BOUNDEDNESS OF THE EXTREMAL SOLUTION OF SOME p-LAPLACIAN PROBLEMS

MANEL SANCHÓN

ABSTRACT: In this article we consider the p-Laplace equation $-\Delta_p u = \lambda f(u)$ on a smooth bounded domain of \mathbb{R}^N with zero Dirichlet boundary conditions. Under adequate assumptions on f we prove that the extremal solution of this problem is in the energy class $W_0^{1,p}(\Omega)$ independently of the domain. Moreover, we prove its boundedness for some range of dimensions depending on the nonlinearity f. We also obtain L^q and $W^{1,q}$ estimates for such a solution.

1. Introduction

Let Ω be a smooth bounded domain of \mathbb{R}^N and p > 1. We consider the following problem for the p-Laplacian operator $-\Delta_p u := -\text{div}(|\nabla u|^{p-2}\nabla u)$,

$$\begin{cases}
-\Delta_p u = \lambda f(u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases} \tag{1}_{\lambda,p}$$

where λ is a positive parameter and f satisfies the following assumptions:

$$f$$
 is an increasing C^2 function such that $f(0) > 0$, $f(t)^{1/(p-1)}$ is superlinear at infinity $(i.e., f(t)/t^{p-1} \to +\infty \text{ as } t \to +\infty)$, (2)

and

$$(f(t) - f(0))^{1/(p-1)}$$
 is convex in $[0, +\infty)$. (3)

We say that $u \in W_0^{1,p}(\Omega)$ is a solution of $(1_{\lambda,p})$ if $f(u) \in L^1(\Omega)$ and

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \cdot \nabla \varphi \, dx = \lambda \int_{\Omega} f(u) \varphi \, dx, \quad \text{for all } \varphi \in C_0^1(\Omega). \tag{4}$$

This kind of solutions are usually known as weak energy solutions. For short, we will refer to them simply as solutions.

On the other hand, we say that $u \in W_0^{1,p}(\Omega)$ is a regular solution of $(1_{\lambda,p})$ if $f(u) \in L^{\infty}(\Omega)$ and satisfies (4). Using regularity results for degenerate

Received February 07, 2006.

This work was partially supported by CMUC/FCT and MCyT grants BMF2002-04613-C03, MTM2005-07660-C02.

elliptic equations, one has that every regular solution belongs to $C^{1,\alpha}(\overline{\Omega})$ for some $\alpha > 0$ (see [7], [22], and [17]).

Under assumption (2), Cabré and the author [5] proved the existence of an extremal parameter $\lambda^* \in (0, \infty)$ such that: if $\lambda < \lambda^*$ then problem $(1_{\lambda,p})$ admits a regular solution u_{λ} which is minimal among all other possible solutions, and if $\lambda > \lambda^*$ then problem $(1_{\lambda,p})$ admits no regular solution. Moreover, minimal solutions are semi–stable in the sense that the second variation of the energy functional associated to $(1_{\lambda,p})$ is nonnegative definite (see Definition 8 below). Using this property [5] establishes that

$$u^* := \lim_{\lambda \uparrow \lambda^*} u_{\lambda} \tag{5}$$

is a solution of $(1_{\lambda^*,p})$ whenever the nonlinearity f(u) makes its growth comparable to u^m ; u^* is called the extremal solution. As a particular case, the power nonlinearity $f(u) = (1+u)^m$ with m > p-1 is studied, obtaining that u^* is a bounded (and hence regular) solution if

$$N < G(m, p) := \frac{p}{p-1} \left(1 + \frac{mp}{m - (p-1)} + 2\sqrt{\frac{m}{m - (p-1)}} \right).$$
 (6)

Ferrero [9] also obtained (independently of [5]) the boundedness of the extremal solution when N < G(m, p) and proved using phase plane techniques that u^* is unbounded if $N \ge G(m, p)$ and the domain Ω is the unit ball of \mathbb{R}^N .

García-Azorero, Peral, and Puel [11, 12] studied in detail problem $(1_{\lambda,p})$ when $f(u) = e^u$. They proved that u^* is a solution independently of Ω , and that u^* is a bounded solution if in addition

$$N < F(p) := p + \frac{4p}{p-1}. (7)$$

Moreover, if $N \geq p + 4p/(p-1)$ and the domain Ω is the unit ball of \mathbb{R}^N then u^* is unbounded.

All these results were first obtained for the Laplacian problem $(1_{\lambda,2})$. Crandall and Rabinowitz [6] obtained the existence of the branch of minimal solutions $\{(\lambda, u_{\lambda}) : \lambda \in (0, \lambda^*)\}$ and proved that u^* is a solution of the extremal problem $(1_{\lambda^*,2})$ for the exponential and power nonlinearities. Moreover, they proved the boundedness of the extremal solution in the range of dimensions commented before (for p = 2). Joseph and Lundgren [14] made a detailed analysis for both nonlinearities when the domain is the unit ball of \mathbb{R}^N . Using

phase plane techniques, they obtained that u^* is an unbounded solution if $N \geq G(m,2)$ for $f(u) = (1+u)^m$, and if $N \geq F(2) = 10$ for $f(u) = e^u$, where G and F are defined in (6) and (7), respectively. Brezis et al. [2] proved, under assumptions (2) and (3), that u^* is a weak solution of $(1_{\lambda^*,2})$. Moreover, they proved nonexistence results for $\lambda > \lambda^*$. Brezis and Vázquez [3] gave a characterization of singular semi–stable solutions and, as consequence, obtained the results in [14] using variational methods instead of phase plane techniques. In [19], [10], [18], [23], and [8] other results can be found about the extremal solution of problem $(1_{\lambda^*,2})$.

