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BOUNDEDNESS OF THE EXTREMAL SOLUTION OF
SOME p−LAPLACIAN PROBLEMS

MANEL SANCHÓN

Abstract: In this article we consider the p−Laplace equation −∆pu = λf(u) on
a smooth bounded domain of R

N with zero Dirichlet boundary conditions. Under
adequate assumptions on f we prove that the extremal solution of this problem is
in the energy class W 1,p

0
(Ω) independently of the domain. Moreover, we prove its

boundedness for some range of dimensions depending on the nonlinearity f . We
also obtain Lq and W 1,q estimates for such a solution.

1. Introduction

Let Ω be a smooth bounded domain of R
N and p > 1. We consider the

following problem for the p−Laplacian operator −∆pu := −div(|∇u|p−2∇u),
{

−∆pu = λf(u) in Ω,
u = 0 on ∂Ω,

(1λ,p)

where λ is a positive parameter and f satisfies the following assumptions:

f is an increasing C2 function such that f(0) > 0, f(t)1/(p−1) is
superlinear at infinity (i.e., f(t)/tp−1 → +∞ as t→ +∞),

(2)

and

(f(t) − f(0))1/(p−1) is convex in [0,+∞). (3)

We say that u ∈W 1,p
0 (Ω) is a solution of (1λ,p) if f(u) ∈ L1(Ω) and

∫

Ω

|∇u|p−2∇u · ∇ϕ dx = λ

∫

Ω

f(u)ϕ dx, for all ϕ ∈ C1
0(Ω). (4)

This kind of solutions are usually known as weak energy solutions. For short,
we will refer to them simply as solutions.

On the other hand, we say that u ∈ W 1,p
0 (Ω) is a regular solution of (1λ,p)

if f(u) ∈ L∞(Ω) and satisfies (4). Using regularity results for degenerate
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elliptic equations, one has that every regular solution belongs to C1,α(Ω) for
some α > 0 (see [7], [22], and [17]).

Under assumption (2), Cabré and the author [5] proved the existence of
an extremal parameter λ∗ ∈ (0,∞) such that: if λ < λ∗ then problem
(1λ,p) admits a regular solution uλ which is minimal among all other possible
solutions, and if λ > λ∗ then problem (1λ,p) admits no regular solution.
Moreover, minimal solutions are semi–stable in the sense that the second
variation of the energy functional associated to (1λ,p) is nonnegative definite
(see Definition 8 below). Using this property [5] establishes that

u∗ := lim
λ↑λ∗

uλ (5)

is a solution of (1λ∗,p) whenever the nonlinearity f(u) makes its growth com-
parable to um; u∗ is called the extremal solution. As a particular case, the
power nonlinearity f(u) = (1+u)m with m > p−1 is studied, obtaining that
u∗ is a bounded (and hence regular) solution if

N < G(m, p) :=
p

p− 1

(

1 +
mp

m− (p− 1)
+ 2

√

m

m− (p− 1)

)

. (6)

Ferrero [9] also obtained (independently of [5]) the boundedness of the ex-
tremal solution when N < G(m, p) and proved using phase plane techniques
that u∗ is unbounded if N ≥ G(m, p) and the domain Ω is the unit ball of
R

N .
Garćıa–Azorero, Peral, and Puel [11, 12] studied in detail problem (1λ,p)

when f(u) = eu. They proved that u∗ is a solution independently of Ω, and
that u∗ is a bounded solution if in addition

N < F (p) := p+
4p

p− 1
. (7)

Moreover, if N ≥ p + 4p/(p − 1) and the domain Ω is the unit ball of R
N

then u∗ is unbounded.
All these results were first obtained for the Laplacian problem (1λ,2). Cran-

dall and Rabinowitz [6] obtained the existence of the branch of minimal so-
lutions {(λ, uλ) : λ ∈ (0, λ∗)} and proved that u∗ is a solution of the extremal
problem (1λ∗,2) for the exponential and power nonlinearities. Moreover, they
proved the boundedness of the extremal solution in the range of dimensions
commented before (for p = 2). Joseph and Lundgren [14] made a detailed
analysis for both nonlinearities when the domain is the unit ball of R

N . Using
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phase plane techniques, they obtained that u∗ is an unbounded solution if
N ≥ G(m, 2) for f(u) = (1+u)m, and if N ≥ F (2) = 10 for f(u) = eu, where
G and F are defined in (6) and (7), respectively. Brezis et al. [2] proved,
under assumptions (2) and (3), that u∗ is a weak solution of (1λ∗,2). More-
over, they proved nonexistence results for λ > λ∗. Brezis and Vázquez [3]
gave a characterization of singular semi–stable solutions and, as consequence,
obtained the results in [14] using variational methods instead of phase plane
techniques. In [19], [10], [18], [23], and [8] other results can be found about
the extremal solution of problem (1λ∗,2).

