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CATEGORICAL STRUCTURES ENRICHED IN A QUANTALOID:
TENSORED AND COTENSORED CATEGORIES

ISAR STUBBE

ABSTRACT. Our subject is that of categories, functors and distributors enriched in a base
quantaloid2. We show how cocomplet&-categories are precisely those which are ten-
sored and conically cocomplete, or alternatively, those which are tensored, cotensored and
order-cocomplete. Bearing this in mind, we analyze tsay-valued homomorphisms on

2 are related ta2-categories. With an appendix on action, representation and variation.

1. Introduction

The definition of “category enriched in a bicategd#y’ is as old as the defini-
tion of bicategory itself [Bnabou, 1967]. Taking’® with only one object gives a
monoidal category; for symmetric closed monoidathe theory of# -categories
is well known [Kelly, 1982]. But also categories enriched iwawith more than
one object are interesting. [Walters, 1981] observed that sheaves on a locale give
rise to bicategory-enriched categories: “variation” (sheaves on a l6bakere-
lated to “enrichment” (categories enrichedRal(£2)). This insight was further
developed in [Walters, 1982] and [Be#i al,, 1983]. Later [Gordon and Power,
1997, 1999] complemented this work, stressing the impor@etaf tensors in
bicategory-enriched categories.

Here we wish to discuss “variation and enrichment” in the case of a base quan-
taloid (aSup-enriched category). This is, of course, a particular case of the above,
but we believe that it is also of particular interest; many examples of bicategory-
enriched categories (like Walters’) are really quantaloid-enriched. Since in a quan-
taloid 2 every diagram of 2-cells commutes, many coherence issues disappear, SO
the theory of2-enriched categorical structures is very transparent. Moreover, by
definition a quantaloid? has stable local colimits, hence (by local smallness) it
is closed; this is of great help when working with-categories. The theory of
guantaloids is documented in [Rosenthal, 1996], and [Stubbe, 2005a] provides a
reference for all the necessary definitions and basic facts fiboategory theory
that will be needed further on.
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2 I. STUBBE

Our starting point here is the notion of weighted colimit incacategoryC
[Kelly, 1982; Street, 1983]. Two particular cases of such weighted colimits are
tensors and conical colimits; the is cocomplete (i.e. it admits all weighted
colimits) if and only if it is tensored and has all conical colimits [Kelly, 1982;
Gordon and Power, 1999] (see aB& below). But we may consider the family
of ordered sets of objects of the same typ&iinwe call C “order-cocomplete”
when these ordered sets admit arbitrary suprema. This is a weaker requirement
than for C to have conical colimits, but for cotensorétthey coincide. Now
C is cocomplete if and only if it is tensored, cotensored and order-cocomplete
(as in2.1)). Put differently, for a tensored and cotensor@etategoryC, order-
theoretical content (suprema) can be “lifted”£&categorical content (weighted
colimits).

Then a section is devoted to adjunctions. We see how, at least for tensored
2-categories, order-adjunctions can be “lifted” #&enriched adjunctions, and
how (co)tensoredness may be characterized by enriched adjunctions (analogously
to 7'-categories). As a result, for a tensorédits cotensoredness is equivalent
to certain order-adjunctions (c8.6). With this in mind we analyze the basic
biequivalence between tensorgdenriched categories and closed pseudofunctors
on 2°P with values inCat(2) (as in4.2, a particular case of results in [Gordon and
Power, 1997]). A finetuned version thereof 4irf) says that right2-modules are
the same thing as cocomplet&enriched categories.

Acknowledgement. The better part of this article was written during my time
as a Teaching and Research Assistant at the Unige@atholique de Louvain

in Louvain-la-Neuve, in the spring of 2004. As Post-Doctoral Researcher at the
University of Coimbra, | gave a series of lectures on this subject.

2. More on weighted (co)limits

Throughout2 denotes a small quantaloid, and aqércategories have a small
set of objects. All notations are as in [Stubbe, 2005a].

