertions are proved by Alvinoet al. [3]. The second one
follows from the results of Boccardo and Gallouët [6, 7] and the third is a conse-
quence of a result by Kinnunen and Zhou [22, Thm. 1.6]. It is also known that if
m > Np′ thenu ∈ C1,α

loc (Ω), a result due to DiBenedetto [10].
For a variable exponentp(·) much less is known. Iff ∈ W−1,p′(·)(Ω) or, in

particular, iff ∈ Lm̃(·)(Ω), wherem̃(·) := (p(·)∗)′, the existence and uniqueness
of a weak energy solution to problem (1) is a straightforwardgeneralization of the
results obtained by Fan and Zhang [16] for the model problem (7).

Recently, Acerbi and Mingione [2] derived Calderón–Zygmung type estimates
for (1), extending previous results of DiBenedetto and Manfredi [11] for the model
problem (7) andp(·) ≡ p constant. Using their estimates it is easy to prove the
following result.

Proposition 1. Assume(2)–(5) andf ∈ L
m(·)
loc (Ω), where

m(·) :=
Np(·)q

N(p(·) − 1) + p(·)q
with q ≥ 1. (10)

The unique weak energy solutionu of (1) satisfies|∇u|p(·) ∈ Lqloc(Ω).

We note that the functionm(·) defined in (10) satisfies

m̃(·) < m(·) < N , for all q > 1.

As an immediate consequence, one obtainsu ∈ W
1,r(·)
loc (Ω), for all r(·) ∈ L∞(Ω),

if f ∈ LNloc(Ω). We note that, in the case of constant exponents, Proposition 1
states that forf ∈ Lmloc(Ω), with m ≥ m̃, we haveu ∈ W 1,q1

loc (Ω). Moreover, as a
consequence of Sobolev embedding, it follows thatu ∈ C0,α

loc (Ω) if m > N/p. We
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thus recover local versions of assertions (A3) and (A4). Therefore, to obtain (A3)
and (A4) using this reasoning, it would be necessary to provea global version of
Proposition 1 for a nonconstantq(·).

Finally, since Theorem 1 guarantees the existence and uniqueness of an entropy
solution for (1), the extension of (A1) and (A2) for variableexponents only re-
quiresa priori estimates for such a solution. We feel that the techniques needed
to obtain such estimates are slight modifications of the onesused in section 3 in
theL1 case but this extension remains open.

The paper is organized as follows. In section 2, we recall thedefinitions of
Lebesgue and Sobolev spaces with variable exponent and someof their properties.
Then, we introduce Marcinkiewicz spaces with variable exponent and establish
their relation with Lebesgue spaces. In section 3, we obtaina priori estimates for
an entropy solution and its weak gradient. In section 4, we prove uniqueness of
entropy solutions. Finally, in section 5, we consider approximate problems and,
using thea priori estimates, we establish the existence results.

2.Marcinkiewicz spaces with variable exponent
In this section, we define Marcinkiewicz spaces with variable exponent and in-

vestigate their relation with Lebesgue spaces. To the best of our knowledge, this
definition is considered here for the first time and the properties obtained are new.

We start with a brief overview of the state of the art concerning Lebesgue spaces
with variable exponent, and Sobolev spaces modeled upon them. Given a measur-
able functionp(·) : Ω → [1,+∞), we will use the following notation throughout
the paper:

p− := ess inf
x∈Ω

p(x) and p+ := ess sup
x∈Ω

p(x).

We define the Lebesgue space with variable exponentLp(·)(Ω) as the set of all
measurable functionsu : Ω → R for which the convex modular

̺p(·)(u) =

∫

Ω

|u|p(x) dx

is finite. If the exponent is bounded,i.e., if p+ <∞, then the expression

‖u‖p(·) := inf
{

λ > 0 : ̺p(·)(u/λ) ≤ 1
}

defines a norm inLp(·)(Ω), called the Luxemburg norm. One central property of
Lp(·)(Ω) is that the norm and the modular topologies coincide,i.e., ̺p(·)(un) → 0

if and only if ‖un‖p(·) → 0. The space
(

Lp(·)(Ω), ‖ · ‖p(·)
)

is a separable Banach
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space. Moreover, ifp− > 1 thenLp(·)(Ω) is uniformly convex, hence reflexive,
and its dual space is isomorphic toLp

′(·)(Ω), where1/p(x)+1/p′(x) = 1. Finally,
we have Ḧolder inequality:

∣

∣

∣

∣

∫

Ω

uv dx

∣

∣

∣

∣

≤

(

1

p−
+

1

p′−

)

‖u‖p(·)‖v‖p′(·), (11)

for all u ∈ Lp(·)(Ω) andv ∈ Lp
′(·)(Ω).

