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CATEGORICAL STRUCTURES ENRICHED IN A QUANTALOID:
TENSORED AND COTENSORED CATEGORIES

ISAR STUBBE

ABSTRACT: Our subject is that of categories, functors and distributors enriched in a base
quantaloidQ. We show how cocompleteQ-categories are precisely those which are ten-
sored and conically cocomplete, or alternatively, those which are tensored, cotensored and
order-cocomplete. Bearing this in mind, we analyze howSup-valued homomorphisms on
Q are related toQ-categories. With an appendix on action, representation and variation.

1. Introduction
The definition of “category enriched in a bicategoryW ” is as old as the defini-

tion of bicategory itself [B́enabou, 1967]. Taking aW with only one object gives a
monoidal category; for symmetric closed monoidalV the theory ofV -categories
is well known [Kelly, 1982]. But also categories enriched in aW with more than
one object are interesting. [Walters, 1981] observed that sheaves on a locale give
rise to bicategory-enriched categories: “variation” (sheaves on a localeΩ) is re-
lated to “enrichment” (categories enriched inRel(Ω)). This insight was further
developed in [Walters, 1982] and [Bettiet al., 1983]. Later [Gordon and Power,
1997, 1999] complemented this work, stressing the important rôle of tensors in
bicategory-enriched categories.

Here we wish to discuss “variation and enrichment” in the case of a base quan-
taloid (aSup-enriched category). This is, of course, a particular case of the above,
but we believe that it is also of particular interest; many examples of bicategory-
enriched categories (like Walters’) are really quantaloid-enriched. Since in a quan-
taloidQ every diagram of 2-cells commutes, many coherence issues disappear, so
the theory ofQ-enriched categorical structures is very transparent. Moreover, by
definition a quantaloidQ has stable local colimits, hence (by local smallness) it
is closed; this is of great help when working withQ-categories. The theory of
quantaloids is documented in [Rosenthal, 1996], and [Stubbe, 2005a] provides a
reference for all the necessary definitions and basic facts fromQ-category theory
that will be needed further on.
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2 I. STUBBE

Our starting point here is the notion of weighted colimit in aQ-categoryC
[Kelly, 1982; Street, 1983]. Two particular cases of such weighted colimits are
tensors and conical colimits; thenC is cocomplete (i.e. it admits all weighted
colimits) if and only if it is tensored and has all conical colimits [Kelly, 1982;
Gordon and Power, 1999] (see also2.6 below). But we may consider the family
of ordered sets of objects of the same type inC; we callC “order-cocomplete”
when these ordered sets admit arbitrary suprema. This is a weaker requirement
than forC to have conical colimits, but for cotensoredC they coincide. Now
C is cocomplete if and only if it is tensored, cotensored and order-cocomplete
(as in2.11). Put differently, for a tensored and cotensoredQ-categoryC, order-
theoretical content (suprema) can be “lifted” toQ-categorical content (weighted
colimits).

Then a section is devoted to adjunctions. We see how, at least for tensored
Q-categories, order-adjunctions can be “lifted” toQ-enriched adjunctions, and
how (co)tensoredness may be characterized by enriched adjunctions (analogously
to V -categories). As a result, for a tensoredC, its cotensoredness is equivalent
to certain order-adjunctions (cf.3.6). With this in mind we analyze the basic
biequivalence between tensoredQ-enriched categories and closed pseudofunctors
onQop with values inCat(2) (as in4.2, a particular case of results in [Gordon and
Power, 1997]). A finetuned version thereof (in4.9) says that rightQ-modules are
the same thing as cocompleteQ-enriched categories.

Acknowledgement. The better part of this article was written during my time
as a Teaching and Research Assistant at the Université Catholique de Louvain
in Louvain-la-Neuve, in the spring of 2004. As Post-Doctoral Researcher at the
University of Coimbra, I gave a series of lectures on this subject.

2. More on weighted (co)limits
ThroughoutQ denotes a small quantaloid, and ourQ-categories have a small

set of objects. All notations are as in [Stubbe, 2005a].

(Co)tensors. Let C be aQ-category. For aQ-arrow f : X // Y and an object
y ∈ C0 of type ty = cod(f) = Y , the tensorof y andf is by definition the(f)-
weighted colimit of∆y; it will be denotedy ⊗ f . Thus, whenever it exists,y ⊗ f
is the (necessarily essentially unique) object ofC (necessarily of typet(y ⊗ f) =
dom(f)) such that

for all z ∈ C, C(y ⊗ f, z) =
[
f,C(y, z)

]
in Q.
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A cotensorin C is a tensor in theQop-categoryCop; in elementary terms, for
an arrowf : X // Y in Q and an objectx ∈ C of type tx = dom(f) = X, the
cotensor off andx, denoted〈f, x〉, is – whenever it exists – the object ofC of
typet〈f, x〉 = cod(f) with the universal property that

for all z ∈ C, C(z, 〈f, x〉) =
{

f,C(z, x)
}

in Q.

Thus,〈f, x〉 is the(f)-weighted limit of∆x.
A Q-categoryC is tensoredwhen for allf ∈ Q andy ∈ C0 with ty = cod(f),

the tensory ⊗ f exists; andC is cotensoredwhenCop is tensored.
When making a theory of (small) tensoredQ-categories, there are some size

issues to address, as the following indicates.

Lemma 2.1. A tensoredQ-category has either no objects at all, or at least one
object of typeX for eachQ-objectX.

Proof : The emptyQ-category is trivially tensored. Suppose thatC is non-empty
and tensored; say that there is an objecty of type ty = Y in C. Then, for any
Q-objectX the tensor ofy with the zero-morphism0X,Y ∈ Q(X, Y ) must exist,
and is an object of typeX in C. 2

This motivates once more whywe work over a small base quantaloidQ.