In [21] it is proved, assuming only (2), (3), and p ≥ 2, that u∗ is a solution of
(1λ∗,p) ifN < p(1+p′), where p′ = p/(p−1). Moreover, if p+p′ ≤ N < p(1+p′)
then u∗ ∈ Lq(Ω), for all 1 ≤ q < q̄0, and u∗ ∈ W 1,q

0 (Ω), for all 1 ≤ q < q̄1,
where

q̄0 := (p− 1)
N

N − (p+ p′)
and q̄1 := (p− 1)

N

N − (1 + p′)
.

It is also proved that u∗ ∈ L∞(Ω) if N < p + p′. These results extend a
work due to Nedev [20] for p = 2, establishing that u∗ is a solution if N ≤ 5,
and that u∗ is bounded if N ≤ 3. It is still an open problem to prove the
boundedness (or not) of the extremal solution when p(1 + p′) ≤ N < F (p) =
p + 4p′ even for p = 2 (note that when f(u) = eu and the domain Ω is the
unit ball of R

N , u∗ is an unbounded solution if N ≥ F (p)).
The main results of this work use the semi–stability property of minimal

solutions to establish the boundedness of the extremal solution for a large
class of nonlinearities. The first one applies to every convex f when 1 < p < 2
and to some convex f when p = 2.

Theorem 1. Assume (2) and (3). Let u∗ be the function defined in (5). The

following assertions hold:

(i) If f is a convex function, 1 < p < 2, and

N ≤ H(p) := p+
2p

p− 1
(1 +

√

2 − p), (8)

then u∗ is a regular solution of (1λ∗,p). In particular, u∗ ∈ L∞(Ω).
(ii) Let

τ− := lim inf
t→+∞

(f(t)− f(0))f ′′(t)

f ′(t)2
. (9)



4 M. SANCHÓN

If p = 2, 0 < τ−, and N ≤ 6, then u∗ is a regular solution of (1λ∗,2). In

particular, u∗ ∈ L∞(Ω).

First, we note that part (ii) extends the main result in [20] under an ad-
ditional assumption on f : 0 < τ−. Second, as we said before, if N ≥ F (p),
where F is defined in (7), then the extremal solution u∗ is not necessarily
bounded. Since 1 < F (p)−H(p) < 4, for all 1 < p < 2, the optimal or larger
dimension ensuring the boundedness will differ from (8) at most by four.

The next result extends Theorem 1, and give Lq and W 1,q
0 estimates for the

extremal solution of (1λ∗,p). Its proof uses some of the arguments appearing
in [20] and [21].

Theorem 2. Assume (2) and (3). Let u∗ and τ− be defined in (5) and (9),
respectively. If

p− 2

p− 1
< τ− (10)

then u∗ is a solution of (1λ∗,p). Moreover the following assertions hold:

(i) If in addition

N < N(p) := p+
2p

p− 1

(

1 +
√

1 − (p− 1)(1 − τ−)
)

, (11)

then u∗ ∈ L∞(Ω).
(ii) If in addition N ≥ N(p) then u∗ ∈ Lq(Ω), for all 1 ≤ q < q0, and

u∗ ∈ W 1,q
0 (Ω), for all 1 ≤ q < q1, where

q0 :=

(

p+ 2
√

1 − (p− 1)(1 − τ−)
)

N

N −N(p)

and

q1 :=
(p− 1)

(

p+ 2
√

1 − (p− 1)(1 − τ−)
)

N

(p− 1)N − 2
(

p+
√

1 − (p− 1)(1− τ−)
). (12)

For f(u) = eu we have that τ− = 1 and hence N(p) = F (p), where F
defined in (7). Therefore, Theorem 2 (i) recovers the boundedness of the
extremal solution for the exponential nonlinearity. It also extends the main
results in [21] under the assumption (10). However, (p − 2)/(p − 1) ≤ τ−
whenever (3) holds. Indeed, defining h(t) := (f(t) − f(0))1/(p−1) and using
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(3) one obtains that h′′(t) ≥ 0 for all t ≥ 0, or equivalently,

(f(t) − f(0))f ′′(t)

f ′(t)2
≥ p− 2

p− 1
for all t ≥ 0.