Now, let

W 1,p(·)(Ω) :=
{

u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)
}

,

which is a Banach space equipped with the norm

‖u‖1,p(·) := ‖u‖p(·) + ‖∇u‖p(·).

By W 1,p(·)
0 (Ω) we denote the closure ofC∞

0 (Ω) in W 1,p(·)(Ω).
The proof of the following result can be found in [19].

Proposition 2 (Poincaŕe type inequality). Assume1 < p− ≤ p+ < +∞. There
exists a constantC, depending only onΩ, such that

∫

Ω

|u|p(x) dx ≤ C

∫

Ω

|∇u|p(x) dx, for all u ∈ W
1,p(·)
0 (Ω). (12)

Proposition 3 (Sobolev embedding). Let Ω be an open bounded set with a Lips-
chitz boundary and letp(·) : Ω → [1,∞) satisfy(5). Then we have the following
continuous embedding

W 1,p(·)(Ω) →֒ Lp
∗(·)(Ω), (13)

wherep∗(·) = Np(·)
N−p(·).

This result still holds for a merely log-Ḧolder continuousp(·) (cf. [13]).
Now, we give a useful result in order to apply Sobolev inequality (cf. [15]).

Lemma 1. Letp(·) andq(·) be measurable functions such thatp(·) ∈ L∞(Ω) and
1 ≤ p(x)q(x) ≤ +∞, for a.e.x ∈ Ω. Letf ∈ Lq(·)(Ω), f 6≡ 0. Then

‖f‖
p+

p(·)q(·) ≤ ‖|f |p(·)‖q(·) ≤ ‖f‖
p−
p(·)q(·) if ‖f‖p(·)q(·) ≤ 1, (14)

‖f‖
p−
p(·)q(·) ≤ ‖|f |p(·)‖q(·) ≤ ‖f‖

p+

p(·)q(·) if ‖f‖p(·)q(·) ≥ 1.

In particular, if p(·) ≡ p is constant then

‖|f |p‖q(·) = ‖f‖ppq(·)
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This closes our brief tour of Lebesgue and Sobolev spaces with variable expo-
nent. Let’s now consider Marcinkiewicz spaces with variable exponent. To the
best of our knowledge, the next definition is new.

Definition 2. Let q(·) be a measurable function such thatq− > 0. We say that a
measurable functionu belongs to the Marcinkiewicz spaceM q(·)(Ω) if there exists
a positive constantM such that

∫

{|u|>t}

tq(x) dx ≤M, for all t > 0.

We remark that forq(·) ≡ q constant this definition coincides with the classical
definition of the Marcinkiewicz spaceM q(Ω) (cf. [25]). Moreover, it is clear that
u ∈M q(·)(Ω) if |u|q(·) ∈ L1(Ω). Indeed,

∫

{|u|>t}

tq(x) dx ≤

∫

Ω

|u|q(x) dx, for all t > 0.

In particular,Lq(·)(Ω) ⊂ M q(·)(Ω), for all q(·) ≥ 1.
For constant exponents it is straightforward to prove some sort of reciproque: if

u ∈M r(Ω) then|u|q ∈ L1(Ω), for all 0 < q < r. The following result extends this
assertion to the nonconstant setting; unlike the constant case, the proof presents
some difficulties.

Proposition 4. Let r(·) andq(·) be bounded functions such that0 ≪ q(·) ≪ r(·)
and letǫ := (r − q)− > 0. If u ∈M r(·)(Ω), then

∫

Ω

|u|q(x) dx ≤ 2|Ω| + (r+ − ǫ)
M

ǫ
,

whereM is the constant appearing in the definition ofM r(·)(Ω). In particular,
M r(·)(Ω) ⊂ Lq(·)(Ω), for all 1 ≤ q(·) ≪ r(·).

Proof: Noting that0 ≪ q(·) ≤ r(·) − ǫ, we define the a.e. differentiable function

ϕ(t) :=

∫

{|u|>t}

tr(x)−ǫ dx, for all t > 0.

Writing its derivative as

ϕ′(t) =

∫

{|u|>t}

(r(x) − ǫ)tr(x)−ǫ−1 dx− lim
h↓0

1

h

∫

{t−h<|u|≤t}

tr(x)−ǫ dx,
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we obtain

−
d

dt

∫

{|u|>t}

|u|r(x)−ǫ dx = lim
h↓0

1

h

∫

{t−h<|u|≤t}

|u|r(x)−ǫ dx

≤ lim
h↓0

1

h

∫

{t−h<|u|≤t}

tr(x)−ǫ dx

=

∫

{|u|>t}

(r(x) − ǫ)tr(x)−ǫ−1 dx− ϕ′(t).