Example 2.2.The two-element Boolean algebra is denoted2; we may view it as
a one-object quantaloid so that2-categories are ordered sets, functors are order-
preserving maps, and distributors are ideal relations. A non-empty2-category,
i.e. a non-empty order, is tensored if and only if it has a bottom element, and
cotensored if and only if it has a top element.

Example 2.3.For any objectY in a quantaloidQ, PY denotes theQ-category
of contravariant presheaves on the one-objectQ-category∗Y whose hom-arrow is
1Y . It is cocomplete, thus complete (because aQ-category is cocomplete if and
only if it is complete [Stubbe, 2005a, 5.10]), thus both tensored and cotensored.
For an objectf ∈ PY of typetf = X (i.e. aQ-arrowf : X // Y ) and aQ-arrow
g : U // X, f⊗g = f ◦g : U // Z seen as object of typeU in PY . Forh : X // V ,
〈h, f〉 = {h, f} : V // Y , an object of typeV in PY . Similarly, P†X is theQ-
category of covariant presheaves on∗X ; for f : X // Y , k : Y // M andl : N // Y ,
f ⊗ l = [l, f ] and〈k, f〉 = k ◦ f in P†X.

Conical (co)limits. A Q-categoryC has an underlying order(C0,≤): put x′ ≤
x whenever both these objects are of the same type, saytx = tx′ = X, and
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1X ≤ C(x′, x). Conversely, on an ordered set(A,≤) we may consider the free
Q(X,X)-categoryA:

- A0 = A, all objects are of typeX;

- A(a′, a) =

{
1X if a′ ≤ a,

0X,X otherwise.

To give a functorF : A //C is to give objectsFa, Fa′, ... of typeX in C, such
that Fa′ ≤ Fa in the underlying order ofC whenevera′ ≤ a in (A,≤). Con-
sider furthermore the weightφ : ∗X

c //A whose elements areφ(a) = 1X for all
a ∈ A0. Theφ-weighted colimit ofF : A //C (which may or may not exist) is
the conical colimit ofF . (Notwithstanding the adjective “conical”, this is still
a weighted colimit!) Aconically cocompleteQ-category is one that admits all
conical colimits.

Analogously to2.1, a conically cocompleteQ-categoryC has, for eachQ-
objectX, at least one object of typeX. Indeed, the conical colimit on the empty
functor from the empty freeQ(X, X)-category intoC is an object of typeX in
C.

The dual notions are those ofconical limit andconically completeQ-category.
We do not bother spelling them out.

The following will help us calculate conical colimits.

Proposition 2.4.Consider a freeQ(X, X)-categoryA and a functorF : A //C.
An objectc ∈ C0, necessarily of typetc = X, is the conical colimit ofF if and
only ifC(c,−) =

∧
a∈A0

C(Fa,−) in Dist(Q)(C, ∗X).

Proof : For the conical colimit weightφ : ∗X
c //A, φ(a) = 1X for all a ∈ A, thus

c = colim(φ, F ) if and only if

C(c,−) =
[
φ,C(F−,−)

]

=
∧

a∈A0

[
φ(a),C(Fa,−)

]

=
∧

a∈A0

[
1X ,C(Fa,−)

]

=
∧

a∈A0

C(Fa,−).

2
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In the proof above, to pass from the first line to the second in the series of
equations, we used the explicit formula for liftings in the quantaloidDist(Q):
in general, for distributorsΘ: A c //C andΨ: B c //C betweenQ-categories, the
lifting [Ψ, Θ]: A c //B has elements, fora ∈ A0 and b ∈ C0, [Ψ, Θ](b, a) =∧

c∈C0
[Ψ(c, b), Θ(c, a)], where the liftings on the right are calculated inQ.

Proposition 2.5. A Q-categoryC is conically cocomplete if and only if for any
family (ci)i∈I of objects ofC, all of the same type, saytci = X, there exists an
objectc in C, necessarily also of that type, such thatC(c,−) =

∧
i∈I C(ci,−) in

Dist(Q)(C, ∗X).

Proof : One direction is a direct consequence of2.4. For the other, given a family
(ci)i∈I of objects ofC, all of typetci = X, consider the freeQ(X,X)-categoryI
on the ordered set(I,≤) with i ≤ j ⇐⇒ ci ≤ cj inC. The conical colimit of the
functorF : I //C : i 7→ ci is an objectc ∈ C0 such thatC(c,−) =

∧
i∈I C(ci,−),

precisely what we wanted. 2

In what follows we will often speak of “the conical (co)limit of a family of objects
with the same type”, referring to the construction as in the proof above.

Theorem 2.6.A Q-categoryC is cocomplete if and only if it is tensored and
conically cocomplete.

Proof : For the non-trivial implication, the alternative description of conical co-
completeness in2.5is useful. Ifφ : ∗X

c //C is anypresheaf onC, then the conical
colimit of the family(x⊗φ(x))x∈C0 is theφ-weighted colimit of1C: for this is an
objectc ∈ C0 such that

C(c,−) =
∧

x∈C0

C(x⊗ φ(x),−)

=
∧

x∈C0

[
φ(x),C(x,−)

]

=
[
φ,C(1C−,−)

]
.