In [21] it is proved, assuming only (2), (3), and $p \ge 2$, that u^* is a solution of $(1_{\lambda^*,p})$ if N < p(1+p'), where p' = p/(p-1). Moreover, if $p+p' \le N < p(1+p')$ then $u^* \in L^q(\Omega)$, for all $1 \le q < \bar{q}_0$, and $u^* \in W_0^{1,q}(\Omega)$, for all $1 \le q < \bar{q}_1$, where

$$\bar{q}_0 := (p-1)\frac{N}{N - (p+p')}$$
 and $\bar{q}_1 := (p-1)\frac{N}{N - (1+p')}$.

It is also proved that $u^* \in L^{\infty}(\Omega)$ if N . These results extend a work due to Nedev [20] for <math>p = 2, establishing that u^* is a solution if $N \leq 5$, and that u^* is bounded if $N \leq 3$. It is still an open problem to prove the boundedness (or not) of the extremal solution when $p(1+p') \leq N < F(p) = p + 4p'$ even for p = 2 (note that when $f(u) = e^u$ and the domain Ω is the unit ball of \mathbb{R}^N , u^* is an unbounded solution if $N \geq F(p)$).

The main results of this work use the semi–stability property of minimal solutions to establish the boundedness of the extremal solution for a large class of nonlinearities. The first one applies to every convex f when 1 and to some convex <math>f when p = 2.

Theorem 1. Assume (2) and (3). Let u^* be the function defined in (5). The following assertions hold:

(i) If f is a convex function, 1 , and

$$N \le H(p) := p + \frac{2p}{p-1}(1 + \sqrt{2-p}),\tag{8}$$

then u^* is a regular solution of $(1_{\lambda^*,p})$. In particular, $u^* \in L^{\infty}(\Omega)$. (ii) Let

$$\tau_{-} := \liminf_{t \to +\infty} \frac{(f(t) - f(0))f''(t)}{f'(t)^{2}}.$$
 (9)

If p = 2, $0 < \tau_-$, and $N \leq 6$, then u^* is a regular solution of $(1_{\lambda^*,2})$. In particular, $u^* \in L^{\infty}(\Omega)$.

First, we note that part (ii) extends the main result in [20] under an additional assumption on $f: 0 < \tau_-$. Second, as we said before, if $N \ge F(p)$, where F is defined in (7), then the extremal solution u^* is not necessarily bounded. Since 1 < F(p) - H(p) < 4, for all 1 , the optimal or larger dimension ensuring the boundedness will differ from (8) at most by four.

The next result extends Theorem 1, and give L^q and $W_0^{1,q}$ estimates for the extremal solution of $(1_{\lambda^*,p})$. Its proof uses some of the arguments appearing in [20] and [21].

Theorem 2. Assume (2) and (3). Let u^* and τ_- be defined in (5) and (9), respectively. If

$$\frac{p-2}{p-1} < \tau_- \tag{10}$$

then u^* is a solution of $(1_{\lambda^*,p})$. Moreover the following assertions hold: (i) If in addition

$$N < N(p) := p + \frac{2p}{p-1} \left(1 + \sqrt{1 - (p-1)(1 - \tau_{-})} \right), \tag{11}$$

then $u^* \in L^{\infty}(\Omega)$.

(ii) If in addition $N \geq N(p)$ then $u^* \in L^q(\Omega)$, for all $1 \leq q < q_0$, and $u^* \in W_0^{1,q}(\Omega)$, for all $1 \leq q < q_1$, where

$$q_0 := \frac{\left(p + 2\sqrt{1 - (p - 1)(1 - \tau_-)}\right) N}{N - N(p)}$$

and

$$q_1 := \frac{(p-1)\left(p + 2\sqrt{1 - (p-1)(1 - \tau_-)}\right)N}{(p-1)N - 2\left(p + \sqrt{1 - (p-1)(1 - \tau_-)}\right)}.$$
 (12)

For $f(u) = e^u$ we have that $\tau_- = 1$ and hence N(p) = F(p), where F defined in (7). Therefore, Theorem 2 (i) recovers the boundedness of the extremal solution for the exponential nonlinearity. It also extends the main results in [21] under the assumption (10). However, $(p-2)/(p-1) \leq \tau_-$ whenever (3) holds. Indeed, defining $h(t) := (f(t) - f(0))^{1/(p-1)}$ and using

(3) one obtains that $h''(t) \geq 0$ for all $t \geq 0$, or equivalently,

$$\frac{(f(t) - f(0))f''(t)}{f'(t)^2} \ge \frac{p-2}{p-1}$$
 for all $t \ge 0$.

Finally, it is easy to check that (10) implies the existence of positive constants c and m > p-1 such that $f(t) \ge c(1+t)^m$ for all $t \ge 0$. Hence, we are assuming more than the superlinarity of $f(t)^{1/(p-1)}$ at infinity.

Theorem 2 (i) applied to $f(u) = (1+u)^m$ with m > p-1, does not recovers the results commented before. Using Lemma 3.2 in [5] we improve Theorem 2 for some reaction terms f(u) that make its growth comparable to a power of u.

Theorem 3. Assume (2), (3), and that there exist positive constants m and c such that

$$0 \le f(t) \le c(1+t)^m, \quad \text{for all} \quad t \ge 0. \tag{13}$$

Let u^* and τ_- be defined in (5) and (9), respectively. If $(p-2)/(p-1) < \tau_-$ and

$$N < \frac{p}{p-1} \left(1 + \frac{mp}{m - (p-1)} + \frac{2m\sqrt{1 - (p-1)(1 - \tau_{-})}}{m - (p-1)} \right), \tag{14}$$

then u^* is a regular solution of $(1_{\lambda^*,p})$. In particular, $u^* \in L^{\infty}(\Omega)$.