(Co)tensors. Let C be a2-category. For aZ-arrow f: X —Y and an object
y € Cy of typety = cod(f) = Y, thetensorof y and f is by definition the( f)-
weighted colimit ofAy; it will be denotedy ® f. Thus, whenever it existg,® f
is the (necessarily essentially unique) objectdihecessarily of typé(y @ f) =
dom( f)) such that

forallz e C,C(y ® f,2) = {f,C(y, z)] in 2.
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A cotensorin C is a tensor in the2°P-categoryC°P; in elementary terms, for
an arrowf: X —Y in £ and an object € C of typetx = dom(f) = X, the
cotensor off andx, denoted(f, x), is — whenever it exists — the object Gf of
typet(f,x) = cod(f) with the universal property that

forall z € C, C(z, {f,2)) = {f, C(2, x)} in 2.

Thus,(f, x) is the(f)-weighted limit of Az.

A 2-categoryC is tensoredvhen for all f € 2 andy € C, with ty = cod(f),
the tensol ® f exists; andC is cotensoredvhenC*®P is tensored.

When making a theory of (small) tensorgglcategories, there are some size
issues to address, as the following indicates.

Lemma 2.1. A tensored2-category has either no objects at all, or at least one
object of typeX for each.2-objectX.

Proof: The empty2-category is trivially tensored. Suppose tfiats non-empty
and tensored; say that there is an objeaf typety = Y in C. Then, for any
2-objectX the tensor ofy with the zero-morphismiyy € 2(X,Y) must exist,
and is an object of typ& in C. O

This motivates once more whwe work over a small base quantalofd.

Example 2.2. The two-element Boolean algebra is dend2edve may view it as

a one-object quantaloid so thicategories are ordered sets, functors are order-
preserving maps, and distributors are ideal relations. A non-e2stegory,

l.e. a non-empty order, is tensored if and only if it has a bottom element, and
cotensored if and only if it has a top element.

Example 2.3.For any object” in a quantaloid2, &Y denotes the2-category

of contravariant presheaves on the one-obf2atategory«y whose hom-arrow is

ly. Itis cocomplete, thus complete (becaus€-aategory is cocomplete if and
only if it is complete [Stubbe, 2005a, 5.10]), thus both tensored and cotensored.
For an objeclf € &Y oftypetf = X (i.e.aZ-arrowf: X —Y)and aZ-arrow

g: U—X, f®g= fog: U— Z seen as object of tygeé in Y. Forh: X —V,

(h, f) = {h, f}: V—Y, an object of typd/ in 22Y. Similarly, ' X is the 2-
category of covariant presheaves«gn for f: X —Y ,k: Y —M andl: N—Y,
fol=1[,fland(k, f) =ko fin 21X,

Conical (co)limits. A 2-categoryC has an underlying ordéfC,, <): putz’ <
x whenever both these objects are of the same typefsay t2’ = X, and
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1y < C(«,z). Conversely, on an ordered get, <) we may consider the free
2(X, X)-categoryA:

- Ay = A, all objects are of typ«;

) 1x ifd <a,
- Ald',a) = { Ox.x Otherwise.

To give a functorF': A—C is to give objectd’a, F'd/, ... of typeX in C, such
that F'o’ < Fa in the underlying order of whenever’ < a in (A, <). Con-
sider furthermore the weight: xx ---A whose elements ak®a) = 1y for all

a € Ay. Thep-weighted colimit of’: A—C (which may or may not exist) is
the conical colimit of 7. (Notwithstanding the adjective “conical”, this is still
a weighted colimit!) Aconically cocomplete2-category is one that admits all
conical colimits.

Analogously t02.1, a conically cocomplete?-categoryC has, for each2-
object X, at least one object of typ&¥. Indeed, the conical colimit on the empty
functor from the empty free? (X, X)-category intaC is an object of typeX in
C.

The dual notions are those cbnical limitandconically complete2-category
We do not bother spelling them ouit.

The following will help us calculate conical colimits.

Proposition 2.4. Consider a free2(X, X)-categoryA and a functorf': A—C.
An objectc € Cy, necessarily of typéc = X, is the conical colimit ofF' if and
only if C(c, =) = A,cs, C(Fa, —) in Dist(2)(C, xx).