HenceC is cocomplete (indeed, it suffices thatC admit presheaf-weighted colim-
its of 1C). 2

Tensors and conical colimits allow for a very explicit description of colimits in a
cocomplete category.
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Corollary 2.7. If C is a cocompleteQ-category, then the colimit of

A cΦ // B F
// C

is the functorcolim(Φ, F ) : A //C sending an objecta ∈ A0 to the conical colimit
of the family(Fb ⊗ Φ(b, a))b∈B0. A functorF : C //C′ between cocompleteQ-
categories is cocontinuous if and only if it preserves tensors and conical colimits.

In 2.13we will discuss a more user-friendly version of the above: we can indeed
avoid theconical colimits, and replace them by suitablesuprema.

A third kind of (co)limit. It makes no sense to ask for the underlying order
(C0,≤) of a Q-categoryC to admit arbitrary suprema: two objects of different
type cannot even have an upper bound! So let us now denoteCX for theordered
set ofC-objects with typeX (which is thus the empty set whenC has no such
objects); in these orders it does make sense to talk about suprema. We will say
thatC is order-cocompletewhen eachCX admits all suprema.

An order-cocompleteQ-categoryC has, for eachQ-objectX, at least one ob-
ject of typeX. Namely, eachCX contains the empty supremum, i.e. has a bottom
element.

The dual notion is that oforder-completeQ-category; but of course “order-
complete” and “order-cocomplete” are always equivalent since each orderCX is
small. Nevertheless we will pedantically use both terms, to indicate whether we
take suprema or infima as primitive structure.

Proposition 2.8.LetC be aQ-category. The conical colimit of a family(ci)i∈I ∈
CX is also its supremum inCX .

Proof : Use thatC(c,−) =
∧
C(ci,−) in Dist(Q)(C, ∗X) for the conical colimit

c ∈ C0 of the given family to see thatc =
∨

i ci in CX . 2

So if C is a conically cocompleteQ-category, then it is also order-cocomplete.
The converse is not true in general without extra assumptions.

Example 2.9.Consider theQ-categoryC that has, for eachQ-objectX, precisely
one object of typeX; denote this object as0X . The hom-arrows inC are defined
asC(0X , 0X) = 1X (the identity arrow inQ(X, X)) andC(0Y , 0X) = 0X,Y (the
bottom element inQ(X,Y )). Then eachCX = {0X} is a sup-lattice, soC is
order-cocomplete. However the conical colimit of theemptyfamily of objects of
typeX does not exist as soon as the identity arrows inQ are not the top elements,
or as soon asQ has more than one object.
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Proposition 2.10.LetC be a cotensoredQ-category. The supremum of a family
(ci)i∈I ∈ CX is also its conical colimit inC.

Proof : By hypothesis the supremum
∨

i ci in CX exists, and by2.8 it is the only
candidate to be the wanted conical colimit. Thus we must show thatC(

∨
i ci,−) =∧

iC(ci,−). But this follows from the following adjunctions between orders:

for anyy ∈ CY , CX ⊥
C(−, y)

((

〈−, y〉
hh Q(Y,X)op in Cat(2).

These adjunctions inCat(2) follow from adjunctions inCat(Q) which are due to
the cotensoredness ofC—see3.2; but a direct proof for this adjunction is easy:
one uses cotensors inC to see that, for anyx ∈ CX ,

- 1X ≤
{
C(x, y),C(x, y)

}
= C(x, 〈C(x, y), y〉) hencex ≤ 〈C(x, y), y〉 in

CX ;
- 1X ≤ C(〈f, y〉, 〈f, y〉) =

{
f,C(〈f, y〉, y)

}
henceC(〈f, y〉, y) ≤op f in

Q(Y,X).

Any left adjoint between orders preserves all suprema that happen to exist, so
for any y ∈ CY , C(

∨
i ci, y) =

∧
iC(ci, y) in Q(Y, X), henceC(

∨
i ci,−) =∧

iC(ci,−) in Dist(Q)(C, ∗X), since infima of distributors are calculated ele-
mentwise. 2

So if C is cotensored and order-cocomplete, then it is also conically cocomplete.
Put differently, a cotensoredQ-category is conically cocomplete if and only if it
is order-cocomplete. Dually, a tensored category is conically complete if and only
if it is order-complete. So...

Theorem 2.11.For a tensored and cotensoredQ-category, all notions of com-
pleteness and cocompleteness coincide.

As usual, for orders the situation is much simpler than for generalQ-categories.

Example 2.12.For any2-category (be ita priori tensored and cotensored or
not) all notions of completeness and cocompleteness coincide: an order is order-
cocomplete if and only if it is order-complete, but it is then non-empty and has
bottom and top element, thus it is tensored and cotensored, thus it is also conically
complete and cocomplete, thus also complete and cocompletetout court.
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In 2.7arbitrary colimits in a cocompleteQ-category are reduced to tensors and
conical colimits. But a cocompleteQ-category is always complete too; so in par-
ticular cotensored. By cotensoredness the conical colimits may be further reduced
to suprema.

Corollary 2.13. If C is a cocompleteQ-category, then the colimit of the diagram

A cΦ // B F
// C

is the functorcolim(Φ, F ) : A //C sending an objecta ∈ A0 to the supremum
of the family(Fb ⊗ Φ(b, a))b∈B0. And a functorF : C //C′ between cocomplete
Q-categories is cocontinuous if and only it preserves tensors and suprema in each
of theCX .

3. (Co)tensors and adjunctions
Adjunctions and adjunctions are two. An adjunction of functors betweenQ-
categories, like

A ⊥
F

((

G

hh B,

means thatG ◦ F ≥ 1A andF ◦ G ≤ 1B in Cat(Q). Since functors are type-
preserving, this trivially implies adjunctions

for anyQ-objectX, AX ⊥
F

((

G

hh BX in Cat(2).