Finally, it is easy to check that (10) implies the existence of positive constants
c and m > p − 1 such that f(t) ≥ c(1 + t)m for all t ≥ 0. Hence, we are
assuming more than the superlinarity of f(t)1/(p−1) at infinity.

Theorem 2 (i) applied to f(u) = (1+u)m with m > p−1, does not recovers
the results commented before. Using Lemma 3.2 in [5] we improve Theorem 2
for some reaction terms f(u) that make its growth comparable to a power
of u.

Theorem 3. Assume (2), (3), and that there exist positive constants m and

c such that

0 ≤ f(t) ≤ c(1 + t)m, for all t ≥ 0. (13)

Let u∗ and τ− be defined in (5) and (9), respectively. If (p− 2)/(p− 1) < τ−
and

N <
p

p− 1

(

1 +
mp

m− (p− 1)
+

2m
√

1 − (p− 1)(1− τ−)

m− (p− 1)

)

, (14)

then u∗ is a regular solution of (1λ∗,p). In particular, u∗ ∈ L∞(Ω).

For f(u) = (1 + u)m with m > p− 1, we have

p− 2

p− 1
< τ− =

m− 1

m
.

Therefore, by Theorem 3 applied to f(u) = (1 + u)m with m > p − 1, we
obtain that u∗ ∈ L∞(Ω) if N < G(m, p), where G is defined in (6). As a
consequence, this result is optimal for the pure power nonlinearity.

Finally, we give a consequence of Theorem 2 and Theorem 3. This result
takes into account the relation between assumption (13) and

τ+ := lim sup
t→+∞

(f(t) − f(0))f ′′(t)

f ′(t)2
< 1. (15)

Theorem 4. Assume (2) and (3). Let u∗, τ−, and τ+ be defined in (5), (9),
and (15), respectively. If τ− > (p− 2)/(p− 1) then u∗ is a solution of (1λ∗,p).
Moreover the following assertions hold:
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(i) Assume τ+ < 1. If in addition

N <
p

p− 1

(

1 +
p

1 − (p− 1)(1 − τ+)
+

2
√

1 − (p− 1)(1 − τ−)

1 − (p− 1)(1 − τ+)

)

, (16)

then u∗ ∈ L∞(Ω).
(ii) Assume τ+ ≥ 1. If in addition

N < N(p) = p+
2p

p− 1

(

1 +
√

1 − (p− 1)(1 − τ−)
)

, (17)

then u∗ ∈ L∞(Ω).
(iii) Assume τ− = τ+. If in addition

N < F (p) = p+
4p

p− 1
,

then u∗ ∈ L∞(Ω).

We remark that part (iii) in this theorem is sharp in the sense that there
exists a nonlinearity f and a domain Ω such that the extremal solution u∗

is unbounded if N ≥ F (p). Recently, Cabré, Capella, and the author [4]
proved, when Ω is the unit ball of R

N and f is a general locally Lipschitz
function, the boundedness of the extremal solution if N < F (p). As we
said before, this fact remains open for general domains. Theorem 4 gives a
positive answer to this question for some nonlineaties.

Finally, we note that in all our results we are assuming (p−2)/(p−1) < τ−.
Using the a priori estimates obtained in [21] and Lemma 3.2 in [5], it is
possible to obtain analogous regularity results when τ− = (p−2)/(p−1) and
(13) (or (15)) holds. For instance, it can be proved that u∗ is bounded for
all N if τ = τ− = τ+ = (p− 2)/(p− 1). By Theorem 4, one expects to obtain
the last assertion, since the function appearing in the right-hand side of (16)
tends to infinity as τ goes to (p− 2)/(p− 1).

The paper is organized as follows. In section 2 we give some known results.
In section 3, we prove the existence and regularity of the extremal solution
under suitable hypotheses on f which include the assumptions in Theorems 1
and 2 (see Proposition 10 below). In section 4 we prove Theorems 1 and 2.
Finally, in section 5, we prove Theorems 3 and 4.
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2. Known results

We consider
{

−∆pu = g(x) in Ω,
u = 0 on ∂Ω,

(18)

where g ∈ Lq(Ω) for some q ≥ 1.
The following result can be found in [13] or in [1].