Proof: For the conical colimit weight: xx -+ A, ¢(a) = 1x forall a € A, thus
¢ = colim(¢, F') if and only if

Cle,—) = [o.CF-,-)]
= N\ |¢(@),C(Fa,-)

a€hg

- A [1X,@(Fa,—)]
a€hg

= A C(Fa,-).
a€hg
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In the proof above, to pass from the first line to the second in the series of
equations, we used the explicit formula for liftings in the quantaldist(2):

in general, for distributor®: A - C and¥: B-C between2-categories, the
lifting [¥,0]: A--B has elements, fon € Ay andb € Cy, [¥,0](b,a) =
Aeec,[¥(c, ), ©(c, a)], where the liftings on the right are calculated%h

Proposition 2.5. A 2-categoryC is conically cocomplete if and only if for any
family (¢;);c; of objects ofC, all of the same type, say; = X, there exists an
objectc in C, necessarily also of that type, such tiitc, —) = A,.; C(c;, —) in
DISt(o@)(C, *X)-

Proof: One direction is a direct consequencégl. For the other, given a family
(¢i)icr Of Objects ofC, all of typetc; = X, consider the free?( X, X )-categoryl
on the ordered s¢f, <) withi < j <= ¢; < ¢; in C. The conical colimit of the
functor F': I —C: ¢ — ¢; is an object € Cy such thatC(c, —) = A,.; C(ci, —),
precisely what we wanted. O

In what follows we will often speak of “the conical (co)limit of a family of objects
with the same type”, referring to the construction as in the proof above.

Theorem 2.6.A 2-categoryC is cocomplete if and only if it is tensored and
conically cocomplete.

Proof . For the non-trivial implication, the alternative description of conical co-
completeness iB.5is useful. If¢: *x - C isanypresheaf o, then the conical
colimit of the family (x ® ¢(x)).cc, IS thegp-weighted colimit ofl¢: for this is an
objectc € Cy such that

C(Cv _) - /\ C($®¢(x)7_)

zeCy
= A [0, C, )]
2eCy
= |:¢7 (C(]‘(C_7 _):| .
HenceC is cocomplete (indeed, it suffices tlatadmit presheaf-weighted colim-
its of 1¢). O

Tensors and conical colimits allow for a very explicit description of colimits in a
cocomplete category.
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Corollary 2.7. If C is a cocomplete2-category, then the colimit of

A(I)]B%FC

is the functorcolim(®, F'): A—C sending an object € A, to the conical colimit
of the family(Fb @ ®(b, a))pen,. A functor F': C—C’ between cocomplet&-
categories is cocontinuous if and only if it preserves tensors and conical colimits.

In'2.13we will discuss a more user-friendly version of the above: we can indeed
avoid theconical colimits and replace them by suitaldeprema

A third kind of (co)limit. It makes no sense to ask for the underlying order
(Cy, <) of a 2-categoryC to admit arbitrary suprema: two objects of different
type cannot even have an upper bound! So let us now déhetier the ordered

set of C-objects with typeX (which is thus the empty set whéh has no such
objects); in these orders it does make sense to talk about suprema. We will say
thatC is order-cocompletevhen eaclt y admits all suprema.

An order-cocomplete?-categoryC has, for each2-object X, at least one ob-
ject of type X. Namely, eacl y contains the empty supremum, i.e. has a bottom
element.

The dual notion is that obrder-complete2-category but of course “order-
complete” and “order-cocomplete” are always equivalent since each Grdes
small Nevertheless we will pedantically use both terms, to indicate whether we
take suprema or infima as primitive structure.

Proposition 2.8.Let C be a2-category. The conical colimit of a family; );c; €
Cx is also its supremum i€ y .

Proof: Use thatC(c,—) = A\ C(¢;, —) in Dist(2)(C, xx) for the conical colimit
c € Cy of the given family to see that=\/, ¢; in Cx. O

So if C is a conically cocomplete?-category, then it is also order-cocomplete.
The converse is not true in general without extra assumptions.

Example 2.9.Consider the2-categoryC that has, for eacl¥-objectX, precisely
one object of typeX; denote this object ay. The hom-arrows irC are defined
asC(0x,0x) = 1x (the identity arrow in2(X, X)) andC(0y,0x) = Oxy (the
bottom element in2(X,Y)). Then eaciCx = {0x} is a sup-lattice, s& is
order-cocomplete. However the conical colimit of graptyfamily of objects of
type X does not exist as soon as the identity arrow€iare not the top elements,
or as soon a¥ has more than one object.
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Proposition 2.10.Let C be a cotensored-category. The supremum of a family
(¢i)icr € Cx is also its conical colimit irC.