For $f(u) = (1+u)^m$ with m > p-1, we have

$$\frac{p-2}{p-1} < \tau_{-} = \frac{m-1}{m}.$$

Therefore, by Theorem 3 applied to $f(u) = (1+u)^m$ with m > p-1, we obtain that $u^* \in L^{\infty}(\Omega)$ if N < G(m,p), where G is defined in (6). As a consequence, this result is optimal for the pure power nonlinearity.

Finally, we give a consequence of Theorem 2 and Theorem 3. This result takes into account the relation between assumption (13) and

$$\tau_{+} := \limsup_{t \to +\infty} \frac{(f(t) - f(0))f''(t)}{f'(t)^{2}} < 1.$$
(15)

Theorem 4. Assume (2) and (3). Let u^* , τ_- , and τ_+ be defined in (5), (9), and (15), respectively. If $\tau_- > (p-2)/(p-1)$ then u^* is a solution of $(1_{\lambda^*,p})$. Moreover the following assertions hold:

(i) Assume $\tau_{+} < 1$. If in addition

$$N < \frac{p}{p-1} \left(1 + \frac{p}{1 - (p-1)(1 - \tau_{+})} + \frac{2\sqrt{1 - (p-1)(1 - \tau_{-})}}{1 - (p-1)(1 - \tau_{+})} \right), \quad (16)$$

then $u^* \in L^{\infty}(\Omega)$.

(ii) Assume $\tau_{+} \geq 1$. If in addition

$$N < N(p) = p + \frac{2p}{p-1} \left(1 + \sqrt{1 - (p-1)(1 - \tau_{-})} \right), \tag{17}$$

then $u^* \in L^{\infty}(\Omega)$.

(iii) Assume $\tau_{-} = \tau_{+}$. If in addition

$$N < F(p) = p + \frac{4p}{p-1},$$

then $u^* \in L^{\infty}(\Omega)$.

We remark that part (iii) in this theorem is sharp in the sense that there exists a nonlinearity f and a domain Ω such that the extremal solution u^* is unbounded if $N \geq F(p)$. Recently, Cabré, Capella, and the author [4] proved, when Ω is the unit ball of \mathbb{R}^N and f is a general locally Lipschitz function, the boundedness of the extremal solution if N < F(p). As we said before, this fact remains open for general domains. Theorem 4 gives a positive answer to this question for some nonlineaties.

Finally, we note that in all our results we are assuming $(p-2)/(p-1) < \tau_-$. Using the *a priori* estimates obtained in [21] and Lemma 3.2 in [5], it is possible to obtain analogous regularity results when $\tau_- = (p-2)/(p-1)$ and (13) (or (15)) holds. For instance, it can be proved that u^* is bounded for all N if $\tau = \tau_- = \tau_+ = (p-2)/(p-1)$. By Theorem 4, one expects to obtain the last assertion, since the function appearing in the right-hand side of (16) tends to infinity as τ goes to (p-2)/(p-1).

The paper is organized as follows. In section 2 we give some known results. In section 3, we prove the existence and regularity of the extremal solution under suitable hypotheses on f which include the assumptions in Theorems 1 and 2 (see Proposition 10 below). In section 4 we prove Theorems 1 and 2. Finally, in section 5, we prove Theorems 3 and 4.

2. Known results

We consider

$$\begin{cases}
-\Delta_p u = g(x) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega,
\end{cases}$$
(18)

where $g \in L^q(\Omega)$ for some $q \geq 1$.

The following result can be found in [13] or in [1].

Lemma 5. Assume that $g \in L^q(\Omega)$, for some $q \ge 1$, and that u is a solution of (18). The following assertions hold:

(i) If q > N/p then $u \in L^{\infty}(\Omega)$. Moreover,

$$||u||_{\infty} \le C||g||_q^{\frac{1}{p-1}},$$

where C is a constant depending only on N, p, q, and $|\Omega|$.

(ii) If q = N/p then $u \in L^r(\Omega)$ for all $1 \le r < +\infty$. Moreover,

$$||u||_r \le C||g||_q^{\frac{1}{p-1}},$$

where C is a constant depending only on N, p, r, and $|\Omega|$.

(iii) If $1 \le q < N/p$ then $|u|^r \in L^1(\Omega)$ for all $0 < r < r_1$, where $r_1 := (p-1)Nq/(N-qp)$. Moreover,

$$||u|^r||_1^{1/r} \le C||g||_q^{\frac{1}{p-1}},$$

where C is a constant depending only on N, p, q, r, and $|\Omega|$.

To obtain the estimates for the gradient of the extremal solution we will use the following regularity result which follows from Theorem 1.6 in [15].

Lemma 6. If $g \in L^q(\Omega)$ for some $q \geq \tilde{q}$, where

$$\tilde{q} := \frac{Np}{(p-1)N + p},\tag{19}$$

then there exists a unique solution u of (18). If in addition q < N/p, then $u \in W_0^{1,r}(\Omega)$, where r = (p-1)Nq/(N-q).

Remark 7. We note that the existence and uniqueness of a solution is well known if $f \in W^{-1,p'}(\Omega)$ (see [16]), and hence, if $f \in L^{\tilde{q}}(\Omega)$ (since $\tilde{q} = (p^*)'$, where $p^* = Np/(N-p)$ corresponds to the critical Sobolev embedding).

Now, we recall the definition of semi-stable solution introduced in [5] and give a technical lemma that we will use to prove Theorem 3 (see Lemma 3.2 in [5]).