Lemma 5. Assume that g ∈ Lq(Ω), for some q ≥ 1, and that u is a solution

of (18). The following assertions hold:

(i) If q > N/p then u ∈ L∞(Ω). Moreover,

‖u‖∞ ≤ C‖g‖
1

p−1
q ,

where C is a constant depending only on N , p, q, and |Ω|.
(ii) If q = N/p then u ∈ Lr(Ω) for all 1 ≤ r < +∞. Moreover,

‖u‖r ≤ C‖g‖
1

p−1
q ,

where C is a constant depending only on N , p, r, and |Ω|.
(iii) If 1 ≤ q < N/p then |u|r ∈ L1(Ω) for all 0 < r < r1, where r1 :=
(p− 1)Nq/(N − qp). Moreover,

‖|u|r‖1/r
1 ≤ C‖g‖

1
p−1
q ,

where C is a constant depending only on N , p, q, r, and |Ω|.
To obtain the estimates for the gradient of the extremal solution we will

use the following regularity result which follows from Theorem 1.6 in [15].

Lemma 6. If g ∈ Lq(Ω) for some q ≥ q̃, where

q̃ :=
Np

(p− 1)N + p
, (19)

then there exists a unique solution u of (18). If in addition q < N/p, then

u ∈ W 1,r
0 (Ω), where r = (p− 1)Nq/(N − q).

Remark 7. We note that the existence and uniqueness of a solution is well

known if f ∈ W−1,p′(Ω) (see [16]), and hence, if f ∈ Lq̃(Ω) (since q̃ = (p∗)′,
where p∗ = Np/(N − p) corresponds to the critical Sobolev embedding).

Now, we recall the definition of semi–stable solution introduced in [5] and
give a technical lemma that we will use to prove Theorem 3 (see Lemma 3.2
in [5]).
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Definition 8. Let u ∈ W 1,p
0 (Ω) be a solution of (1λ,p). Define

Au := W 1,p
0 (Ω) if p ≥ 2,

and
Au := {ψ ∈ W 1,p

0 (Ω) : |ψ| ≤ Cu and |∇ψ| ≤ C|∇u|
in Ω, for some constant C} if 1 < p < 2.

We say that u is semi–stable if
∫

{∇u 6=0}
|∇u|p−2

{

(p− 2)(
∇u
|∇u| · ∇ψ)2 + |∇ψ|2

}

dx−λ
∫

Ω

f ′(u)ψ2dx ≥ 0, (20)

for all ψ ∈ Au.

We note that the left-hand side of (20) is the second variation of the en-
ergy functional associated to (1λ,p) and that it is well defined on the set of
admissible functions Au (see [5] for more comments).

Lemma 9. Assume that there exist positive constants m and c such that

0 ≤ f(t) ≤ c(1 + t)m, for all t ≥ 0.

Let u be a solution of (1λ,p). If f(u) ∈ Lq(Ω) for some q ≥ 1 satisfying
(

1 − p− 1

m

)

N < qp,

then

‖u‖∞ ≤ C,

where C is a constant depending only on N , m, p, q, |Ω|, c, and ‖λf(u)‖q.

3. Preliminaries

The proof of all the results stated in the introduction is based in the fol-
lowing proposition.

Proposition 10. Assume (2) and (3), and define f̃(t) := f(t) − f(0). If

there exists γ ≥ 1/(p− 1) such that

lim sup
t→+∞

(p− 1)γ2

∫ t

0

f̃(s)2γ−2f ′(s)2ds

f̃(t)2γ−1f ′(t)
< 1, (21)

then u∗ = limλ↑λ∗ uλ is a solution of (1λ∗,p). Moreover, the following asser-

tions hold:
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(i) If N < (2γ + 1)p then u∗ ∈ L∞(Ω). In particular f(u∗) ∈ L∞(Ω).
(ii) If N ≥ (2γ+1)p then u∗ ∈ Lq(Ω), for all 1 ≤ q < q̃0, and f(u∗) ∈ Lq(Ω),
for all 1 ≤ q < q̃1, where

q̃0 :=
((p− 1)(2γ + 1) − 1)N

N − (2γ + 1)p
and q̃1 :=

(2γ + 1 − 1/(p− 1))N

N − p/(p− 1)
.