Using the previous inequality and remarking that0 ≤ ϕ(t) ≤ M/tǫ, for all t > 0,
sinceu ∈M r(·)(Ω), we derive the estimate

∫

Ω

|u|q(x) dx

≤ |Ω| +

∫

{|u|>1}

|u|r(x)−ǫ dx

= |Ω| +

∫ ∞

1

(

−
d

dt

∫

{|u|>t}

|u|r(x)−ǫ dx

)

dt

≤ |Ω| +

∫ ∞

1

(
∫

{|u|>t}

(r(x)− ǫ)tr(x)−ǫ−1 dx− ϕ′(t)

)

dt

≤ |Ω| + (r+ − ǫ)

∫ ∞

1

1

tǫ+1

(
∫

{|u|>t}

tr(x) dx

)

dt+ ϕ(1)

≤ 2|Ω| + (r+ − ǫ)

∫ ∞

1

M

tǫ+1
dt

= 2|Ω| + (r+ − ǫ)
M

ǫ

and the result follows.

3.A priori estimates
We start with the existence of the weak gradient for every measurable function

u such thatTt(u) ∈ W
1,p(·)
0 (Ω), for all t > 0.

Proposition 5. If u is a measurable function such thatTt(u) ∈ W
1,p(·)
0 (Ω), for all

t > 0, then there exists a unique measurable functionv : Ω → R
N such that

vχ{|u|<t} = ∇Tt(u) for a.e.x ∈ Ω, and for all t > 0,
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whereχE denotes the characteristic function of a measurable setE. Moreover, if
u belongs toW 1,1

0 (Ω), thenv coincides with the standard distributional gradient
of u.

Proof: The result follows from [3, Theorem 1.5], sinceTt(u) ∈ W
1,p(·)
0 (Ω) ⊂

W
1,p−
0 (Ω), for all t > 0.

The next result provides estimates in Marcinkiewicz spaces(and hence, by
Proposition 4, in Lebesgue spaces) for an entropy solution of (1).

Proposition 6. Assume(2)–(5) andf ∈ L1(Ω). If u is an entropy solution of(1)
then, for everyǫ > 0, there exist positive constantsM ,M ′, andγ, depending only
on ǫ, p(·),N , andΩ, such that

∫

{|u|>t}

tp
∗(x)/p′(x)−ǫ dx ≤M

(

‖f‖1

b

)γ

+M ′, for all t > 0.

Proof: Takingϕ = 0 in the entropy inequality (8) and using (2), we obtain

b

∫

Ω

|∇Tt(u)|
p(x) dx ≤

∫

{|u|≤t}

a(x,∇u) · ∇u dx

≤

∫

Ω

f(x) Tt(u) dx ≤ t‖f‖1,

for all t > 0. Therefore, definingψ := Tt(u)/t, we have, for allt > 0,
∫

Ω

tp(x)−1|∇ψ|p(x) dx =
1

t

∫

Ω

|∇Tt(u)|
p(x) dx ≤ M1 :=

‖f‖1

b
. (15)

On the other hand, using Sobolev inequality (13) and Lemma 1,we estimate
∫

{|u|>t}

tp
∗(x)/p′(x) dx =

∫

{|ψ|=1}

tp
∗(x)/p′(x)|ψ|p

∗(x) dx

≤

∫

Ω

(

t1/p
′(x)|ψ|

)p∗(x)

dx

≤
∥

∥

∥
t1/p

′(·)ψ
∥

∥

∥

α

p∗(·)

≤ Cα
∥

∥

∥
∇(t1/p

′(·)ψ)
∥

∥

∥

α

p(·)

≤ Cα

(
∫

Ω

|∇(t1/p
′(x)ψ)|p(x) dx

)α/β

, (16)
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where

α =







p∗+ if ‖t1/p
′(·)ψ‖p∗(·) ≥ 1

p∗− if ‖t1/p
′(·)ψ‖p∗(·) ≤ 1

and β =







p− if ‖∇(t1/p
′(·)ψ)‖p(·) ≥ 1

p+ if ‖∇(t1/p
′(·)ψ)‖p(·) ≤ 1.

Now, we note that
∫

Ω

|∇(t1/p
′(x)ψ)|p(x) dx ≤

∫

Ω

(

|∇t1/p
′(x)| |ψ| + t1/p

′(x) |∇ψ|
)p(x)

dx

≤ 2p+−1

(
∫

Ω

|∇t1/p
′(x)|p(x) |ψ|p(x) dx+

∫

Ω

tp(x)−1 |∇ψ|p(x) dx

)

≤ 2p+−1 (I +M1) , (17)

using (15) for the last inequality and defining

I :=

∫

Ω

|∇t1/p
′(x)|p(x) |ψ|p(x) dx.