Now we are interested in the converse: how do adjunctions inCat(2) determine
adjunctions inCat(Q)? The pertinent result is the following.

Theorem 3.1.LetF : A //B be a functor betweenQ-categories, withA tensored.
Then the following are equivalent:

(1) F is a left adjoint inCat(Q);
(2) F preserves tensors and, for allQ-objectsX, F : AX

//BX is a left ad-
joint in Cat(2).
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Proof : One direction is trivial. For the other, denote the assumed adjunctions in
Cat(2) as

AX ⊥
F

++

BX

GX

kk
, one for eachQ-objectX.

First, for anya ∈ AX andb ∈ BY ,

A(a,GY b) ≤ B(Fa, FGY b)

= B(Fa, FGY b) ◦ 1Y

≤ B(Fa, FGY b) ◦ B(FGY b, b)

≤ B(Fa, b).

The first inequality holds by functoriality ofF ; to pass from the second to the
third line, use the pertinent adjunctionF a GY : FGY b ≤ b in BY , so 1Y ≤
B(FGY b, b). For the converse inequality, use tensors inA and the fact thatF
preserves them, plus the adjunctionF a GY where appropriate: fora ∈ AX and
b ∈ BY ,

B(Fa, b) ≤ A(a,GY b) ⇐⇒ 1Y ≤
[
B(Fa, b),A(a,GY b)

]

⇐⇒ 1Y ≤ A
(
a⊗ B(Fa, b), GY b

)

⇐⇒ 1Y ≤ B
(
F (a⊗ B(Fa, b)), b

)

⇐⇒ 1Y ≤ B
(
Fa⊗ B(Fa, b), b

)

⇐⇒ 1Y ≤
[
B(Fa, b),B(Fa, b)

]

which is certainly true. It remains to prove thatG : B //A : b 7→ Gtbb is a functor;
but for b ∈ BY andb′ ∈ BY ′,

B(b′, b) = 1Y ′ ◦ B(b′, b)
≤ B(FGY ′b′, b′) ◦ B(b′, b)
≤ B(FGY ′b′, b)

= A(GY ′b′, GY b).

Here we use once more the suitableF a GY ′, and also the composition inB. 2
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In a way, 3.1 resembles2.10: in both cases2-categorical content is “lifted”
to Q-categorical content (suprema are “lifted” to conical colimits, adjunctions
between orders are “lifted” to adjunctions between categories), and in both cases
the price to pay has to do with (existence and preservation of) (co)tensors.

There is a “weaker” version of3.1: for two functorsF : A //B andG : B //A,
F a G in Cat(Q) if and only if, for eachQ-objectX, FX a GX in Cat(2).
Here one need not askA to be tensored norF to preserve tensors (although it
doesa posteriori for it is a left adjoint). But the point is that for this “weaker”
proposition oneassumes the existenceof some functorG and one proves that it is
the right adjoint toF , whereas in3.1oneproves the existenceof the right adjoint
to F .

Were we to prove3.1 under the hypothesis thatA, B are cocompleteQ-cate-
gories, we simply could have applied2.13: for such categories,F : A //B is left
adjoint if and only if it is cocontinuous, if and only if preserves tensors and each
AX

//BX : a 7→ Fa preserves suprema, if and only if it preserves tensors and
eachAX

//BX : a 7→ Fa is left adjoint inCat(2) (for eachAX is a cocomplete
order). The merit of3.1 is thus to have generalized2.13to the case of a tensored
A and an arbitraryB.

Adjunctions from (co)tensors, andvice versa.

Proposition 3.2.For a Q-categoryC and an objectx ∈ CX , all cotensors withx
exist if and only if the functor∗ C(−, x) : C // P†X is a left adjoint inCat(Q). In
this case its right adjoint is〈−, x〉 : P†X //C.

Proof : If, for any f : X // Y in Q, 〈f, x〉 exists, then〈−, x〉 : P†X //C is a
functor: forf : X // Y , f ′ : X // Y ′, i.e. two objects ofP†X,

P†X(f ′, f) ≤ C(〈f ′, x〉, 〈f, x〉) ⇐⇒
{

f, f ′
}
≤

{
f,C(〈f ′, x〉, x)

}

⇐= f ′ ≤ C(〈f ′, x〉, x)

⇐⇒ 1Y ′ ≤ C(〈f ′, x〉, 〈f ′, x〉)
which is true. AndC(−, x) a 〈−, x〉 holds by the universal property of the coten-
sor itself.

∗In principle,C(−, x) : ∗X
c //C is a covariant presheaf onC, i.e. a distributor; but these correspond

precisely to functors fromC to the completion of∗X , which we denote asP†X; see section 6 of [Stubbe,
2005a] for details. We do not notationally distinguish between distributor and functor here.
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Conversely, ifC(−, x) : C // P†X has a right adjointRx : P†X //C, then in
particular for allf : X // Y in Q, Rx(f) is an object of typeY in C, satisfying

for all y ∈ C, C(y, Rx(f)) = P†X
(
C(y, x), f

)
=

{
f,C(y, x)

}
.