Definition 8. Let $u \in W_0^{1,p}(\Omega)$ be a solution of $(1_{\lambda,p})$. Define

$$A_u := W_0^{1,p}(\Omega) \qquad \text{if } p \ge 2,$$

and

$$A_u := \{ \psi \in W_0^{1,p}(\Omega) : |\psi| \le Cu \text{ and } |\nabla \psi| \le C|\nabla u| \text{ in } \Omega, \text{ for some constant } C \}$$
 if $1 .$

We say that u is semi-stable if

$$\int_{\{\nabla u\neq 0\}} |\nabla u|^{p-2} \left\{ (p-2) \left(\frac{\nabla u}{|\nabla u|} \cdot \nabla \psi \right)^2 + |\nabla \psi|^2 \right\} dx - \lambda \int_{\Omega} f'(u) \psi^2 dx \ge 0, \quad (20)$$
 for all $\psi \in A_u$.

We note that the left-hand side of (20) is the second variation of the energy functional associated to $(1_{\lambda,p})$ and that it is well defined on the set of admissible functions A_u (see [5] for more comments).

Lemma 9. Assume that there exist positive constants m and c such that

$$0 \le f(t) \le c(1+t)^m$$
, for all $t \ge 0$.

Let u be a solution of $(1_{\lambda,p})$. If $f(u) \in L^q(\Omega)$ for some $q \geq 1$ satisfying

$$\left(1 - \frac{p-1}{m}\right)N < qp,$$

then

$$||u||_{\infty} \leq C$$

where C is a constant depending only on N, m, p, q, $|\Omega|$, c, and $||\lambda f(u)||_q$.

3. Preliminaries

The proof of all the results stated in the introduction is based in the following proposition.

Proposition 10. Assume (2) and (3), and define $\tilde{f}(t) := f(t) - f(0)$. If there exists $\gamma \geq 1/(p-1)$ such that

$$\lim_{t \to +\infty} \sup(p-1)\gamma^2 \frac{\int_0^t \tilde{f}(s)^{2\gamma-2} f'(s)^2 ds}{\tilde{f}(t)^{2\gamma-1} f'(t)} < 1, \tag{21}$$

then $u^* = \lim_{\lambda \uparrow \lambda^*} u_{\lambda}$ is a solution of $(1_{\lambda^*,p})$. Moreover, the following assertions hold:

(i) If $N < (2\gamma + 1)p$ then $u^* \in L^{\infty}(\Omega)$. In particular $f(u^*) \in L^{\infty}(\Omega)$.

(ii) If $N \geq (2\gamma + 1)p$ then $u^* \in L^q(\Omega)$, for all $1 \leq q < \tilde{q}_0$, and $f(u^*) \in L^q(\Omega)$, for all $1 \leq q < \tilde{q}_1$, where

$$\tilde{q}_0 := \frac{((p-1)(2\gamma+1)-1)N}{N-(2\gamma+1)p}$$
 and $\tilde{q}_1 := \frac{(2\gamma+1-1/(p-1))N}{N-p/(p-1)}$.

Remark 11. First, we note that for $N=(2\gamma+1)p$, we have $\tilde{q_0}=+\infty$ and hence, in this case, one obtains that $u^* \in L^q(\Omega)$ for all $1 \leq q < +\infty$.

On the other hand, we want to explain the relation between assumptions (3) and (21). Let $h(t) = \tilde{f}(t)^{1/(p-1)}$. By (3), h is a convex function in $[0, +\infty)$. In particular, $h'(t) \ge h(t)/t$ for all t > 0, or equivalently,

$$f'(t) \ge (p-1)\frac{\tilde{f}(t)}{t}, \quad \text{for all } t > 0.$$
 (22)

Therefore, under assumption (2), we obtain that f'(t) > 0 for all t > 0. Moreover, since $h'(s) \leq h'(t)$, for all 0 < s < t, we have

$$f'(s) \le \left(\frac{\tilde{f}(t)}{\tilde{f}(s)}\right)^{\frac{2-p}{p-1}} f'(t), \quad \text{for all } 0 < s < t.$$

From this inequality, we obtain

$$\int_0^t \tilde{f}(s)^{2\gamma - 2} f'(s)^2 ds \le \left(2\gamma - \frac{1}{p - 1}\right)^{-1} \tilde{f}(t)^{2\gamma - 1} f'(t), \quad \text{for all } t > 0,$$

and as a consequence, we get

$$\limsup_{t \to +\infty} (p-1)\gamma^2 \frac{\int_0^t \tilde{f}(s)^{2\gamma - 2} f'(s)^2 ds}{\tilde{f}(t)^{2\gamma - 1} f'(t)} \le \frac{(p-1)\gamma^2}{2\gamma - 1/(p-1)}.$$
 (23)

We note that the right-hand side of this inequality is one for $\gamma = 1/(p-1)$. In this sense, hypothesis (21) is not very restrictive whenever (3) holds.

Finally, we have to mention that hypothesis $(p-2)/(p-1) < \tau_{-}$ in our main results may be replaced by the weakest assumption (21) (see Lemma 12 below). However, for the sake of clarity, it seems better to consider $(p-2)/(p-1) < \tau_$ instead of (21). We also note that in Proposition 10 it is not necessary to assume that f is a C^2 function, but only C^1 . Moreover, as a consequence of Proposition 10 (i), one obtains that u^* is bounded if N ,since $\gamma \geq 1/(p-1)$.