Remark 11. First, we note that for N = (2γ + 1)p, we have q̃0 = +∞ and

hence, in this case, one obtains that u∗ ∈ Lq(Ω) for all 1 ≤ q < +∞.

On the other hand, we want to explain the relation between assumptions (3)
and (21). Let h(t) = f̃(t)1/(p−1). By (3), h is a convex function in [0,+∞).
In particular, h′(t) ≥ h(t)/t for all t > 0, or equivalently,

f ′(t) ≥ (p− 1)
f̃(t)

t
, for all t > 0. (22)

Therefore, under assumption (2), we obtain that f ′(t) > 0 for all t > 0.
Moreover, since h′(s) ≤ h′(t), for all 0 < s < t, we have

f ′(s) ≤
(

f̃(t)

f̃(s)

)
2−p

p−1

f ′(t), for all 0 < s < t.

From this inequality, we obtain
∫ t

0

f̃(s)2γ−2f ′(s)2ds ≤
(

2γ − 1

p− 1

)−1

f̃(t)2γ−1f ′(t), for all t > 0,

and as a consequence, we get

lim sup
t→+∞

(p− 1)γ2

∫ t

0

f̃(s)2γ−2f ′(s)2ds

f̃(t)2γ−1f ′(t)
≤ (p− 1)γ2

2γ − 1/(p− 1)
. (23)

We note that the right-hand side of this inequality is one for γ = 1/(p− 1).
In this sense, hypothesis (21) is not very restrictive whenever (3) holds.

Finally, we have to mention that hypothesis (p−2)/(p−1) < τ− in our main

results may be replaced by the weakest assumption (21) (see Lemma 12 below).
However, for the sake of clarity, it seems better to consider (p−2)/(p−1) < τ−
instead of (21). We also note that in Proposition 10 it is not necessary to

assume that f is a C2 function, but only C1. Moreover, as a consequence

of Proposition 10 (i), one obtains that u∗ is bounded if N < p + 2p/(p− 1),
since γ ≥ 1/(p− 1).
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Proof of Proposition 10. Let f̃(t) = f(t) − f(0), λ ∈ (0, λ∗), and let uλ be
the minimal solution of (1λ,p). Recalling that uλ ∈ C1,α(Ω̄) and the definition

of Auλ
given in Definition 8, it is easy to check that ψ := f̃(uλ)

γ ∈ Auλ
, since

γ ≥ 1/(p− 1). Therefore, taking ψ in the semi–stability condition (20), we
obtain

λ

∫

Ω

f̃(uλ)
2γf ′(uλ) dx ≤ (p− 1)γ2

∫

Ω

f̃(uλ)
2γ−2f ′(uλ)

2|∇uλ|p dx. (24)

Let g′(t) := f̃(t)2γ−2f ′(t)2. Taking ϕ = g(uλ) as a test function in (4), we
have
∫

Ω

f̃(uλ)
2γ−2f ′(uλ)

2|∇uλ|pdx = λ

∫

Ω

f̃(uλ)g(uλ) dx+ λf(0)

∫

Ω

g(uλ)dx. (25)

From (24) and (25), we obtain
∫

Ω

f̃(uλ)
2γf ′(uλ)dx ≤ (p−1)γ2

(
∫

Ω

f̃(uλ)g(uλ)dx+ f(0)

∫

Ω

g(uλ)dx

)

. (26)

Using (21) and (23), we obtain that

lim sup
t→+∞

(p− 1)γ2 f̃(t)g(t)

f̃(t)2γf ′(t)
< 1

and

lim
t→+∞

g(t)

f̃(t)2γf ′(t)
= 0.

From these limits and (26), it follows that
∫

Ω

f̃(uλ)
2γf ′(uλ) dx ≤ C,

where C, here and in the rest of the proof, is a constant independent of λ.
Moreover, by (22), we obtain

∫

Ω

f̃(uλ)
2γ+1

uλ
dx ≤ C, (27)

and hence, since f(t)1/(p−1) is superlinear at infinity by assumption (2), f(uλ)
is uniformly bounded in L2γ+1−1/(p−1)(Ω).