This says precisely thatRx(f) is the cotensor ofx with f . 2

In the situation of3.2 it follows that

for eachQ-objectZ, CZ ⊥
C(−, x)

((

〈−, x〉
hh Q(X, Z)op in Cat(2), (1)

for eachz ∈ CZ , C(z, x) =
∧
{f : X // Z in Q | z ≤ 〈f, x〉 in CZ}. (2)

The dual version of the above will be useful too: it says that tensors withy ∈ CY

exist if and only ifC(y,−) : C // PY is a right adjoint inCat(Q), in which case
its left adjoint isy ⊗− : PY //C. And then moreover

for eachQ-objectZ, CZ ⊥
C(y,−)

66

y ⊗−
vv

Q(Z, Y ) in Cat(2), (3)

for eachz ∈ CZ , C(y, z) =
∨
{f : Z // Y in Q | y ⊗ f ≤ z in CZ}. (4)

Here is a useful application of the previous results. For anyQ-categoryC the
Yoneda embeddingY †

C : C // P†C : c 7→ C(c,−) is a cocontinuous functor; in
particular, for anyx ∈ CX the functorC(−, x) : C // P†X preserves tensors. (A
direct proof of this latter fact is easy too: forf : Y // Z in Q andz ∈ CZ , suppose
thatz ⊗ f exists inC. ThenC(z ⊗ f, x) = [f,C(z, x)] = C(z, x) ⊗ f in P†X,
because this is how tensors are calculated inP†X.)

Corollary 3.3. If C is a tensoredQ-category, then the following are equivalent:

(1) for all Q-objectsX andY and eachx ∈ CX , C(−, x) : CY
// Q(X,Y )op

is a left adjoint inCat(2);
(2) for eachx ∈ CX , C(−, x) : C // P†X is a left adjoint inCat(Q);
(3) C is cotensored.

In 3.2 we have results about “(co)tensoring with a fixed object”; now we are
interested in studying “tensoring with a fixed arrow”. Recall that a tensor is a
colimit of which such an arrow is the weight. So we may apply general lemmas on
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weighted colimits [Stubbe, 2005a, 5.2 and 5.3] to obtain the following particular
results.

Proposition 3.4.LetC denote aQ-category.

(1) For all y ∈ CY , y ⊗ 1Y
∼= y.

(2) For g : W // X andf : X // Y in Q and y ∈ CY , if all tensors involved
exist theny ⊗ (f ◦ g) ∼= (y ⊗ f)⊗ g.

(3) for (fi : X // Y )i∈I in Q and y ∈ CY , if all tensors involved exist then
y ⊗ (

∨
i fi) ∼=

∨
i(y ⊗ fi).

(4) For f : X // Y in Q andy, y′ ∈ CY , if all tensors involved exist theny ≤ y′

in CY impliesy ⊗ f ≤ y′ ⊗ f in CX .

Of course there is a dual version about cotensors, but we do not bother spelling
it out. However, there is an interesting interplay between tensors and cotensors.

Proposition 3.5. Let f : X // Y be aQ-arrow and suppose that all tensors and
all cotensors withf exist in someQ-categoryC. Then

CY ⊥
−⊗ f

++

CX

〈f,−〉
kk

in Cat(2).

Proof : It follows from 3.4(and its dual) that

−⊗ f : CY
//CX and〈f,−〉 : CX

//CY

are order-preserving morphisms. Furthermore, forx ∈ CX andy ∈ CY ,

y ⊗ f ≤ x ⇐⇒ 1X ≤ C(y ⊗ f, x) =
[
f,C(y, x)

]

⇐⇒ f ≤ C(y, x)

⇐⇒ 1Y ≤
{

f,C(y, x)
}

= C(y, 〈f, x〉)
⇐⇒ y ≤ 〈f, x〉.

2

We can push this further.

Proposition 3.6.A tensoredQ-categoryC is cotensored if and only if, for every
f : X // Y in Q, − ⊗ f : CY

//CX is a left adjoint inCat(2). In this case, its
right adjoint is〈f,−〉 : CX

//CY .
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Proof : Necessity follows from3.5. As for sufficiency, by3.3 it suffices to show
that for allQ-objectsX andY and everyx ∈ CX ,

C(x,−) : CY
// Q(X, Y )op : y 7→ C(x, y)

has a right adjoint inCat(2). Denoting, for aQ-arrowf : X // Y , the right adjoint
to − ⊗ f : CY

//CX in Cat(2) as Rf : CX
//CY , the obvious candidate right

adjoint toy 7→ C(x, y) is f 7→ Rf(x). First note that, iff ≤op f ′ in Q(X,Y ) then
Rf(x)⊗ f ′ ≤ Rf(x)⊗ f ≤ x using−⊗ f a Rf , which implies by−⊗ f ′ a Rf ′

thatRf(x) ≤ Rf ′(x): so

R(−)(x) : Q(X,Y )op //CY : f 7→ Rf(x)

preserves order. Further, forf ∈ Q(X, Y ) andy ∈ CY ,

C(y, x) ≤op f ⇐⇒ f ≤ C(y, x)

⇐⇒ y ⊗ f ≤ x

⇐⇒ y ≤ Rf(x),

so indeedC(x,−) a R(−)(x) in Cat(2). NowC is tensored and cotensored, so by
3.5it follows thatRf(x) must be〈f, x〉 (since both are right adjoint to−⊗ f ). 2

4. Enrichment and variation
Terminology and notations. We must introduce some notation. ByCat⊗(Q)
we denote the full sub-2-category ofCat(Q) whose objects are tensored cate-
gories, andTens(Q) the sub-2-category whose objects are tensored categories
and morphisms are tensor-preserving functors. Similarly we useCat〈〉(Q) for
the full sub-2-category ofCat(Q) whose objects are cotensored categories, and
moreover the obvious combinationCat⊗,〈〉(Q). Recall also thatCocont(Q) de-
notes the locally completely ordered 2-category whose objects are cocompleteQ-
categories and morphisms are cocontinuous (equivalently, left adjoint) functors;
andCocontskel(Q) denotes its biequivalent full sub-quantaloid whose objects are
skeletal.

