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MORE ON Q-MODULES

ISAR STUBBE

ABSTRACT: A. Joyal and M. Tierney showed that the internal suplattices in the topos of
sheaves on a locale are precisely the modules on that locale. Using a totally different
technique, I shall show a generalization of this result to the case of (ordered) sheaves
on a (small) quantaloid. Then I make a comment on module-equivalence versus sheaf-
equivalence, using a recent observation of B. Mesablishvili and the notion of ‘centre’ of a
quantaloid.
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1.Q-modules areQ-suplattices
Given any quantaloidQ, a new quantaloidIdm(Q) is built as follows: its ob-

jects are the idempotent arrows ofQ, and its arrows are “regular bimodules”.
Clearly there is a full embeddingi : Q // Idm(Q), sending an arrowf : A // B to
f : 1A

c // 1B. Note thatIdm(Q) is small wheneverQ is.

Lemma 1.1. If R is a quantaloid in which idempotents split, then, for any quan-
taloid Q,

− ◦ i : QUANT(Idm(Q), R) // QUANT(Q, R)

is an equivalence of quantaloids.

Sketch of proof: Given F : Q // R, we must defineF : Idm(Q) // R. But an
arrowb : e c // f in Idm(Q) is a diagram

A

e
** b

// B

f

tt
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2 I. STUBBE

in Q, satisfyinge ◦ e = e, f ◦ f = f , b ◦ e = b = f ◦ b. Applying F we have a
similar diagram inR, in which we can thus split the idempotents:

FA

Fe
½½ Fb

//

pe

²²

FB

Ff
©©

pf

²²

FAFe

se

OO

FBFf

sf

OO

Now put

F
(
b : e c // f

)
=

(
pf ◦ Fb ◦ se : FAFe

// FBFf

)

and verify that

(−) : QUANT(Q, R) // QUANT(Idm(Q), R)

gives the required inverse to− ◦ i. 2

Since idempotents split in the quantaloidSup, we have an important special case
of the above; recall thatMod(Q) = QUANT(Qop, Sup) is the quantaloid of so-
calledQ-modules.

Proposition 1.2.For any quantaloidQ,

− ◦ i : Mod(Idm(Q)) // Mod(Q)

is an equivalence of quantaloids.

With the work previously done in [Stubbe, 2004] we can record a corollary;
recall that for a small quantaloidQ, Cocont(Q) denotes the (locally cocompletely
ordered) category of cocompleteQ-categories and cocontinuous functors [Stubbe,
2005a].

Corollary 1.3. For a small quantaloidQ,

Cocont(Q) ' Mod(Q) ' Mod(Idm(Q)) ' Cocont(Idm(Q))

are (bi)equivalent locally ordered categories.

We will now study the monadicity ofMod(Q). Recall that a Kock–Z̈oberlein
doctrine on a locally ordered 2-categoryC is a monad

(T : C // C , η : IdC
+3 T, µ : T ◦ T +3 T )
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for which T (ηC) ≤ ηTC for anyC ∈ C . This precisely means that “T -structures
are adjoint to units” [Kock, 1995]. Further on we will encounter an instance of
the following abstract lemma.

Lemma 1.4.For locally ordered 2-categories and 2-functors as in

B ² o

W

ÃÃ
@@

@@
@@

@@
@@

@@
@
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V
>>}}}}}}}}}}}}}

>
U

++
C

F

ll

with W a local equivalence,W ◦ V = U , and η : idC
+3 U ◦ F the unit of the

involved adjunction, we get that

(1) F ◦W a V and its unitξ : IdB
+3 V ◦ (F ◦W ) satisfiesη ∗ idW = idV ∗ ξ,

that is,W (ξB) = ηWB for everyB ∈ B.

Writing T = U ◦F : C // C andS = V ◦ (F ◦W ) : B // B, these monads satisfy

(2) T ◦W = W ◦ S,
(3) if T is a KZ doctrine then

(a) alsoS is a KZ doctrine,
(b) B ∈ B is anS-algebra if and only ifWB is aT -algebra,
(c) for A ∈ A , UA is aT -algebra if and only ifV A is anS-algebra,
(d) if A ' C T thenA ' BS.

Proof : To prove thatF ◦W a V , observe that forB ∈ B andC ∈ C ,

B(B, V C)

applyW
²²

A (WB, WV C)

use thatU = WV

A (WB, UC)

use thatF a U
²²

C (FWB, C)
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are all equivalences (recall thatW is supposed to be a local equivalence). Putting
C = FWB in the above, and tracing the element1FWB through the equivalences,
it results indeed thatW (ξB) = ηWB.