Proof: By hypothesis the supremul, ¢; in Cx exists, and b.8€it is the only
candidate to be the wanted conical colimit. Thus we must shovitthdj c;, —) =
/\; C(c;, —). But this follows from the following adjunctions between orders:

(C(_a y)

for anyy € Cy, Cx @ 2(Y, X)% in Cat(2).

<_7y>

These adjunctions ifiat(2) follow from adjunctions inCat(2) which are due to
the cotensoredness @Fsee3.Z; but a direct proof for this adjunction is easy:
one uses cotensors @to see that, for any € Cy,

- 1x < {C(2,9),Clz,y) } = Cla, (C(x,y), ) hencer < (C(z,y),y) in
Cx;

- 1x < C((f,9). (foy) = {f,@(<f, y>,y)} henceC((f,y),y) < fin
2(Y, X).
Any left adjoint between orders preserves all suprema that happen to exist, so
foranyy € Cy, C(\V,;c,y) = N;Clci,y) in 2(Y,X), henceC(V,c;,—) =
A; C(ci, —) in Dist(2)(C, xx), since infima of distributors are calculated ele-
mentwise. O

So if C is cotensored and order-cocomplete, then it is also conically cocomplete.
Put differently, a cotensore@-category is conically cocomplete if and only if it

is order-cocomplete. Dually, a tensored category is conically complete if and only
if it is order-complete. So...

Theorem 2.11.For a tensored and cotensore@-category, all notions of com-
pleteness and cocompleteness coincide.

As usual, for orders the situation is much simpler than for gen@rahtegories.

Example 2.12.For any 2-category (be ita priori tensored and cotensored or
not) all notions of completeness and cocompleteness coincide: an order is order-
cocomplete if and only if it is order-complete, but it is then non-empty and has
bottom and top element, thus it is tensored and cotensored, thus it is also conically
complete and cocomplete, thus also complete and cocontplégteourt
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In 2.7 arbitrary colimits in a cocomplet&-category are reduced to tensors and
conical colimits. But a cocomplet&-category is always complete too; so in par-
ticular cotensored. By cotensoredness the conical colimits may be further reduced
to suprema.

Corollary 2.13. If C is a cocomplete2-category, then the colimit of the diagram

ACI)]BFC

is the functorcolim(®, F'): A—C sending an object € A, to the supremum

of the family(Fb ® ®(b, a))sen,- And a functorf’: C—C’ between cocomplete
2-categories is cocontinuous if and only it preserves tensors and suprema in each
of theCy.

3. (Co)tensors and adjunctions

Adjunctions and adjunctions are two. An adjunction of functors betweeg-
categories, like

T
A LB,
G

means thati o F > 1, andF o G < 1p in Cat(2). Since functors are type-
preserving, this trivially implies adjunctions

F
/".‘\ .
\i/ Bx In Cat(2).
G

for any 2-object X, Ay

Now we are interested in the converse: how do adjunctiorfsi(2) determine
adjunctions inCat(2)? The pertinent result is the following.

Theorem 3.1.Let F': A—B be a functor betweef-categories, with\ tensored.
Then the following are equivalent:

(1) F is aleft adjoint inCat(2);
(2) F preserves tensors and, for al-objects X, F': Ay —Byx is a left ad-
jointin Cat(2).



TENSORED AND COTENSOREDZ2-CATEGORIES 9

Proof: One direction is trivial. For the other, denote the assumed adjunctions in
Cat(2) as

F
Ay $ By , one for each2-objectX..

Gx
First, for anya € Ax andb € By,

A(CL, Gyb) < B(Fa, FGyb)
IB%(Fa, FGyb) o 1Y
B(FCL, FGyb) o B(FGyb, b)

B(Fa,b).

IAIA

The first inequality holds by functoriality of’; to pass from the second to the
third line, use the pertinent adjunctian 4 Gy: FGyb < bin By, soly <
B(FGyb,b). For the converse inequality, use tensors\irand the fact that’
preserves them, plus the adjunctiBrH GGy where appropriate: fai € Ax and

b € By,

B(Fa,b) < Ala,Gyb) <= 1y < [ (Fa,b), Ala, Gyb)}
— gA(CL@B (Fa,b), Gyb)
— gB( a ©B(Fa,b)), b)
— gIB%(Fa@)IBFab b)
— 1y < [ (Fa,b) B(Fa,b)}

which is certainly true. It remains to prove th@t B—A: b — Gyb is a functor;
but forb € By andd’ € By,

B(,b) = 1y oB(Y,b)
B(FGyb,b) o B(Y, b)
B(FGyb,b)

A(Gy 'V, Gyb).