Example 4.1.Cat(2) is the locally ordered 2-category of orders and order pre-
serving maps.Cat⊗(2) has orders with bottom element as objects and all order-
preserving maps as morphisms, whereasTens(2) has the same objects but the mor-
phisms are required to send bottom onto bottom.Cocont(2) is biequivalent to the
quantaloid of sup-lattices and sup-morphisms; taking only skeletal2-categories
(i.e. antisymmetric orders) we haveCocontskel(2) = Sup.
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Some more notions and notations, now from the realm of “variation”: LetA
andB be locally ordered 2-categories (i.e.Cat(2)-enriched categories). Apseud-
ofunctorF : A // B is an action on objects and morphisms that respects the local
order and such that functoriality holds up to local isomorphism (we need not re-
quire any coherence because our 2-categories are locally ordered). For two such
pseudofunctorsF , F ′ : A

//
// B, a lax natural transformationϕ : F +3 F ′ is a

family of B-morphisms(ϕX : FX // F ′X)X∈A0 satisfying, for anyf : X // Y
in A , F ′f ◦ϕX ≤ ϕY ◦Ff in B(FX, F ′Y ). Such a transformation ispseudo-
natural when these inequalities are isomorphisms. Lax natural transformations
are ordered componentwise. There are locally ordered 2-categoriesPsdlax(A , B),
resp.Psd(A , B), with pseudofunctors as objects and lax natural transformations,
resp. pseudonatural transformations, as arrows.

Now consider a pseudofunctorF : A // Cat(2); it is closedwhen, for every
X, Y in A andx ∈ FX,

F (−)(x) : A (X, Y ) // FY : f 7→ F (f)(x)

is a left adjoint inCat(2). We writeClPsdlax(A , Cat(2)) andClPsd(A , Cat(2))
for the full sub-2-categories ofPsdlax(A , Cat(2)) andPsd(A , Cat(2)) determined
by the closed pseudofunctors.

We will be interested in closed pseudofunctors on the opposite of a quantaloid
Q; the closedness of a pseudofunctorF : Qop // Cat(2) reduces to the fact that,
for eachX, Y in Q andy ∈ Y ,

F (−)(y) : Q(X, Y ) // FX : f 7→ F (f)(y) (5)

preserves arbitrary suprema (forQ(X, Y ) is a sup-lattice). When we replace
Cat(2) by any of its sub-2-categories likeCat⊗(2), Tens(2) and so on, the closed-
ness condition for pseudofunctors still makes sense: we will mean precisely that
the order-morphisms in (5) preserve suprema (i.e. are left adjoints inCat(2)).

The basic biequivalence.

Proposition 4.2.A tensoredQ-categoryC determines a closed pseudofunctor

FC : Qop // Cat(2) :
(
f : X // Y

)
7→

(
−⊗f : CY

//CX

)
. (6)

And a functorF : C //C′ between tensoredQ-categories determines a lax natural
transformation

ϕF : FC +3 FC′ with componentsϕF
X : CX

//C′X : x 7→ Fx. (7)



TENSORED AND COTENSOREDQ-CATEGORIES 15

Proof : For a tensoredQ-categoryC, FC as in the statement of the proposition is
well-defined: eachCX is an order and each−⊗ f : CY

//CX preserves order (by
3.4). Moreover, this action is pseudofunctorial (again by3.4). And from (the dual
of) 3.2we know that, for eachX, Y in Q andy ∈ CY ,

y ⊗− : Q(X,Y ) //CX : f 7→ y ⊗ f

is a left adjoint; soFC is a closed pseudofunctor.
A functor F : C //C′ is a type-preserving mappingF : C0

//C′0 : x 7→ Fx of
objects such thatC(y, x) ≤ C′(Fy, Fx) for all x, y ∈ C0. With (4), this functor-
inequality may be rewritten as

C(y, x) ≤ C′(Fy, Fx)

⇐⇒ for anyf : X // Y in Q, if y ⊗ f ≤ x in CX thenFy ⊗ f ≤ Fx in C′X
⇐⇒ for anyf : X // Y in Q, Fy ⊗ f ≤ F (y ⊗ f).

(For the last equivalence, necessity follows by application of the previous sentence
to y ⊗ f ≤ y ⊗ f , whereas for sufficiency one first notes thaty ⊗ f ≤ x implies
anyway thatF (y ⊗ f) ≤ Fx so combined with the assumption this givesFy ⊗
f ≤ Fx.) Thus, such a functorF : C //C′ is really just a family of mappings
CX

//C′X : x 7→ Fx, one for eachQ-objectX, which are all order-preserving (by
functoriality of F ) and satisfy furthermore for anyf : X // Y in Q andy ∈ CY

thatFy ⊗ f ≤ F (y ⊗ f). Having defined componentsϕF
X as in (7), this says that

FC′(f) ◦ ϕF
Y ≤ ϕF

X ◦FC(f), for anyf : X // Y in Q. Soϕ : FC // FC′ is a lax
natural transformation. 2

Theorem 4.3.For any quantaloidQ, the action

Cat⊗(Q) // ClPsdlax(Q
op, Cat(2)) :

(
F : C //C′

)
7→

(
ϕF : FC +3 FC′

)
(8)

is an equivalence of 2-categories.

Proof : Straightforwardly the action in (8) is functorial: the lax natural transforma-
tion corresponding to an identity functor is an identity lax natural transformation;
the lax natural transformation corresponding to the composition of functors is the
composition of the lax natural transformations corresponding to each of the func-
tors involved.

Now let F : Qop // Cat(2) be any closed pseudofunctor; then define aQ-
categoryCF by:

- for eachQ-objectX, CF
X := FX,
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- for x ∈ CF
X andy ∈ CF

Y , CF (y, x) =
∨{f : X // Y in Q | F (f)(y) ≤

x in CF
X }.