The second part of the lemma is trivial.
For the third part, suppose thatT (ηC) ≤ ηTC for anyC ∈ C , then also

WS(ξB) = TW (ξB) = T (ηWB) ≤ ηTWB = ηWSB = W (ξSB)

for everyB ∈ B; but W is locally an equivalence, soS(ξB) ≤ ξSB as required
to prove (a). Now, by the very nature of the algebras of KZ doctrines,B ∈ B
is anS-algebra if and only ifξB is a right adjoint inB, which is the same as
W (ξB) = ηWB being a right adjoint inC becauseW is locally an equivalence,
and this in turn is just saying thatWB is a T -algebra. This proves (b), and (c)
readily follows by puttingB = V A for anA ∈ A , and using thatW ◦ V = U ; so
(d) becomes obvious. 2

It is a result fromQ-enriched category theory [Stubbe, 2005a] thatCocont(Q)
is monadic overCat(Q): the forgetfulCocont(Q) // Cat(Q) admits the presheaf
contruction as left adjoint,

Cocont(Q) ⊥
U

55

P
uu Cat(Q),

and moreover the structure map of an algebra for the monad is left adjoint to the
unit of the adjunction (i.e.A ∈ Cocont(Q) if and only if YA : A // PA admits a
left adjoint in Cat(Q), which is then the structure map of the algebraA). Since
there is thefully faithful forgetfulCatcc(Q) // Cat(Q), the same thing can be said
about the forgetfulCocont(Q) // Catcc(Q) (as recalled in the lemma above): the
presheaf contruction thus provides a left adjoint, andCocont(Q) is precisely the
category of algebras for the induced monad onCatcc(Q). We can apply this to the
quantaloidIdm(Q), of course.

Proposition 1.5.For any small quantaloidQ, Cocont(Idm(Q)) is the category of
algebras for the presheaf monadP : Catcc(Idm(Q)) // Catcc(Idm(Q)).

In combination with the above remarks on modules, we can now justify the
slogan that “Q-modules areQ-suplattices”. Recall thatOrd(Q), the (locally
ordered) category of ordered sheaves on a small quantaloidQ, is equivalent to
the categoryCatcc(Idm(Q)) of Cauchy complete categories enriched inIdm(Q)
[Stubbe, 2005c].
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Theorem 1.6.For a small quantaloidQ, the diagram

Mod(Q) ' Cocont(Idm(Q)) ⊥
U

55

P
uu Catcc(Idm(Q)) ' Ord(Q)

exhibits the quantaloidMod(Q) as being (biequivalent to) the (locally completely
ordered) category of algebras for the presheaf construction.

It would thus make sense to writeSup(Q) for any of the equivalent expressions
Cocont(Q) ' Mod(Q) ' ..., and to speak of “Q-suplattices”. It is then the case
thatSup(2) ' Sup is just the “ordinary” quantaloid of suplattices; and for a locale
L, Sup(L) gives indeed the suplattices in the toposSh(L) (which means that the
above theorem is an alternative to Joyal and Tierney’s [1984] proof for the fact
thatL-modules are the suplattices inSh(L)).

2.Every small quantaloid is Morita-equivalent to a quantale
Bachuki Mesablishvili [2004] observes that every small quantaloid is Morita

equivalent to a quantale; in fact he uses Max Kelly’s [1982] powerful but rather
abstractV -category theory to prove this result. I will sketch an elementary proof.

Let Q be a small quantaloid; we may view its object setQ0 as aQ0-typed set
in the obvious way. ThenMatr(Q)(Q0, Q0) is certainly a quantale, for it is an
endo-hom object in the quantaloidMatr(Q) of matrices with elements inQ (see
[Stubbe, 2005a]). One can indeed picture the elements of this quantale as gigantic
square matrices: anM ∈ Matr(Q)(Q0, Q0) is a collection ofQ-arrows

(
M(B,A) : A // B

∣∣∣ (A,B) ∈ Q0 ×Q0

)
;

such matrices are ordered elementwise:

M ≤ N ⇐⇒ ∀(A,B) ∈ Q0 ×Q0 : M(B,A) ≤ N(B, A)

(so supremum of matrices is calculated elementwise); and multiplication is done
with the linear algebra formula:

(N ◦M)(B,A) =
∨

X∈Q0

N(B, X) ◦M(X, A).

Theorem 2.1.Given a small quantaloidQ, putM = Matr(Q)(Q0, Q0); then

Mod(Q) ' Mod(M ).
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Sketch of proof: We must first introduce some notation: for aQ-arrowf : A // B,
letMf denote the square matrix whose elements are

Mf(Y,X) =

{
f if X = A andY = B,
0X,Y otherwise

Here,0X,Y denotes the bottom element of the suplatticeQ(X, Y ).
Given aQ-moduleF : Q // Sup, regard the elements of the direct sumL =

⊕A∈QFA in Sup as “column vectors”x = (xA)A∈Q with xA ∈ FA. ThenF
determines an actionαF : M × L // L : (M, x) 7→ αF (M, x) where theAth

component of the column vectorα(M, x) is, by definition,
(
αF (M, x)

)
A

=
∨

X∈Q

F
(
M(A,X)

)
(xA).

That is to say, we take the image byF of the matrixM and then perform a matrix
multiplication.