Proof of Proposition 10. Let $\tilde{f}(t) = f(t) - f(0)$, $\lambda \in (0, \lambda^*)$, and let u_{λ} be the minimal solution of $(1_{\lambda,p})$. Recalling that $u_{\lambda} \in C^{1,\alpha}(\bar{\Omega})$ and the definition of $A_{u_{\lambda}}$ given in Definition 8, it is easy to check that $\psi := \tilde{f}(u_{\lambda})^{\gamma} \in A_{u_{\lambda}}$, since $\gamma \geq 1/(p-1)$. Therefore, taking ψ in the semi-stability condition (20), we obtain

$$\lambda \int_{\Omega} \tilde{f}(u_{\lambda})^{2\gamma} f'(u_{\lambda}) \ dx \le (p-1)\gamma^2 \int_{\Omega} \tilde{f}(u_{\lambda})^{2\gamma-2} f'(u_{\lambda})^2 |\nabla u_{\lambda}|^p \ dx. \tag{24}$$

Let $g'(t) := \tilde{f}(t)^{2\gamma-2} f'(t)^2$. Taking $\varphi = g(u_{\lambda})$ as a test function in (4), we have

$$\int_{\Omega} \tilde{f}(u_{\lambda})^{2\gamma - 2} f'(u_{\lambda})^{2} |\nabla u_{\lambda}|^{p} dx = \lambda \int_{\Omega} \tilde{f}(u_{\lambda}) g(u_{\lambda}) dx + \lambda f(0) \int_{\Omega} g(u_{\lambda}) dx.$$
 (25)

From (24) and (25), we obtain

$$\int_{\Omega} \tilde{f}(u_{\lambda})^{2\gamma} f'(u_{\lambda}) dx \le (p-1)\gamma^2 \left(\int_{\Omega} \tilde{f}(u_{\lambda}) g(u_{\lambda}) dx + f(0) \int_{\Omega} g(u_{\lambda}) dx \right). \tag{26}$$

Using (21) and (23), we obtain that

$$\limsup_{t \to +\infty} (p-1)\gamma^2 \frac{\tilde{f}(t)g(t)}{\tilde{f}(t)^{2\gamma}f'(t)} < 1$$

and

$$\lim_{t \to +\infty} \frac{g(t)}{\tilde{f}(t)^{2\gamma} f'(t)} = 0.$$

From these limits and (26), it follows that

$$\int_{\Omega} \tilde{f}(u_{\lambda})^{2\gamma} f'(u_{\lambda}) \ dx \le C,$$

where C, here and in the rest of the proof, is a constant independent of λ . Moreover, by (22), we obtain

$$\int_{\Omega} \frac{\tilde{f}(u_{\lambda})^{2\gamma+1}}{u_{\lambda}} dx \le C, \tag{27}$$

and hence, since $f(t)^{1/(p-1)}$ is superlinear at infinity by assumption (2), $f(u_{\lambda})$ is uniformly bounded in $L^{2\gamma+1-1/(p-1)}(\Omega)$.

If $N < (2\gamma + 1 - 1/(p-1))p$ then, by Lemma 5 (i), u_{λ} is uniformly bounded in $L^{\infty}(\Omega)$. Therefore $u^* = \lim_{\lambda \uparrow \lambda^*} u_{\lambda}$ is a regular extremal solution of $(1_{\lambda^*,p})$. This proves part of assertion (i).

Assume $N \ge (2\gamma + 1 - 1/(p-1))p$. Using Lemma 5 (ii)–(iii), we have that u_{λ} is uniformly bounded in $L^{r}(\Omega)$ for all

$$1 \le r < r_0 := \frac{(p-1)(2\gamma + 1 - 1/(p-1))N}{N - (2\gamma + 1 - 1/(p-1))p}.$$
 (28)

We note that $r_0 \ge p$ since $\gamma \ge 1/(p-1)$.

We will do an iterative process starting with r_0 . Assume that there exists $r_n \geq p$ such that u_{λ} is uniformly bounded in $L^r(\Omega)$ for all $1 \leq r < r_n$. Let

$$\alpha_n := \frac{2\gamma + 1}{1 + r_n}$$

and set $\Omega = \Omega_1 \cup \Omega_2$, where

$$\Omega_1 := \{ x \in \Omega : \tilde{f}(u_\lambda)^{2\gamma + 1} / u_\lambda > \tilde{f}(u_\lambda)^{2\gamma + 1 - \alpha_n} \}$$

and

$$\Omega_2 := \{ x \in \Omega : \tilde{f}(u_\lambda) \le u_\lambda^{1/\alpha_n} \}.$$

From (27) we have

$$\int_{\Omega_1} \tilde{f}(u_\lambda)^{2\gamma + 1 - \alpha_n} \, dx \le C.$$

On the other hand,

$$\int_{\Omega_2} \tilde{f}(u_\lambda)^r dx \le \int_{\Omega_2} u_\lambda^{\frac{r}{\alpha_n}} dx \le C, \quad \text{for all } 1 \le r < \alpha_n r_n.$$

Therefore,

$$f(u_{\lambda}) \in L^{r}(\Omega)$$
, for all $1 \le r < (2\gamma + 1) \frac{r_n}{1 + r_n} = 2\gamma + 1 - \alpha_n = \alpha_n r_n$. (29)

Using Lemma 5 again, the following assertions hold:

- 1. If $(1+r_n)N < (2\gamma+1)r_np$ then u_{λ} is uniformly bounded in $L^{\infty}(\Omega)$. As a consequence, $u^* = \lim_{\lambda \uparrow \lambda^*} u_{\lambda}$ is a solution of $(1_{\lambda^*,p})$.
- 2. If $(1+r_n)N \geq (2\gamma+1)r_np$ then u_{λ} is uniformly bounded in $L^r(\Omega)$, for all

$$1 \le r < r_{n+1} := \frac{(p-1)(2\gamma+1)r_nN}{(1+r_n)N - (2\gamma+1)r_np}.$$

We start the bootstrap argument with r_0 given in (28). If $N < (2\gamma + 1)p$ then assertion 1 holds for some n, and hence, part (i) in the proposition follows.