IA A

Here we use once more the suitabled Gy, and also the composition . O
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In a way, 3.1 resemble®2.1Q in both case-categorical content is “lifted”
to 2-categorical content (suprema are “lifted” to conical colimits, adjunctions
between orders are “lifted” to adjunctions between categories), and in both cases
the price to pay has to do with (existence and preservation of) (co)tensors.

There is a “weaker” version @&.1: for two functorsF': A—B andG: B— A,

F 4 G in Cat(2) if and only if, for each2-object X, F'x 4 Gx in Cat(2).
Here one need not ask to be tensored nof' to preserve tensors (although it
doesa posteriorifor it is a left adjoint). But the point is that for this “weaker”
proposition one&ssumes the existenocksome functol? and one proves that it is
the right adjoint toF’, whereas irB.1 oneproves the existenad the right adjoint
to F'.

Were we to prové3.1 under the hypothesis that, B are cocomplete2-cate-
gories, we simply could have appli2dld for such categories;’: A—B is left
adjoint if and only if it is cocontinuous, if and only if preserves tensors and each
Ax—Byx: a — Fa preserves suprema, if and only if it preserves tensors and
eachAx —By: a — Fa is left adjoint inCat(2) (for eachAy is a cocomplete
order). The merit 0B.1is thus to have generaliz&dl3to the case of a tensored
A and an arbitrarys.

Adjunctions from (co)tensors, andvice versa

Proposition 3.2. For a 2-categoryC and an object: € Cy, all cotensors with:
exist if and only if the funct&IC(—, z): C— 21X is a left adjoint inCat(2). In
this case its right adjoint i$—, z): 21X —C.

Proof: If, forany f: X —Y in 2, (f,z) exists, then(—, z): #TX —C is a
functor: forf: X —Y, f': X —Y’, i.e. two objects ofZ?' X,

PN SCUf ) fa) = {rr)<{reusia)
= f=C(fa)a)
— Ly < (C(<f/,l‘>,<f/,l’>)

which is true. AndC(—, z) 4 (—, =) holds by the universal property of the coten-
sor itself.

“In principle, C(—,x): *x -o»C is a covariant presheaf df, i.e. a distributor; but these correspond
precisely to functors front to the completion of y, which we denote as?’ X; see section 6 of [Stubbe,
2005a] for details. We do not notationally distinguish between distributor and functor here.
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Conversely, ifC(—, z): C— 27X has a right adjoinz,: 22X —C, then in
particular for allf: X —Y in 2, R.(f) is an object of typ&” in C, satisfying

forally € C, C(y, R.(f)) = @U{(@(y,x), f) _ {f,(C(y,x)}.

This says precisely that,.(f) is the cotensor aof with f. O
In the situation oB.Z it follows that
C(_a ZTJ)
-0bi T op ;
for each2-objectZ, C, L~ 2(X,Z)° in Cat(2), (1)

<—,:U>
foreachz € Cz, C(z,2) = \{f: X—Zin 2|z < {f,2)inCz}. (2)

The dual version of the above will be useful too: it says that tensorswgtit,-
exist if and only ifC(y, —): C— £2Y is a right adjoint inCat(2), in which case
its left adjointisy ® —: &Y —C. And then moreover

Yy -

for each2-objectZ, C, @ 2(Z,Y) in Cat(2), 3)

C(y7_)
foreachz € Cz, C(y,2) = \/{f: Z—Yin2|y® f <zinCz}. (4)

Here is a useful application of the previous results. For.ghgategoryC the
Yoneda embeddin%T: C—P'C: ¢ — C(c,—) is a cocontinuous functor; in
particular, for anyr € Cy the functorC(—, z): C— 21X preserves tensors. (A
direct proof of this latter fact is easy too: fér Y — 7 in 2 andz € C,, suppose
thatz ® f exists inC. ThenC(z ® f,z) = [f,C(z,7)] = C(z,2) ® f in ZTX,
because this is how tensors are calculated?inX .)