Now, define

p̃ := ess sup
x∈Ω

{

(

|∇p(x)|

p(x)2

)p(x)
}

, (18)

which is finite due to (5), and note that, forǫ > 0, we have

(log t)p(x) ≤ (log t)p+ ≤

(

αp+

ǫβe

)p+

tǫβ/α, for all t ≥ e. (19)

Using the definition ofψ, (19), (12), and (15), we arrive at

I =
1

t

∫

Ω

(

|∇p|

p2

)p(x)

(log t)p(x) |Tt(u)|
p(x) dx

≤
p̃

t

(

αp+

ǫβe

)p+

tǫβ/α
∫

Ω

|Tt(u)|
p(x) dx

≤
p̃

t

(

αp+

ǫβe

)p+

tǫβ/αC ′

∫

Ω

|∇Tt(u)|
p(x) dx

≤ M1M2t
ǫβ/α (20)

for all t ≥ e, whereC ′ is a constant depending only onΩ, and

M2 := p̃

(

αp+

ǫβe

)p+

C ′. (21)



12 M. SANCHÓN AND J.M. URBANO

From (17) and (20), we obtain
∫

Ω

|∇(t1/p
′(x)ψ)|p(x) dx ≤ 2p+−1M1t

ǫβ/α

(

M2 +
1

tǫβ/α

)

, for all t ≥ e.

Finally, from (16) and the last inequality,
∫

{|u|>t}

tp
∗(x)/p′(x)−ǫ dx ≤ Cα

(

2p+−1M1

(

M2 +
1

tǫβ/α

))α/β

≤ Cα

(

2p+−1‖f‖1

b

(

p̃

(

αp+

ǫβe

)p+

C ′ +
1

eǫβ/α

))α/β

≤ M

(

‖f‖1

b

)γ

, for all t ≥ e, (22)

with M = (C + 1)p
∗

+

(

2p+−1

(

p̃

(

p∗+p+

ǫp−

)p+

C ′ + 1

))p∗+/p−

and

γ =







p∗+/p− if ‖f‖1 ≥ b

p∗−/p+ if ‖f‖1 < b.

For0 < t < e, we have
∫

{|u|>t}

tp
∗(x)/p′(x)−ǫ dx ≤ |Ω| e(p∗/p′)+−ǫ =: M ′,

and, combining both estimates, the result follows.

Remark 1. Recalling from (9) that

q0(·) =
N(p(·) − 1)

N − p(·)
=
p(·)∗

p(·)′
,

Proposition 6 yieldsu ∈ M q(·)(Ω), for all 0 ≪ q(·) ≪ q0(·). We note that for
p(·) ≡ p we have that the constantM2 defined in (21) is zero, and hence, from
(22), one obtainsu ∈M q0(Ω), with

q0 =
N(p− 1)

N − p
=
p∗

p′
,

recovering the result obtained in [5]. For the nonconstant case, it remains an open
problem to show thatu ∈M q0(·)(Ω).

Remark 2. We stress that the dependence of the constantsM andγ onp(·) occurs
solely through the constantsp−, p+, andp̃ given by (18).
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As a consequence of Proposition 4 and Proposition 6 we obtainthe following
result.

Corollary 1. Assume(2)–(5) andf ∈ L1(Ω). Let

q0(·) =
N (p(·) − 1)

N − p(·)
=
p∗(·)

p′(·)
. (23)

If u is an entropy solution to problem(1), thenu ∈ Lq(·)(Ω), for all q(·) such that
0 ≪ q(·) ≪ q0(·). Moreover, there exist constantsM0,M1, andγ, depending only
onp(·), q(·),N , andΩ, such that

∫

Ω

|u|q(x) dx ≤ 2|Ω| +M0

(

‖f‖1

b

)γ

+M1. (24)

Proof: Let 0 ≪ q(·) ≪ q0(·) and defineδ := (q0 − q)− > 0. By Proposition 6,
∫

{|u|>t}

tq0(x)−δ/2 dx ≤M

(

‖f‖1

b

)γ

+M ′, for all t > 0,

whereM , M ′, andγ are positive constants, depending only onδ, p(·),N , andΩ.
From Proposition 4, we have

∫

Ω

|u|q(x) dx ≤ 2|Ω| + (q0 − δ)+
2

δ

{

M

(

‖f‖1

b

)γ

+M ′

}

,

since(q0 − δ/2 − q)− = δ/2 > 0; estimate (24) now follows with

M0 = 2(q0 − δ)+
M

δ
and M1 = 2(q0 − δ)+

M ′

δ
.

Now, we provea priori estimates in Marcinkiewicz spaces for the weak gradient
of an entropy solution.