If N < (2γ+1−1/(p−1))p then, by Lemma 5 (i), uλ is uniformly bounded
in L∞(Ω). Therefore u∗ = limλ↑λ∗ uλ is a regular extremal solution of (1λ∗,p).
This proves part of assertion (i).
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Assume N ≥ (2γ+1− 1/(p− 1))p. Using Lemma 5 (ii)–(iii), we have that
uλ is uniformly bounded in Lr(Ω) for all

1 ≤ r < r0 :=
(p− 1)(2γ + 1 − 1/(p− 1))N

N − (2γ + 1 − 1/(p− 1))p
. (28)

We note that r0 ≥ p since γ ≥ 1/(p− 1).
We will do an iterative process starting with r0. Assume that there exists

rn ≥ p such that uλ is uniformly bounded in Lr(Ω) for all 1 ≤ r < rn. Let

αn :=
2γ + 1

1 + rn

and set Ω = Ω1 ∪ Ω2, where

Ω1 := {x ∈ Ω : f̃(uλ)
2γ+1/uλ > f̃(uλ)

2γ+1−αn}
and

Ω2 := {x ∈ Ω : f̃(uλ) ≤ u
1/αn

λ }.
From (27) we have

∫

Ω1

f̃(uλ)
2γ+1−αn dx ≤ C.

On the other hand,
∫

Ω2

f̃(uλ)
r dx ≤

∫

Ω2

uλ
r

αn dx ≤ C, for all 1 ≤ r < αnrn.

Therefore,

f(uλ) ∈ Lr(Ω), for all 1 ≤ r < (2γ + 1)
rn

1 + rn
= 2γ + 1 − αn = αnrn. (29)

Using Lemma 5 again, the following assertions hold:

1. If (1 + rn)N < (2γ + 1)rnp then uλ is uniformly bounded in L∞(Ω).
As a consequence, u∗ = limλ↑λ∗ uλ is a solution of (1λ∗,p).

2. If (1+ rn)N ≥ (2γ+1)rnp then uλ is uniformly bounded in Lr(Ω), for
all

1 ≤ r < rn+1 :=
(p− 1)(2γ + 1)rnN

(1 + rn)N − (2γ + 1)rnp
.

We start the bootstrap argument with r0 given in (28). If N < (2γ+1)p then
assertion 1 holds for some n, and hence, part (i) in the proposition follows.
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If N ≥ (2γ+1)p then we obtain, by assertion 2, an increasing sequence with
limit

r∞ =
((p− 1)(2γ + 1) − 1)N

N − (2γ + 1)p
.

From this, assertion 2, and (29), it follow

u∗ ∈ Lq(Ω) for all 1 ≤ q <
((p− 1)(2γ + 1) − 1)N

N − (2γ + 1)p
= q̃0

and

f(u∗) ∈ Lq(Ω) for all 1 ≤ q <
(2γ + 1 − 1/(p− 1))N

N − p/(p− 1)
= q̃1,

since all the estimates obtained for uλ and f(uλ) are independent of λ.
Finally, we prove that u∗ = limλ↑λ∗ uλ is a solution of (1λ∗,p). Using γ ≥

1/(p− 1), we have

q̃1 =
(2γ + 1 − 1/(p− 1))N

N − p/(p− 1)
≥ p∗

p∗ − 1
,

where p∗ = Np/(N − p). Therefore, we obtain that f(uλ) converges to
f(u∗) as λ ↑ λ∗ in Lp∗/(p∗−1)(Ω) and also in W−1,p′(Ω), since Lp∗/(p∗−1)(Ω) ⊂
W−1,p′(Ω). The continuity of (−∆p)

−1 from W−1,p′(Ω) to W 1,p
0 (Ω) gives that

uλ converges, strongly in W 1,p
0 (Ω), to u∗ as λ ↑ λ∗. Hence, we conclude that

for each ϕ ∈ W 1,p
0 (Ω),

∫

Ω

|∇u∗|p−2∇u∗ · ∇ϕ dx = lim
λ↑λ∗

∫

Ω

|∇uλ|p−2∇uλ · ∇ϕ dx

= lim
λ↑λ∗

λ

∫

Ω

f(uλ) dx = λ∗
∫

Ω

f(u∗)ϕ dx.

4. Proof of Theorem 1 and Theorem 2

In order to prove Theorem 2 we need the following technical lemma.