Corollary 3.3. If C is a tensored2-category, then the following are equivalent:
(1) for all £-objectsX andY and eachr € Cx, C(—,z): Cy —2(X,Y)°P
is a left adjoint inCat(2);
(2) for eachz € Cy, C(—,r): C— 27X is aleft adjoint inCat(2);
(3) C is cotensored.

In 3.2 we have results about “(co)tensoring with a fixed object”; now we are
interested in studying “tensoring with a fixed arrow”. Recall that a tensor is a
colimit of which such an arrow is the weight. So we may apply general lemmas on
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weighted colimits [Stubbe, 2005a, 5.2 and 5.3] to obtain the following particular
results.

Proposition 3.4.LetC denote a2-category.

Q) Forally e Cy,y® 1y = y.
2 Forg: W—X andf: X—Y in 2 andy € Cy, if all tensors involved

existtheny @ (fog) = (y® f) ® g.
(3) for (f;: X—Y)er in 2 andy € Cy, if all tensors involved exist then

y® (V, fi) = V,(y® f).
(4) For f: X—Yin 2andy,y € Cy, ifalltensors involved exist then< ¢/
in Cy impliesy ® f <4 ® finCy.

Of course there is a dual version about cotensors, but we do not bother spelling
it out. However, there is an interesting interplay between tensors and cotensors.

Proposition 3.5.Let f: X—Y be a2-arrow and suppose that all tensors and
all cotensors withf exist in some2-categoryC. Then

- ® f
Cy g Cyx in Cat(2).
{f,=)
Proof: It follows from'3.4 (and its dual) that
—® f: Cy—Cx and(f, —): Cx —Cy
are order-preserving morphisms. Furthermore;fer Cx andy € Cy,
yef<z <= Ix<Cofr)=fC)
— f<Cyz)
— 1y <{/,Cly,2) } = Cly. (f.2))
= y<(f.a).

We can push this further.

Proposition 3.6. A tensored2-categoryC is cotensored if and only if, for every
f: X—=Yin 2, —® f: Cy —Cy is a left adjoint inCat(2). In this case, its
right adjointis(f, —): Cx —Cy.
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Proof: Necessity follows fron8.5. As for sufficiency, by3.3 it suffices to show
that for all 2-objectsX andY and everyr € Cy,

C(CC, _): CYHCQ(Xa Y)Op: Y= C(Qf,y)

has aright adjoint if€at(2). Denoting, for aZ-arrow f: X —Y, the right adjoint
to - ® f: Cy —Cx in Cat(2) as R;: Cx—Cy, the obvious candidate right
adjoint toy — C(x,y)is f — Ry(z). First note that, iff <° f’'in 2(X,Y) then
Ri(z)® f' < Ry(z) ® f <z using—® f - Ry, which implies by— ® f' 4 Ry
thatR;(z) < Ry (x): SO

R(f)($): Q(X, Y)OPHC}/: f — Rf((E)
preserves order. Further, fgre 2(X,Y) andy € Cy,

Cly,z) < f <= f<C(y,x)
— Yy f<x
<~ y< Rf($),

so indeed"(z, —) 4 R(_)(x) in Cat(2). Now C is tensored and cotensored, so by
3.5it follows that R ;(x) must be( f, x) (since both are right adjointte @ f). O

4. Enrichment and variation

Terminology and notations. We must introduce some notation. Bty (2)

we denote the full sub-2-category @&t(2) whose objects are tensored cate-
gories, andTens(2) the sub-2-category whose objects are tensored categories
and morphisms are tensor-preserving functors. Similarly weGasg(2) for

the full sub-2-category o€at(2) whose objects are cotensored categories, and
moreover the obvious combinatidiat, y(2). Recall also thaCocont(2) de-
notes the locally completely ordered 2-category whose objects are cocomplete
categories and morphisms are cocontinuous (equivalently, left adjoint) functors;
and Cocontg (2) denotes its biequivalent full sub-quantaloid whose objects are
skeletal.