Proposition 7. Assume(2)–(5) andf ∈ L1(Ω). Let u be an entropy solution of
(1). If there exists a positive constantM such that

∫

{|u|>t}

tq(x) dx ≤M, for all t > 0, (25)

then|∇u|α(·) ∈M q(·)(Ω), whereα(·) = p(·)/(q(·) + 1). Moreover,
∫

{|∇u|α(·)>t}
tq(x) dx ≤

‖f‖1

b
+M, for all t > 0.
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Proof: Using (25), the definition ofα(·), and (15) which still holds in this setting,
we have

∫

{|∇u|α(x)>t}

tq(x) dx ≤

∫

{|∇u|α(x)>t}∩{|u|≤t}

tq(x) dx+

∫

{|u|>t}

tq(x) dx

≤

∫

{|u|≤t}

tq(x)
(

|∇u|α(x)

t

)p(x)/α(x)

dx+M

=
1

t

∫

{|u|≤t}

|∇Tt(u)|
p(x) dx+M

≤
‖f‖1

b
+M, for all t > 0.

As a consequence of Proposition 4, Proposition 6, and Proposition 7, we obtain
the following result.

Corollary 2. Assume(2)–(5) andf ∈ L1(Ω). Let

q1(·) =
N (p(·) − 1)

N − 1
.

If u is an entropy solution of problem(1) then|∇u|q(·) ∈ L1(Ω), for all q(·) such
that 0 ≪ q(·) ≪ q1(·). Moreover, there exist constantsM2, M3, M4, and γ,
depending only onp(·), q(·),N , andΩ, such that

∫

Ω

|∇u|q(x) dx ≤ 2|Ω| +M2
‖f‖1

b
+M3

(

‖f‖1

b

)γ

+M4. (26)

Proof: Let 0 ≪ q(·) ≪ q1(·) and define̺ := (q1 − q)− > 0. Since

q1(·) =
p(·)

q0(·) + 1
q0(·),

with q0(·) given by (23), we have thatr(·) defined by

q(·) =
p(·)

q0(·) − ̺+ 1
r(·), satisfies (q0 − r)− > ̺.

By Proposition 7 (and using also Proposition 6), we have|∇u|α(·) ∈M q0(·)−̺(Ω),
with α(·) = p(·)/(q0(·) − ̺+ 1), and

∫

{|∇u|α(·)>t}
tq0(x)−̺ dx ≤

‖f‖1

b
+M

(

‖f‖1

b

)γ

+M ′, for all t > 0,
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whereM , M ′, andγ are positive constants, depending only on̺, p(·),N , andΩ.
From Proposition 4, we have, since(q0 − r − ̺)− > 0,

∫

Ω

|∇u|q(x) dx =

∫

Ω

|∇u|α(x)r(x) dx

≤ 2|Ω| +
q0+ − (q0 − r)−
(q0 − ̺− r)−

{

‖f‖1

b
+M

(

‖f‖1

b

)γ

+M ′

}

,

and the result follows with

M2 =
q0+ − (q0 − r)−
(q0 − ̺− r)−

, M3 = MM2, and M4 = M ′M2.

4.Uniqueness of entropy solutions
In this section we establish the uniqueness of an entropy solution, extending the

result obtained in [5] for a constant exponent.

Theorem 3. Assume(2)–(5) andf ∈ L1(Ω). If u andv are entropy solutions of
(1) thenu = v, a.e. inΩ.

Proof: Let h > 0. We write the entropy inequality (8) corresponding to the solu-
tion u, with Thv as test function, and to the solutionv, with Thu as test function.
Upon addition, we get
∫

{|u−Thv|≤t}

a(x,∇u) · ∇(u− Thv) dx+

∫

{|v−Thu|≤t}

a(x,∇v) · ∇(v − Thu) dx

≤

∫

Ω

f(x)
(

Tt(u− Thv) + Tt(v − Thu)
)

dx. (27)

Define
E1 := {|u− v| ≤ t, |v| ≤ h} ,

E2 := E1 ∩ {|u| ≤ h} , and E3 := E1 ∩ {|u| > h} .