The supremum involved is really an expression of the closedness of the pseudo-
functor: x 7→ CF (y, x) is the right adjoint tof 7→ F (f)(y) in Cat(2). ThenCF

is a tensoredQ-category: the tensor of somef : X // Y andy ∈ FY is precisely
F (f)(y), by (the dual of)3.2. It is clear thatF ∼= FCF . So far for essential
surjectivity of (8).

Finally, given tensoredQ-categoriesC andC′, the ordered setsCat⊗(Q)(C,C′)
andPsdlax(Qop, Cat(2))(FC, FC′) are isomorphic: a functorF : C //C′ between
(tensored)Q-categories is completely determined by its action on objects, hence
by the family of (order-preserving) mappingsCX

//C′X : x 7→ Fx, hence by the
components of the corresponding transformationϕF : FC +3 FC′. From the proof
of 4.2 it is clear thatF is a functor if and only ifϕF is lax natural (thanks to
tensoredness ofC andC′). Furthermore, to say thatF ≤ G : C //

//C′ in Cat(Q)
means that, for anyQ-objectX and anyx ∈ CX , Fx ≤ Gx in C′X . For the lax
natural transformationsϕF , ϕG corresponding toF, G this is really the same thing
as saying thatϕF

X ≤ ϕG
X in Cat(2), in other words,ϕF ≤ ϕG as arrows between

(closed) pseudofunctors. 2

It follows from 2.1 and4.3 that a closed pseudofunctorF : Qop // Cat(2) either
has all of theFX empty, or none of them. A direct proof is easy too (it is of
course a transcription of2.1 modulo the equivalence in4.3): if y ∈ FY , then
F (0X,Y )(y) ∈ FX, where0X,Y ∈ Q(X, Y ) is the bottom element. So as soon
as one of theFX is non-empty, all of them are. And the empty pseudofunctor is
trivially closed.

Finetuning. Here are some seemingly innocent specifications concerning the 2-
functor in4.3.

Lemma 4.4.Any closed pseudofunctorF : Qop // Cat(2) lands inCat⊗(2). And
any lax natural transformationϕ : F +3 F ′ : Q // Cat(2) between closed pseu-
dofunctors has components inCat⊗(2) rather thanCat(2).

Proof : For any closed pseudofunctorF : Qop // Cat(2), for everyX in Q and
x ∈ FX, F (−)(x) : Q(X,X) // FX preserves all suprema, thus in particular
the empty supremum, i.e. the bottom element0X,X ∈ Q(X,X). This implies that
every non-emptyFX must have a bottom element. ThusF lands inCat⊗(2)
rather thanCat(2). Precisely because of this, the componentsϕX : FX // F ′X
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of a lax natural transformationϕF : FCX // FC′X live in Cat⊗(2) rather than
Cat(2). 2

From this proof it follows that, for a closed pseudofunctorF : Qop // Cat⊗(2),
the bottom element in a non-empty orderFX is 0X := F (0X,X)(x), wherex is
an arbitrary element inFX. This allows for the following.

Lemma 4.5. A pseudonatural transformationϕ : F +3 F ′ : Qop // Cat⊗(2) be-
tween closed pseudofunctors has components inTens(2).

Proof : If FX is non-empty, take anyx ∈ FX, then by pseudonaturality ofϕ,

ϕX(0X) = ϕX(F (0X,X)(x)) ∼= F ′(0X,X)(ϕX(x)) = 0′X .

So each componentϕX : FX // F ′X, a priori in Cat⊗(2), preserves the bottom
element if there is one, thus lives inTens(2). 2

Lemma 4.6.Any closed pseudofunctorF : Qop // Map(Cat⊗(2)) actually lands
in Map(Cat⊗,〈〉(2)).

Proof : Taking an arbitraryx ∈ FX (presumed non-empty),F (0X,X)∗(x) gives
the top element ofFX. HereF (0X,X)∗ denotes the right adjoint toF (0X,X) in
Cat⊗(2). So eachFX is an object ofCat⊗,〈〉(2) rather thanCat⊗(2). 2

Now we can apply all this to finetune4.3.

Proposition 4.7.LetC be a tensoredQ-category.

(1) The associated pseudofunctorFC : Qop // Cat(2) factors throughCat⊗(2).
(2) C is moreover cotensored if and only ifFC factors throughMap(Cat⊗,〈〉(2)).
(3) C is cocomplete if and only ifFC factors throughCocont(2).
(4) C is skeletal and cocomplete if and only ifFC factors throughCocontskel(2).

Proof : (1) Is the content of4.4.
(2) Is a combination of3.6, 4.3and4.6.
(3) By 2.11a tensored and cotensoredC is cocomplete if and only if it is order-

cocomplete, i.e. eachCX is a cocomplete order. Now apply (2), recalling that
Cocont(2) is precisely the full sub-2-category ofMap(Cat⊗,〈〉(2)) determined by
the (order-)cocomplete objects.

(4) Is a variation on (3): aQ-categoryC is skeletal if and only if eachCX is an
antisymmetric (i.e. skeletal) order. 2

Proposition 4.8.LetF : C //C′ be a functor between tensoredQ-categories.
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(1) The corresponding lax natural transformationϕF : FC +3 FC′ has compo-
nents inCat⊗(2).