Example 4.1.Cat(2) is the locally ordered 2-category of orders and order pre-
serving mapsCatg(2) has orders with bottom element as objects and all order-
preserving maps as morphisms, wheréas(2) has the same objects but the mor-
phisms are required to send bottom onto bott@eront(2) is biequivalent to the
guantaloid of sup-lattices and sup-morphisms; taking only skedetategories
(i.e. antisymmetric orders) we hag@contg (2) = Sup.
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Some more notions and notations, now from the realm of “variation”: et
andZ be locally ordered 2-categories (i&t(2)-enriched categories). pseud-
ofunctor.# . o7 — 2 is an action on objects and morphisms that respects the local
order and such that functoriality holds up to local isomorphism (we need not re-
guire any coherence because our 2-categories are locally ordered). For two such
pseudofunctors?, %' o/ == %, alax natural transformationp: .% =.7" is a
family of Z-morphisms(ypx: .# X —.%'X ) xc Satisfying, for anyf: X —Y
ine, #'fopxy < pyoZfin B(FX,F'Y). Such a transformation gseudo-
natural when these inequalities are isomorphisms. Lax natural transformations
are ordered componentwise. There are locally ordered 2-cate§edigs <7, #),
resp.Psd(.e, %), with pseudofunctors as objects and lax natural transformations,
resp. pseudonatural transformations, as arrows.

Now consider a pseudofunctof : o7 — Cat(2); it is closedwhen, for every
X,Ying andx € X,

F(N@): S(X,Y)=FY: s F(f)(2)

is a left adjoint inCat(2). We write CIPsdj. (.27, Cat(2)) andCIPsd(.«7, Cat(2))
for the full sub-2-categories &¥sd),« (.27, Cat(2)) andPsd (<, Cat(2)) determined
by the closed pseudofunctors.

We will be interested in closed pseudofunctors on the opposite of a quantaloid
2; the closedness of a pseudofunctbr 2°°P— Cat(2) reduces to the fact that,
foreachX,Y in 2 andy € Y,

F(=)y): LXY)—=FX: [ — F(f)y) (5)
preserves arbitrary suprema (f&*(.X,Y) is a sup-lattice). When we replace
Cat(2) by any of its sub-2-categories likaat;(2), Tens(2) and so on, the closed-
ness condition for pseudofunctors still makes sense: we will mean precisely that
the order-morphisms irbf preserve suprema (i.e. are left adjoint<€ut(2)).

The basic biequivalence.

Proposition 4.2. A tensored2-categoryC determines a closed pseudofunctor
Fe: D% Cat(2): (f: XHY) s (— QF CyH(CX) (6)

And a functorf’: C—C’ between tensored-categories determines a lax natural
transformation

ot Fe= F with componentg’ : Cx —Cly: z — Fu. (7)



TENSORED AND COTENSOREDZ2-CATEGORIES 15

Proof: For a tensored?-categoryC, .#¢ as in the statement of the proposition is
well-defined: eaclx is an order and each ® f: Cy —Cx preserves order (by
3.4). Moreover, this action is pseudofunctorial (agaird¥). And from (the dual
of) 3.2we know that, for eaclX, Y in £ andy € Cy,

Yy —: 2(X,)Y)—=Cx: f—yaf

is a left adjoint; so% is a closed pseudofunctor.

A functor ': C—C' is a type-preserving mapping: Co—Cj: x — Fz of
objects such that(y, ) < C'(Fy, Fx) for all z,y € Cy. With (4), this functor-
inequality may be rewritten as

Cly,z) < C'(Fy, F'z)
< foranyf: X—=Yin2,ify® f <zinCxythenFy® f < FxinC)y
<« foranyf: X—=Yin2, Fy f< Fly® f).

(For the last equivalence, necessity follows by application of the previous sentence
toy ® f <y ® f, whereas for sufficiency one first notes thad f < x implies
anyway thatF'(y @ f) < Fx so combined with the assumption this giveg @

f < Fz.) Thus, such a functoF': C—C' is really just a family of mappings

Cx —C: x — Fx, one for eachZ-objectX, which are all order-preserving (by
functoriality of F') and satisfy furthermore for anf: X —Y in 2 andy € Cy
thatFly ® f < F(y ® f). Having defined componenis; as in (7), this says that
Fo(f) ook < ko Fe(f), foranyf: X —Y in 2. Sop: Fc— Fc is alax
natural transformation. O

Theorem 4.3.For any quantaloid2, the action
Cato(2) — CIPsdi (2%, Cat(2)): (F: cﬂc') - (gpF: %ﬁ%,) (8)
IS an equivalence of 2-categories.