We start with the first integral in (27). Using assumption (2), we obtain
∫

{|u−Thv|≤t}

a(x,∇u) · ∇(u− Thv) dx ≥

∫

E1

a(x,∇u) · ∇(u− v) dx

≥

∫

E2

a(x,∇u) · ∇(u− v) dx−

∫

E3

a(x,∇u) · ∇v dx. (28)
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By assumption (3) and Ḧolder inequality (11), we estimate the last integral in the
above expression as follows

∣

∣

∣

∣

∫

E3

a(x,∇u) · ∇v dx

∣

∣

∣

∣

≤ β

∫

E3

(

j(x) + |∇u|p(x)−1
)

|∇v| dx

≤ 2β

(

‖j‖p′(·) +
∥

∥

∥
|∇u|p(x)−1

∥

∥

∥

p′(·),{h<|u|≤h+t}

)

‖∇v‖p(·),{h−t<|v|≤h}. (29)

The last expression converges to zero ash tends to infinity, by Proposition 6,
inequality (14), and the following bound for an entropy solutionw

∫

{h<|w|≤h+t}

|∇w|p(x) dx ≤
1

b

∫

{h<|w|≤h+t}

a(x,∇w) · ∇w dx ≤
t

b
‖f‖1,

which follows from takingϕ = Th(w) as test function in the entropy inequality
(8). Therefore, from (28) and (29), we obtain
∫

{|u−Thv|≤t}

a(x,∇u) · ∇(u− Thv) dx ≥ I +

∫

E2

a(x,∇u) · ∇(u− v) dx, (30)

whereI converges to zero ash tends to infinity. We may adopt the same procedure
to treat the second integral in (27) and obtain
∫

{|v−Thu|≤t}

a(x,∇v) · ∇(v− Thu) dx ≥ II −

∫

E2

a(x,∇v) · ∇(u− v) dx, (31)

whereII converges to zero ash tends to infinity.
Next, we consider the right hand side of inequality (27). Noting that

Tt(u− Thv) + Tt(v − Thu) = 0 in {|u| ≤ h, |v| ≤ h} ,

we obtain
∣

∣

∣

∣

∫

Ω

f(x)
(

Tt(u− Thv) + Tt(v − Thu)
)

dx

∣

∣

∣

∣

≤ 2t

(
∫

{|u|>h}

|f | dx+

∫

{|v|>h}

|f | dx

)

.

Since, both meas{|u| > h} and meas{|v| > h} tend to zero ash goes to infinity
(by Proposition 6), the right hand side of inequality (27) tends to zero ash goes to
infinity. From this assertion, (27), (30), and (31) we obtain, lettingh→ +∞,

∫

{|u−v|≤t}

(a(x,∇u)− a(x,∇v)) · ∇(u− v) dx ≤ 0, for all t > 0.

By assumption (4), we conclude that∇u = ∇v, a.e. inΩ.
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Finally, from Poincaŕe inequality (12), we have
∫

Ω

|Tt(u− v)|p(x) dx ≤ C

∫

Ω

|∇(Tt(u− v))|p(x) dx = 0, for all t > 0,

and henceu = v, a.e. inΩ.

5.Existence of weak and entropy solutions
Let (fn)n be a sequence of bounded functions, strongly converging tof ∈

L1(Ω) and such that
‖fn‖1 ≤ ‖f‖1, for all n. (32)

We consider the problem
{

−div(a(x,∇u)) = fn(x) in Ω,
u = 0 on ∂Ω.

(33)

It follows from a standard modification of the arguments in [16, Theorem 4.2]
that problem (33) has a unique weak energy solutionun ∈ W

1,p(·)
0 (Ω). Our aim

is to prove that these approximate solutionsun tend, asn goes to infinity, to a
measurable functionu which is an entropy solution of the limit problem (1). We
will divide the proof into several steps and use as main tool thea priori estimates
for un and its gradient obtained in section 3. Much of the reasoningis based on
the ideas developed in [7], [5], and [3]; although some of thearguments are not
new, we have decided to present a self-contained proof for the sake of clarity and
readability.

We start by proving that the sequence(un)n of solutions of problem (33) con-
verges in measure to a measurable functionu.

Proposition 8. Assume(2)–(5), f ∈ L1(Ω), and(32). Letun ∈ W
1,p(·)
0 (Ω) be the

solution of (33). The sequence(un)n is Cauchy in measure. In particular, there
exists a measurable functionu such thatun → u in measure.

Proof: Let s > 0 and define

E1 := {|un| > t} , E2 := {|um| > t} , and E3 := {|Tt(un) − Tt(um)| > s} ,

wheret > 0 is to be fixed. We note that

{|un − um| > s} ⊂ E1 ∪ E2 ∪ E3,

and hence,

meas{|un − um| > s} ≤ meas(E1) + meas(E2) + meas(E3). (34)
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Let ǫ > 0. Using (32) and the uniform bound given by Proposition 6, we choose
t = t(ǫ) such that

meas(E1) ≤ ǫ/3 and meas(E2) ≤ ǫ/3. (35)

On the other hand, takingϕ = 0 in the entropy condition (8) forun, yields
∫

Ω

|∇Tt(un)|
p(x) dx ≤

‖f‖1

b
t, for all n ≥ 0, (36)

using (2) and (32). Therefore, we can assume, by Sobolev embedding (13), that
(Tt(un))n is a Cauchy sequence inLq(·)(Ω), for all 1 ≤ q(·) ≪ p∗(·). Conse-
quently, there exists a measurable functionu such that

Tt(un) → Tt(u), in Lq(·)(Ω) and a.e.