Lemma 12. Assume (2) and (3). Let τ− be defined in (9). If τ− >(p −
2)/(p− 1) then every

γ ∈
(

1

p− 1
,
1 +

√

1 − (p− 1)(1 − τ−)

p− 1

)

satisfies (21).
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Proof. Let τ ∈ (0, 1). We have the following equivalence:

(p− 1)γ2

∫ t

0

f̃(s)2γ−2f ′(s)2ds

f̃(t)2γ−1f ′(t)
< τ

if and only if

Gγ,τ (t) := (p− 1)γ2

∫ t

0

f̃(s)2γ−2f ′(s)2ds− τ f̃(t)2γ−1f ′(t) < 0.

We note that

G′
γ,τ (t) =

[

(p− 1)γ2 − τ(2γ − 1) − τ
f̃(t)f ′′(t)

f ′(t)2

]

f̃(t)2γ−2f ′(t)2.

Let ǫ0 := τ− − (p − 2)/(p − 1) > 0 and note that for every ǫ ∈ (0, ǫ0) there
exists t0 = t0(ǫ) > 0 such that

G′
γ,τ (t) ≤ [(p− 1)γ2− τ(2γ− 1+ τ−− ǫ)]f̃(t)2γ−2f ′(t)2, for all t ≥ t0. (30)

Noting that τ0 := (p− 1)(1− τ− + ǫ) < 1 (for all ǫ ∈ (0, ǫ0)), we obtain that

(p− 1)γ2 − (2γ − 1 + τ− − ǫ)τ < 0, (31)

for all τ ∈ (τ0, 1) and

γ ∈
[

τ

p− 1
,
τ +

√

τ(τ − (p− 1)(1 − τ− + ǫ))

p− 1

)

. (32)

Moreover, since f(t)1/(p−1) is superlinear at infinity and (22), we have

lim
t→+∞

f̃(t)2γ−2f ′(t)2 = +∞, for all γ ≥ 1

p− 1
.

Now, using the last limit, (31), and (30), we obtain

lim
t→+∞

G′
γ,τ (t) = −∞,

for all ǫ ∈ (0, ǫ0), τ ∈ (τ0, 1), and γ satisfying (32). In particular,

lim
t→+∞

Gγ,τ (t) = −∞

for the same range of parameters. The result follows from the last limit and
the equivalence given at the beginning of the proof, since the arbitrariness of
ǫ and τ .

As a consequence of Proposition 10 and Lemma 12 we prove Theorem 2.
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Proof of Theorem 2. Assume τ− > (p− 2)/(p− 1). By Lemma 12, every

γ ∈
(

1

p− 1
,
1 +

√

1 − (p− 1)(1 − τ−)

p− 1

)

satisfies (21). Therefore, u∗ is a solution of (1λ∗,p) by Proposition 10.
(i) If in addition N < N(p), where N(p) is defined in (11), then the bound-

edness of u∗ follows from Proposition 10 (i) and the arbitrariness of γ.
(ii) If in addition N ≥ N(p), then Proposition 10 (ii) and the arbitrariness

of γ give that u∗ ∈ Lq(Ω), for all 1 ≤ q < q0, and f(u∗) ∈ Lq(Ω), for all
1 ≤ q < q̄1, where

q0 =
(

p+ 2
√

1 − (p− 1)(1 − τ−)
) N

N −N(p)

and

q̄1 =
(

p+ 2
√

1 − (p− 1)(1 − τ−)
) N

(p− 1)N − p
.

Let q̃ = (p∗)′ be defined in (19). Noting that q̄1 ≤ N/p (since N ≥ N(p))
and q̃ < q̄1, we have f(u∗) ∈ Lq(Ω) for all q̃ ≤ q < q̄1 ≤ N/p. Therefore, by
Lemma 6, we obtain that u∗ ∈ W 1,r

0 (Ω) with 1 ≤ r < (p− 1)Nq̄1/(N − q̄1).
We conclude the proof by noting that the exponent q1 given in (12) coincides
with (p− 1)Nq̄1/(N − q̄1).

Now, we prove Theorem 1 as a corollary of Theorem 2.
Proof of Theorem 1. (i) Assume f convex and 1 < p < 2. Under these
assumptions it is clear that

p− 2

p− 1
< 0 ≤ τ−.