If $N \geq (2\gamma + 1)p$ then we obtain, by assertion 2, an increasing sequence with limit

$$r_{\infty} = \frac{((p-1)(2\gamma+1)-1)N}{N - (2\gamma+1)p}.$$

From this, assertion 2, and (29), it follow

$$u^* \in L^q(\Omega)$$
 for all $1 \le q < \frac{((p-1)(2\gamma+1)-1)N}{N-(2\gamma+1)p} = \tilde{q}_0$

and

$$f(u^*) \in L^q(\Omega)$$
 for all $1 \le q < \frac{(2\gamma + 1 - 1/(p-1))N}{N - p/(p-1)} = \tilde{q}_1$,

since all the estimates obtained for u_{λ} and $f(u_{\lambda})$ are independent of λ .

Finally, we prove that $u^* = \lim_{\lambda \uparrow \lambda^*} u_{\lambda}$ is a solution of $(1_{\lambda^*,p})$. Using $\gamma \ge 1/(p-1)$, we have

$$\tilde{q}_1 = \frac{(2\gamma + 1 - 1/(p-1))N}{N - p/(p-1)} \ge \frac{p^*}{p^* - 1},$$

where $p^* = Np/(N-p)$. Therefore, we obtain that $f(u_{\lambda})$ converges to $f(u^*)$ as $\lambda \uparrow \lambda^*$ in $L^{p^*/(p^*-1)}(\Omega)$ and also in $W^{-1,p'}(\Omega)$, since $L^{p^*/(p^*-1)}(\Omega) \subset W^{-1,p'}(\Omega)$. The continuity of $(-\Delta_p)^{-1}$ from $W^{-1,p'}(\Omega)$ to $W_0^{1,p}(\Omega)$ gives that u_{λ} converges, strongly in $W_0^{1,p}(\Omega)$, to u^* as $\lambda \uparrow \lambda^*$. Hence, we conclude that for each $\varphi \in W_0^{1,p}(\Omega)$,

$$\int_{\Omega} |\nabla u^*|^{p-2} \nabla u^* \cdot \nabla \varphi \, dx = \lim_{\lambda \uparrow \lambda^*} \int_{\Omega} |\nabla u_{\lambda}|^{p-2} \nabla u_{\lambda} \cdot \nabla \varphi \, dx
= \lim_{\lambda \uparrow \lambda^*} \lambda \int_{\Omega} f(u_{\lambda}) \, dx = \lambda^* \int_{\Omega} f(u^*) \varphi \, dx. \quad \blacksquare$$

4. Proof of Theorem 1 and Theorem 2

In order to prove Theorem 2 we need the following technical lemma.

Lemma 12. Assume (2) and (3). Let τ_{-} be defined in (9). If $\tau_{-} > (p-2)/(p-1)$ then every

$$\gamma \in \left(\frac{1}{p-1}, \frac{1+\sqrt{1-(p-1)(1-\tau_{-})}}{p-1}\right)$$

satisfies (21).

Proof. Let $\tau \in (0,1)$. We have the following equivalence:

$$(p-1)\gamma^{2} \frac{\int_{0}^{t} \tilde{f}(s)^{2\gamma-2} f'(s)^{2} ds}{\tilde{f}(t)^{2\gamma-1} f'(t)} < \tau$$

if and only if

$$G_{\gamma,\tau}(t) := (p-1)\gamma^2 \int_0^t \tilde{f}(s)^{2\gamma-2} f'(s)^2 ds - \tau \tilde{f}(t)^{2\gamma-1} f'(t) < 0.$$

We note that

$$G'_{\gamma,\tau}(t) = \left[(p-1)\gamma^2 - \tau(2\gamma - 1) - \tau \frac{\tilde{f}(t)f''(t)}{f'(t)^2} \right] \tilde{f}(t)^{2\gamma - 2} f'(t)^2.$$

Let $\epsilon_0 := \tau_- - (p-2)/(p-1) > 0$ and note that for every $\epsilon \in (0, \epsilon_0)$ there exists $t_0 = t_0(\epsilon) > 0$ such that

$$G'_{\gamma,\tau}(t) \le [(p-1)\gamma^2 - \tau(2\gamma - 1 + \tau_- - \epsilon)]\tilde{f}(t)^{2\gamma - 2}f'(t)^2$$
, for all $t \ge t_0$. (30)

Noting that $\tau_0 := (p-1)(1-\tau_-+\epsilon) < 1$ (for all $\epsilon \in (0,\epsilon_0)$), we obtain that

$$(p-1)\gamma^2 - (2\gamma - 1 + \tau_- - \epsilon)\tau < 0, (31)$$

for all $\tau \in (\tau_0, 1)$ and

$$\gamma \in \left[\frac{\tau}{p-1}, \frac{\tau + \sqrt{\tau(\tau - (p-1)(1 - \tau_- + \epsilon))}}{p-1} \right). \tag{32}$$

Moreover, since $f(t)^{1/(p-1)}$ is superlinear at infinity and (22), we have

$$\lim_{t \to +\infty} \tilde{f}(t)^{2\gamma - 2} f'(t)^2 = +\infty, \quad \text{for all } \gamma \ge \frac{1}{p - 1}.$$

Now, using the last limit, (31), and (30), we obtain

$$\lim_{t \to +\infty} G'_{\gamma,\tau}(t) = -\infty,$$

for all $\epsilon \in (0, \epsilon_0)$, $\tau \in (\tau_0, 1)$, and γ satisfying (32). In particular,

$$\lim_{t \to +\infty} G_{\gamma,\tau}(t) = -\infty$$

for the same range of parameters. The result follows from the last limit and the equivalence given at the beginning of the proof, since the arbitrariness of ϵ and τ .