Thus,

meas(E3) ≤

∫

Ω

(

|Tt(un) − Tt(um)|

s

)q(x)

dx ≤
ǫ

3

for all n,m ≥ n0(s, ǫ).
Finally, from (34), (35), and the last estimate, we obtain that

meas{|un − um| > s} ≤ ǫ, for all n,m ≥ n0(s, ǫ), (37)

i.e., (un)n is a Cauchy sequence in measure.

In order to prove that the sequence(∇un)n converges in measure to the weak
gradient ofu we need two technical lemmas. The first one, is an extension of
Lemma 6.1 in [5].

Lemma 2. Let (vn)n be a sequence of measurable functions. Ifvn converges in
measure tov and is uniformly bounded inLq(·)(Ω), for some1 ≪ q(·) ∈ L∞(Ω),
thenvn → v strongly inL1(Ω).

Proof: Note first thatLq(·)(Ω) ⊂ Lq−(Ω), and hence we may assume(vn)n to be
uniformly bounded inLq−(Ω). Using this fact and Ḧolder inequality, we obtain

∫

Ω

|vm − vn| dx =

∫

{|vm−vn|≤s}

|vm − vn| dx+

∫

{|vm−vn|>s}

|vm − vn| dx

≤ |Ω|s+ meas({|vm − vn| > s})1/q′
−‖vm − vn‖q−

≤ |Ω|s+ C meas({|vm − vn| > s})1/q′
−, (38)

for all s > 0.
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Takings small enough in (38) and using the convergence in measure of(vn)n,
we obtain that, for allǫ > 0, there existsn0 = n0(ǫ) such that‖vm− vn‖1 < ǫ, for
all m,n ≥ n0(ǫ).

The second technical lemma is a standard fact in measure theory (cf. [20]).

Lemma 3. Let (X,M, µ) be a measure space such thatµ(X) < +∞. Consider
a measurable functionγ : X → [0,+∞] such that

µ({x ∈ X : γ(x) = 0}) = 0.

Then, for everyǫ > 0, there existsδ > 0 such that

µ(A) < ǫ, for all A ∈ M with

∫

A

γ dµ < δ.

We can now prove the convergence in measure of the weak gradients, the last
ingredient in the proof of existence.

Proposition 9. Assume(2)–(5), f ∈ L1(Ω), and(32). Letun ∈ W
1,p(·)
0 (Ω) be the

solution of (33). The following assertions hold:
(i) ∇un converges in measure to the weak gradient ofu.
(ii) a(x,∇un) converges toa(x,∇u) strongly inL1(Ω).
(iii) a(x,∇u) ∈ Lq(·)(Ω), for all 1 ≤ q(·) ≪ N/(N − 1).
(iv) u and∇u satisfy(24)and (26).

Proof: (i) We claim that(∇un)n is Cauchy in measure. Indeed, lets > 0, and
consider

E1 := {|∇un| > h} ∪ {|∇um| > h}, E2 := {|un − um| > t},

and

E3 := {|∇un| ≤ h, |∇um| ≤ h, |un − um| ≤ t, |∇un −∇um| > s},

whereh andt will be chosen later. We note that

{|∇un −∇um| > s} ⊂ E1 ∪ E2 ∪ E3. (39)

Let ǫ > 0. By Proposition 7, we may chooseh = h(ǫ) large enough such
that meas(E1) ≤ ǫ/3 for all n,m ≥ 0. On the other hand, by Proposition 8
(see (37)), we have that meas(E2) ≤ ǫ/3 for all n,m ≥ n0(t, ǫ). Moreover, by
assumption (4), there exists a real valued functionγ : Ω → [0,+∞] such that
meas{x ∈ Ω : γ(x) = 0} = 0 and

(a(x, ξ) − a(x, ξ′)) · (ξ − ξ′) ≥ γ(x), (40)
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for all ξ, ξ′ ∈ R
N such that|ξ|, |ξ′| ≤ h, |ξ − ξ′| ≥ s, for a.e.x ∈ Ω (cf. [7]). Let

δ = δ(ǫ) be given from Lemma 3, replacingǫ andA by ǫ/3 andE3, respectively.
Using (40), the equation, and (32), we obtain

∫

E3

γ(x) dx ≤

∫

E3

(a(x,∇un) − a(x,∇um)) · ∇(un − um) dx ≤ 2‖f‖1t < δ,

choosingt = δ/(4‖f‖1). From Lemma 3, it follows that meas(E3) < ǫ/3.
Thus, using (39) and the estimates obtained forE1, E2, andE3, it follows that
meas({|∇un −∇um| ≥ s}) ≤ ǫ, for all n,m ≥ n0(s, ǫ), proving the claim.