(2) F is tensor-preserving if and only ifϕF is pseudonatural.
(3) F is left adjoint if and only ifϕF is pseudonatural and its components are

in Map(Cat⊗(2)).
(4) If C andC′ are moreover cotensored, thenF is left adjoint if and only if

ϕF is pseudonatural and its components are inMap(Cat⊗,〈〉(2)).
(5) If C and C′ are cocomplete, thenF is left adjoint if and only ifϕF is

pseudonatural and its components are inCocont(2).
(6) If C andC′ are skeletal and cocomplete, thenF is left adjoint if and only

if ϕF is pseudonatural and its components are inCocontskel(2).

Proof : (1) Is the content of4.4.
(2) To say thatF : C //C′ preserves tensors, means that for anyf : X // Y in

Q andy ∈ CY , F (y⊗f) ∼= Fy⊗f in CX . In terms of the transformationϕF this
means thatϕF

X ◦FC(f) ∼= FC′ ◦ ϕF
Y instead of merely the inequality “≥”; hence

it is pseudonatural instead of merely lax natural.
(3) By 3.1and the previous point.
(4) Is a variation on the previous point, using4.7(2).
(5) Follows from (3), taking into account that allCX andC′X are cocomplete

orders.
(6) Is a variation on (5). 2

We may now state our conclusion.

Theorem 4.9.The equivalence in4.3 reduces to the following equivalences of
locally ordered 2-categories:

(1) Cat⊗(Q) ' ClPsdlax(Qop, Cat⊗(2)),
(2) Tens(Q) ' ClPsd(Qop, Tens(2)),
(3) Map(Cat⊗,〈〉(Q)) ' ClPsd(Qop, Map(Cat⊗,〈〉(2))),
(4) Cocont(Q) ' ClPsd(Qop, Cocont(2)),
(5) Cocontskel(Q) ' ClPsd(Qop, Cocontskel(2)).

Actually, Cocontskel(2) = Sup and a closed pseudofunctor fromQop to Sup is
really a quantaloid homomorphism; moreover,Cocontskel(Q) is biequivalent to
Cocont(Q). So we may end with the following.

Corollary 4.10. The quantaloid of rightQ-modules (cf.5.1) is biequivalent to the
locally cocompletely ordered category of cocompleteQ-categories and cocontin-
uous functors:QUANT(Qop, Sup) ' Cocont(Q).
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5. Appendix: action, representation and variation
Let K denote a quantale, i.e. a one-object quantaloid. Now thinking ofK as

a monoid inSup, let “unit” and “multiplication” in K (the single identity arrow
and the composition in the one-object quantaloid) correspond to sup-morphisms
ε : I // K andγ : K ⊗ K // K. A right actionof K on some sup-latticeM is a
sup-morphismφ : M ⊗K // M such that the diagrams

M ⊗K ⊗K
1⊗ γ

//

φ⊗ 1K

²²

M ⊗K

φ

²²

M ⊗ I
1⊗ ε

oo

M ⊗K
φ

// M

ttttttttttttttttt

ttttttttttttttttt

commute (we do not bother writing the associativity and unit isomorphisms in
the symmetric monoidal closed categorySup); (M,φ) is then said to be aright
K-module. In elementary terms we have a set-mappingM ×K // M : (m, f) 7→
φ(m, f), preserving suprema in both variables, and such that (with obvious nota-
tions)

φ(m, 1) = m andφ(m, g ◦ f) = φ(φ(m, g), f).

By closedness ofSup, to the sup-morphismφ : M⊗K // M corresponds a unique
sup-morphism̄φ : K // Sup(M, M). In terms of elements, this̄φ sends everyf ∈
K to the sup-morphismφ(−, f) : M // M ; it satisfies

φ̄(1) = 1M andφ̄(g ◦ f) = φ̄(f) ◦ φ̄(g).

That is to say,̄φ : K // Sup(M, M) is a reversed representationof the quantale
K by endomorphisms on the sup-latticeM : a homomorphism of quantales that
reverses the multiplication (whereSup(M, M) is endowed with composition as
binary operation and the identity morphism1M as unit to form a quantale). Re-
calling thatK is a one-object quantaloidQ, such a multiplication-reversing homo-
morphismφ̄ : K // Sup(M, M) is really aSup-valued quantaloid homomorphism
F : Qop // Sup : ∗ 7→ M, f 7→ φ̄(f).

In the same way it can be seen that morphisms between modules correspond
to Sup-enriched natural transformations betweenSup-presheaves. Explicitly, for
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two right modules(M,φ) and(N,ψ), a module-morphismα : M // N is a sup-
morphism that makes

M ⊗K

φ

²²

α⊗ 1K
// N ⊗K

ψ

²²

M α
// N

commute. In elementary terms, such a sup-morphismα : M // N : m 7→ α(m)
satisfies

α(φ(m, f)) = ψ(α(m), f).

By adjunction – and with notations as above – this gives for anyf ∈ K the
commutative square

M

φ̄(f)
²²

α
// N

ψ̄(f)
²²

M α
// N

which expresses precisely the naturality ofα viewed as (single) component of a
natural transformationα : F +3 G, whereF, G : Qop //

// Sup denote the homomor-
phisms corresponding toM andN .

Conclusively, actions, representations andSup-presheaves are essentially the
same thing. The point now is that the latter presentation straightforwardly makes
sense for any quantaloid, and not just those with only one object.

Definition 5.1. A right Q-moduleM is a homomorphismM : Qop // Sup. And
a module-morphismα : M +3 N between two rightQ-modulesM and N is an
enriched natural transformation between these homomorphisms.

That is to say,QUANT(Qop, Sup) is the quantaloid of rightQ-modules.
We have chosen here to work withright actions,reversedrepresentations, and

contravariantSup-presheaves. Clearlyleft actions correspond tostraight repre-
sentations and tocovariantSup-valued presheaves.
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