As a consequence of Proposition 10 and Lemma 12 we prove Theorem 2.

Proof of Theorem 2. Assume $\tau_- > (p-2)/(p-1)$. By Lemma 12, every

$$\gamma \in \left(\frac{1}{p-1}, \frac{1+\sqrt{1-(p-1)(1-\tau_{-})}}{p-1}\right)$$

satisfies (21). Therefore, u^* is a solution of $(1_{\lambda^*,p})$ by Proposition 10.

- (i) If in addition N < N(p), where N(p) is defined in (11), then the boundedness of u^* follows from Proposition 10 (i) and the arbitrariness of γ .
- (ii) If in addition $N \geq N(p)$, then Proposition 10 (ii) and the arbitrariness of γ give that $u^* \in L^q(\Omega)$, for all $1 \leq q < q_0$, and $f(u^*) \in L^q(\Omega)$, for all $1 \leq q < \bar{q}_1$, where

$$q_0 = \left(p + 2\sqrt{1 - (p - 1)(1 - \tau_-)}\right) \frac{N}{N - N(p)}$$

and

$$\bar{q}_1 = \left(p + 2\sqrt{1 - (p-1)(1-\tau_-)}\right) \frac{N}{(p-1)N - p}.$$

Let $\tilde{q} = (p^*)'$ be defined in (19). Noting that $\bar{q}_1 \leq N/p$ (since $N \geq N(p)$) and $\tilde{q} < \bar{q}_1$, we have $f(u^*) \in L^q(\Omega)$ for all $\tilde{q} \leq q < \bar{q}_1 \leq N/p$. Therefore, by Lemma 6, we obtain that $u^* \in W_0^{1,r}(\Omega)$ with $1 \leq r < (p-1)N\bar{q}_1/(N-\bar{q}_1)$. We conclude the proof by noting that the exponent q_1 given in (12) coincides with $(p-1)N\bar{q}_1/(N-\bar{q}_1)$.

Now, we prove Theorem 1 as a corollary of Theorem 2.

Proof of Theorem 1. (i) Assume f convex and 1 . Under these assumptions it is clear that

$$\frac{p-2}{p-1} < 0 \le \tau_-.$$

Therefore, from Theorem 2, we obtain that u^* is a bounded solution of $(1_{\lambda^*,p})$ if

$$N < N(p) = p + \frac{2p}{p-1} \left[1 + \sqrt{1 - (p-1)(1-\tau_{-})} \right].$$

We conclude noting that

$$N(p) \ge H(p) = p + \frac{2p}{p-1} \left[1 + \sqrt{2-p} \right] > 6,$$

where H is given in (8).

(ii) Assume $0 < \tau_{-}$ and p = 2. By Theorem 2, we obtain that u^* is a bounded solution of $(1_{\lambda^*,p})$ if

$$N < N(2) = 2 + 4(1 + \sqrt{\tau_{-}}).$$

The assertion and the theorem follow noting that N(2) > 6.

5. Proof of Theorem 3 and Theorem 4

We start proving Theorem 3 as a consequence of Proposition 10 and Lemmas 12 and 9.

Proof of Theorem 3. Assume $\tau_- > (p-2)/(p-1)$ and let N(p) be given in (11). If N < N(p) then the assertion follows from Theorem 2 (i). Thus, we may assume $N \ge N(p)$. It follows from Lemma 12 and Proposition 10 that u^* is a solution of $(1_{\lambda^*,p})$ and

$$f(u^*) \in L^q(\Omega)$$
 for all $q < \bar{q}_1 = \left(p + 2\sqrt{1 - (p-1)(1 - \tau_-)}\right) \frac{N}{(p-1)N - p}$.

By Lemma 9, we obtain that $u^* \in L^{\infty}(\Omega)$ if

$$(1 - \frac{p-1}{m})N < p\bar{q}_1,$$

or equivalently, if (14) holds.

In order to prove Theorem 4, we need the following technical result that states a relation between assumptions (13) and (15).

Lemma 13. Let f be a positive C^2 function such that f'(t) > 0, for all t > 0. Let τ_+ be given in (15). If $\tau_+ < 1$ then, for every $\epsilon \in (0, 1 - \tau_+)$, there exists a positive constant c depending in ϵ such that

$$f(t) \le c(1+t)^{\frac{1}{1-(\tau_++\epsilon)}}, \quad for \ all \quad t \ge 0.$$

Proof. Let $\epsilon \in (0, 1 - \tau_+)$. By definition of τ_+ there exists $t_0 = t_0(\epsilon)$ such that $\tilde{f}(t)f''(t) \leq (\tau_+ + \epsilon)f'(t)^2$, for all $t \geq t_0$. Therefore

$$[\ln f'(t)]' = \frac{f''(t)}{f'(t)} \le (\tau_+ + \epsilon) \frac{f'(t)}{\tilde{f}(t)} = (\tau_+ + \epsilon) [\ln \tilde{f}(t)]', \text{ for all } t \ge t_0.$$

Integrating the last expression with respect to t, we obtain

$$\ln\left(\frac{f'(t)}{f'(t_0)}\right) \le \ln\left(\frac{\tilde{f}(t)}{\tilde{f}(t_0)}\right)^{\tau_+ + \epsilon}, \quad \text{for all } t > t_0,$$

or equivalently,

$$\frac{f'(t)}{\tilde{f}(t)^{\tau_++\epsilon}} = \left(\frac{\tilde{f}(t)^{1-(\tau_++\epsilon)}}{1-(\tau_++\epsilon)}\right)' \le \frac{f'(t_0)}{\tilde{f}(t_0)^{\tau_++\epsilon}}, \quad \text{for all } t > t_0.$$

Integrating again, we obtain

$$f(t) \le \left[(1 - (\tau_+ + \epsilon)) \frac{f'(t_0)}{\tilde{f}(t_0)^{\tau_+ + \epsilon}} (t - t_0) + \tilde{f}(t_0)^{1 - (\tau_+ + \epsilon)} \right]^{\frac{1}{1 - (\tau_+ + \epsilon)}} + f(0),$$

for all $t \geq t_0$. The lemma follows easily from the last inequality.