As a consequence,(∇un)n converges in measure to some measurable function
v. Finally, since(∇Ttun)n is uniformly bounded inLp(·)(Ω), for all t > 0, it
converges weakly to∇(Ttu) in L1(Ω). Therefore,v coincides with the weak
gradient ofu (see Proposition 5).

(ii) – (iii) By part (i) and Nemitskii Theorem (cf. [24, p. 20]), we obtain that
a(x,∇un) converges toa(x,∇u) in measure. Moreover, using (3) we have

|a(x,∇un)| ≤ β
(

j(x) + |∇un|
p(x)−1

)

,

with j ∈ Lp
′(·)(Ω) ⊂ Lq(·)(Ω), for all 1 ≤ q(·) ≪ N/(N − 1). By Corol-

lary 2 applied toun and (32), we have that(|∇un|p(·)−1)n is uniformly bounded in
Lq(·)(Ω), for all 1 ≤ q(·) ≪ N/(N − 1). Hence, using Lemma 2, we obtain that
a(x,∇un) converges toa(x,∇u) strongly inL1(Ω), anda(x,∇u) ∈ Lq(·)(Ω), for
all 1 ≤ q(·) ≪ N/(N − 1).

(iv) It follows taking the limit asn → +∞ in Corollaries 1 and 2 applied toun
and using (32).

We finally proof the main theorems in this paper.

Proof (Theorem1). Fix t > 0, ϕ ∈ W
1,p(·)
0 (Ω) ∩ L∞(Ω), and chooseTt(un − ϕ)

as a test function in (6), withu replaced byun, to obtain
∫

Ω

a(x,∇un) · ∇Tt(un − ϕ) dx =

∫

Ω

fn(x) Tt(un − ϕ) dx.

We note that this choice can be made using a standard density argument. We
now pass to the limit in the previous identity. Concerning the right hand side, the
convergence is obvious sincefn converges strongly inL1 to f andTt(un − ϕ)
converges weakly-∗ in L∞, and a.e., toTt(u− ϕ).
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Next, we write the left hand side as
∫

{|un−ϕ|≤t}

a(x,∇un) · ∇un dx−

∫

{|un−ϕ|≤t}

a(x,∇un) · ∇ϕ dx (41)

and note that{|un − ϕ| ≤ t} is a subset of{|un| ≤ t + ‖ϕ‖∞}. Hence, taking
s = t+ ‖ϕ‖∞, we rewrite the second integral in (41) as

∫

{|un−ϕ|≤t}

a(x,∇Ts(un)) · ∇ϕ dx.

Sincea(x,∇Ts(un)) is uniformly bounded in(Lp
′(·)(Ω))N (by assumption (3) and

(36)) and Proposition 9 (i), we have that it converges weaklyto a(x,∇Ts(u)) in
(Lp

′(·)(Ω))N . Therefore the last integral converges to
∫

{|u−ϕ|≤t}

a(x,∇u)) · ∇ϕ dx.

The first integral in (41) is nonnegative, by (2), and it converges a.e. by Propo-
sition 9. It follows from Fatou lemma that

∫

{|u−ϕ|≤t}

a(x,∇u) · ∇u dx ≤ lim inf
n→+∞

∫

{|un−ϕ|≤t}

a(x,∇un) · ∇un dx.

Gathering results, we obtain
∫

Ω

a(x,∇u) · ∇Tt(u− ϕ) dx ≤

∫

Ω

f(x)Tt(u− ϕ) dx,

i.e., u is an entropy solution of (1).
The uniqueness follows from Theorem 3 and the regularity properties from

Corollaries 1 and 2.

Proof (Theorem2). Letun ∈ W
1,p(·)
0 (Ω) be the solution of (33) andu given by

Proposition 8. Using Proposition 9 (ii) and the strong convergence inL1 of thefn
to f , we obtain (6) passing to the limit in

∫

Ω

a(x,∇un) · ∇ϕ dx =

∫

Ω

fn(x)ϕ dx,

for all ϕ ∈ C∞
0 (Ω). From Corollary 2,

u ∈ W
1,q(·)
0 (Ω), for all 1 ≤ q(·) ≪

N(p(·) − 1)

N − 1
,

since2 − 1/N ≪ p(·).
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The uniqueness follows from Theorem 3 and the integrabilityof u from Corol-
lary 1.
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DEPARTAMENTO DE MATEMÁTICA , UNIVERSIDADE DE COIMBRA , 3001-454 COIMBRA , PORTUGAL

E-mail address: jmurb@mat.uc.pt