Therefore, from Theorem 2, we obtain that u∗ is a bounded solution of (1λ∗,p)
if

N < N(p) = p+
2p

p− 1

[

1 +
√

1 − (p− 1)(1− τ−)
]

.

We conclude noting that

N(p) ≥ H(p) = p+
2p

p− 1

[

1 +
√

2 − p
]

> 6,

where H is given in (8).
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(ii) Assume 0 < τ− and p = 2. By Theorem 2, we obtain that u∗ is a
bounded solution of (1λ∗,p) if

N < N(2) = 2 + 4(1 +
√
τ−).

The assertion and the theorem follow noting that N(2) > 6.

5. Proof of Theorem 3 and Theorem 4

We start proving Theorem 3 as a consequence of Proposition 10 and Lem-
mas 12 and 9.
Proof of Theorem 3. Assume τ− > (p − 2)/(p− 1) and let N(p) be given in
(11). If N < N(p) then the assertion follows from Theorem 2 (i). Thus, we
may assume N ≥ N(p). It follows from Lemma 12 and Proposition 10 that
u∗ is a solution of (1λ∗,p) and

f(u∗) ∈ Lq(Ω) for all q < q̄1 =
(

p+ 2
√

1 − (p− 1)(1 − τ−)
) N

(p− 1)N − p
.

By Lemma 9, we obtain that u∗ ∈ L∞(Ω) if

(1 − p− 1

m
)N < pq̄1,

or equivalently, if (14) holds.
In order to prove Theorem 4, we need the following technical result that

states a relation between assumptions (13) and (15).

Lemma 13. Let f be a positive C2 function such that f ′(t) > 0, for all t > 0.
Let τ+ be given in (15). If τ+ < 1 then, for every ǫ ∈ (0, 1− τ+), there exists

a positive constant c depending in ǫ such that

f(t) ≤ c(1 + t)
1

1−(τ++ǫ) , for all t ≥ 0.

Proof. Let ǫ ∈ (0, 1 − τ+). By definition of τ+ there exists t0 = t0(ǫ) such
that f̃(t)f ′′(t) ≤ (τ+ + ǫ)f ′(t)2, for all t ≥ t0. Therefore

[ln f ′(t)]′ =
f ′′(t)

f ′(t)
≤ (τ+ + ǫ)

f ′(t)

f̃(t)
= (τ+ + ǫ)[ln f̃(t)]′, for all t ≥ t0.

Integrating the last expression with respect to t, we obtain

ln

(

f ′(t)

f ′(t0)

)

≤ ln

(

f̃(t)

f̃(t0)

)τ++ǫ

, for all t > t0,
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or equivalently,

f ′(t)

f̃(t)τ++ǫ
=

(

f̃(t)1−(τ++ǫ)

1 − (τ+ + ǫ)

)′

≤ f ′(t0)

f̃(t0)τ++ǫ
, for all t > t0.

Integrating again, we obtain

f(t) ≤
[

(1 − (τ+ + ǫ))
f ′(t0)

f̃(t0)τ++ǫ
(t− t0) + f̃(t0)

1−(τ++ǫ)

]
1

1−(τ++ǫ)

+ f(0),

for all t ≥ t0. The lemma follows easily from the last inequality.
Finally, we prove Theorem 4 as a consequence of the previous lemma,

Theorem 2, and Theorem 3.
Proof of Theorem 4. Since τ− > (p− 2)/(p− 1), u∗ is a solution of (1λ∗,p) by
Theorem 2.

(i) Assume τ+ < 1. By Lemma 13, for every ǫ ∈ (0, 1 − τ+), there exists a
positive constant c (depending in ǫ) such that

f(t) ≤ c(1 + t)
1

1−(τ++ǫ) , for all t ≥ 0.

Therefore, from Theorem 3 with m = 1/(1 − (τ+ + ǫ)), it follows that u∗ ∈
L∞(Ω) if

N <
p

p− 1

(

1 +
p

1 − (p− 1)(1 − (τ+ + ǫ))
+

2
√

1 − (p− 1)(1 − τ−)

1 − (p− 1)(1 − (τ+ + ǫ))

)

.

Hence, we obtain the assertion by the arbitrariness of ǫ.
(ii) It is clear from Theorem 2 (i).
(iii) We conclude the proof noting that the right-hand side of inequalities

(16) and (17) is bigger or equal than F (p) = p+ 4p/(p− 1).
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