Finally, we prove Theorem 4 as a consequence of the previous lemma, Theorem 2, and Theorem 3.

Proof of Theorem 4. Since $\tau_- > (p-2)/(p-1)$, u^* is a solution of $(1_{\lambda^*,p})$ by Theorem 2.

(i) Assume $\tau_+ < 1$. By Lemma 13, for every $\epsilon \in (0, 1 - \tau_+)$, there exists a positive constant c (depending in ϵ) such that

$$f(t) \le c(1+t)^{\frac{1}{1-(\tau_{+}+\epsilon)}}, \text{ for all } t \ge 0.$$

Therefore, from Theorem 3 with $m = 1/(1 - (\tau_+ + \epsilon))$, it follows that $u^* \in L^{\infty}(\Omega)$ if

$$N < \frac{p}{p-1} \left(1 + \frac{p}{1 - (p-1)(1 - (\tau_+ + \epsilon))} + \frac{2\sqrt{1 - (p-1)(1 - \tau_-)}}{1 - (p-1)(1 - (\tau_+ + \epsilon))} \right).$$

Hence, we obtain the assertion by the arbitrariness of ϵ .

- (ii) It is clear from Theorem 2 (i).
- (iii) We conclude the proof noting that the right-hand side of inequalities

(16) and (17) is bigger or equal than
$$F(p) = p + 4p/(p-1)$$
.

Acknowledgments

The author would like to thank Xavier Cabré for useful conversations.

References

- [1] A. Alvino, L. Boccardo, V. Ferone, L. Orsina, G. Trombetti, Existence results for nonlinear elliptic equations with degenerate coercivity, Annali di Matematica 182 (2003), 53–79.
- [2] H. Brezis, T. Cazenave, Y. Martel, A. Ramiandrisoa, Blow up for $u_t \Delta u = g(u)$ revisited, Adv. Differential Equations 1 (1996), 73–90.
- [3] H. Brezis, J.L. Vázquez, Blow-up solutions of some nonlinear elliptic problems, Rev. Mat. Complut. 10 (1997), 443–469.
- [4] X. Cabré, A. Capella, M. Sanchón, Regularity of radial semi-stable solutions of reaction equations involving the p-Laplacian, in preparation.

- [5] X. Cabré, M. Sanchón, Semi–stable and extremal solutions of reaction equations involving the p–Laplacian, submitted.
- [6] M.G. Crandall, P.H. Rabinowitz, Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems, Arch. Ration. Mech. Anal. 58 (1975), 207– 218.
- [7] E. Di Benedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal. 7 (1983), 827–850.
- [8] S. Eidelman, Y. Eidelman, On regularity of the extremal solution of the Dirichlet problem for some semilinear elliptic equations of the second order, Houston J. Math. 31 (2005), 957–960.
- [9] A. Ferrero, On the solutions of quasilinear elliptic equations with a polynomial-type reaction term, Adv. Differential Equations 9 (2004), 1201–1234.
- [10] T. Gallouët, F. Mignot, J.P. Puel, Quelques résultats sur le problème $-\Delta u = \lambda e^u$, C. R. Acad. Sci. Paris 307 (1988), 289–292.
- [11] J. García-Azorero, I. Peral, On an Emden-Fowler type equation, Nonlinear Anal. 18 (1992), 1085–1097.
- [12] J. García–Azorero, I. Peral, J.P. Puel, Quasilinear problemes with exponential growth in the reaction term, Nonlinear Anal. 22 (1994), 481–498.
- [13] N. Grenon, L^r estimates for degenerate elliptic problems, Potential Anal. 16 (2002), 387–392.
- [14] D.D. Joseph, T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Ration. Mech. Anal. 49 (1973), 241–269.
- [15] J. Kinnunen, S. Zhou, A boundary estimate for nonlinear equations with discontinuous coefficients, Differential Integral Equations 14 (2001), 475–492.
- [16] J. Leray, J.L. Lions, Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97–107.
- [17] G.M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 11 (1988), 1203–1219.
- [18] Y. Martel, Uniqueness of weak extremal solutions of nonlinear elliptic problems, Houston J. Math. 23 (1997), 161–168.
- [19] F. Mignot, J.P. Puel, Sur une classe de problèmes non linéaires avec nonlinéarité positive, croissante, convexe, Comm. Partial Differential Equations 5 (1980), 791–836.
- [20] G. Nedev, Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris 330 (2000), 997–1002.
- [21] M. Sanchón, Regularity of the extremal solution of some nonlinear elliptic problemes involving the p-Laplacian, submitted.
- [22] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), 126–150.
- [23] D. Ye, F. Zhou, Boundedness of the extremal solution for semilinear elliptic problems, Commun. Contemp. Math. 4 (2002), 547–558.

Manel Sanchón

Centro de Matemática, Universidade de Coimbra, 3001–454 Coimbra, Portugal

 $E\text{-}mail\ address{:}\ \texttt{msanchon@mat.uc.pt}$