Conversely, letα : M ×L // L be an action inSup. Since it is clear that, for
A,B ∈ Q,

M1B
◦M1A

=

{
M1A

if A = B,
0 otherwise,

it follows that, for anyA ∈ Q, α(M1A
,−) : L // L is an idempotent inSup, and

therefore splits over some suplatticeLA:

L

α(M1A
,−)

''
pA

// LA.
sA

oo

(It is easily verified thatL = ⊕A∈QLA.) Now we can define aQ-module
Fα : Q // Sup by putting

Fα

(
f : A // B

)
= pB ◦ α(Mf ,−) ◦ sA : LA

// LB.

The definitions forF 7→ αF andα 7→ Fα extend to quantaloid homomorphisms
Mod(Q) // Mod(M ) andMod(M ) // Mod(Q), which prove to be inverse equiv-
alences. 2

3.The centre of a quantaloid
The aim of this section is to discuss a notion, namely the centre of a quantaloid,

which is invariant under Morita equivalence.



MORE ON Q-MODULES 7

For any quantaloidQ, let Z (Q) be shorthand forQUANT(Q, Q)(IdQ, IdQ),
and call it the centre ofQ. ThisZ (Q) is by definition a commutative quantale:
that Z (Q) is a quantale, is because it is an endo-hom-object of the quantaloid
QUANT(Q, Q); that it is moreover commutative, is becauseQUANT(Q, Q) is in
fact monoidal – with tensor given by composition – and thatIdQ is the unit object
for the tensor. Unraveling the definition, an elementα ∈ Z (Q) is a collection of
endo-arrows

(
A

αA

tt

∣∣∣ A ∈ Q0

)

such that for everyf : A // B in Q, αB ◦ f = f ◦ αA.
The following proposition was inspired by [Bass, 1968, p. 56]; I have never seen

the version below in print, but I suppose that it belongs to folklore.

Proposition 3.1.For any quantaloidQ, Z (Q) ∼= Z (Mod(Q)).

Sketch of proof: Given a natural transformationα : IdQ
// IdQ, build the natural

transformation̂α : IdMod(Q)
// IdMod(Q) whose component atM ∈ Mod(Q) is the

natural transformation̂αM : M // M , whose component atA ∈ Q is the Sup-
arrow

α̂A
M = M(αA) : M(A) // M(A).

Conversely, given a natural transformationβ : IdMod(Q)
// IdMod(Q), build the nat-

ural transformationβ : IdQ
// IdQ whose component atA ∈ Q is theQ-arrow

βA = βA
Q(A,−)(1A) : A // A.

The mappingsα 7→ α̂ andβ 7→ β thus defined are quantale homomorphisms
Z (Q) // Z (Mod(Q)) and Z (Mod(Q)) // Z (Q) which are each other’s in-
verse. 2

As an obvious corollary we may record the following.

Corollary 3.2. Morita-equivalent quantaloids have isomorphic centres.

4.Module equivalence compared with sheaf equivalence
Proposition 4.1.For small quantaloidsQ andQ′,

Q ' Q′ ⇒ Ord(Q) ' Ord(Q′) ⇒ Mod(Q) ' Mod(Q′) ⇒ Z (Q) ∼= Z (Q′).

Sketch of proof: The first implication is obvious (“equivalent bases give equivalent
enriched structures”). The second implication is due to1.6: modules are precisely
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algebras for the presheaf monad on the ordered sheaves. For the third implication,
see3.2. 2

It is an interesting problem to study the converse implications in the above propo-
sition. These converse implications do not hold in general, as the following coun-
terexample shows.

Counterexample 4.2.Let Q be a quantaloid which can not be equivalent to a
quantale, for exampleQ = 2 + 2 (coproduct inQUANT):

X
0

33

1
))

0

55 Y
0

ss

1
tt

0

jj

Then still, by2.1 and3.2, there exists a quantale with the same centre asQ. So,
in general,Z (Q) ' Z (Q′) does not implyQ ' Q′.

We must thus study extra conditions onQ andQ′ that allow for the converse
implications in4.1. At least one such special case is that ofcommutative quan-
tales.

Proposition 4.3.For commutative quantalesQ andQ′,

Q ' Q′ ⇔ Ord(Q) ' Ord(Q′) ⇔ Mod(Q) ' Mod(Q′).

Proof : A quantale is commutative if and only if it equals its centre. 2

A locale is in particular a commutative quantale, so the above applies. Moreover
– and this in contrast with the case of quantaloids or even quantales – apart from
ordered sheaves (“Ord”) and completely ordered sheaves (“Mod”), we may also
consider sheaves (“Sh”) on a locale.

Proposition 4.4.For localesL andL′,

L ' L′ ⇔ Sh(L) ' Sh(L′) ⇔ Ord(L) ' Ord(L′) ⇔ Mod(L) ' Mod(L′).

Sketch of proof: The first equivalence follows from the fact that a localeL is (iso-
morphic to) the locale of subobjects of the terminal object inSh(L) (see [Borceux,
1994, vol. 3, 2.2.16] for example). The other equivalences are instances of4.3. 2
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