Proof: Straightforwardly the action ir8]) is functorial: the lax natural transforma-
tion corresponding to an identity functor is an identity lax natural transformation;
the lax natural transformation corresponding to the composition of functors is the
composition of the lax natural transformations corresponding to each of the func-
tors involved.

Now let .#: 2°°—Cat(2) be any closed pseudofunctor; then define?a
categoryC” by:

- for each2-objectX, C{ = F X,
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-forz € C{ andy € C7, C7(y,z) = V{f: X =Y in2| Z(f)(y) <
zin CY 1.
The supremum involved is really an expression of the closedness of the pseudo-
functor: x — C7 (y, z) is the right adjoint tof — .Z(f)(y) in Cat(2). ThenC”
IS a tensored?-category: the tensor of sonfe X —Y andy € .#Y is precisely
Z(f)(y), by (the dual of)3.2. It is clear that¥ = Z.». So far for essential
surjectivity of ).

Finally, given tensored@-categorie€ andC’, the ordered sefGat, (2)(C, C')
andPsd,, (2°P, Cat(2))(F¢, F¢r) are isomorphic: a functar: C—C’ between
(tensored)2-categories is completely determined by its action on objects, hence
by the family of (order-preserving) mappin@s —C’y: = — Fz, hence by the
components of the corresponding transformatién .%c = .%¢.. From the proof
of 4.2 it is clear thatF' is a functor if and only ife! is lax natural (thanks to
tensoredness df andC’). Furthermore, to say thdt < G: C=C' in Cat(2)
means that, for any?-objectX and anyr € Cx, Fz < Gz in CY. For the lax
natural transformations”, ¢©“ corresponding td@, G this is really the same thing
as saying thapl: < ©§ in Cat(2), in other wordsy! < ¢ as arrows between
(closed) pseudofunctors. O

It follows from 2.1 and4.3 that a closed pseudofunctgf : 2°°P— Cat(2) either
has all of the X empty, or none of them. A direct proof is easy too (it is of
course a transcription @.1 modulo the equivalence i4.3): if y € .#Y, then
F(0xy)(y) € ZX,where0yy € 2(X,Y) is the bottom element. So as soon
as one of the X is non-empty, all of them are. And the empty pseudofunctor is
trivially closed.

Finetuning. Here are some seemingly innocent specifications concerning the 2-
functor in4.3.

Lemma 4.4. Any closed pseudofunctof : 2°°P— Cat(2) lands inCaty(2). And
any lax natural transformatiop: .% =.%': 2—Cat(2) between closed pseu-
dofunctors has components@at(2) rather thanCat(2).

Proof: For any closed pseudofunctef : 2°°— Cat(2), for every X in 2 and
re FX, F(—)(x): 2(X,X)—.FX preserves all suprema, thus in particular
the empty supremum, i.e. the bottom elem&nk € 2(X, X). This implies that
every non-empty# X must have a bottom element. Thygs lands inCats(2)
rather tharCat(2). Precisely because of this, the components . X — %' X
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of a lax natural transformatiop’ : .#cX —.Z¢ X live in Cat(2) rather than
Cat(2). O
From this proof it follows that, for a closed pseudofuncisr 2°° — Caty(2),

the bottom element in a non-empty ord&cX is 0x := .# (0x x)(z), wherez is
an arbitrary element it#¥ X. This allows for the following.

Lemma 4.5. A pseudonatural transformatiop: .# =.%': 2°° —Caty(2) be-
tween closed pseudofunctors has componenitsris(2).

Proof: If .7 X is non-empty, take any € .# X, then by pseudonaturality af,

px(0x) = ox(F (0x x) (7)) = F'(0x x)(px(z)) = 0.

So each componenty : .# X —.#'X, a priori in Caty(2), preserves the bottom
element if there is one, thus livesTrens(2). O

Lemma 4.6. Any closed pseudofunctef : 2°°P— Map(Cats(2)) actually lands
in Map(Cat®’<>(2)).

Proof: Taking an arbitraryr € .# X (presumed non-empty)}# (0x x)*(x) gives
the top element of7 X. Here.Z (0x x)* denotes the right adjoint t& (0x x) in
Caty(2). So eachZ X is an object ofCat, (y(2) rather tharCat(2). O

Now we can apply all this to finetunke 3

Proposition 4.7. Let C be a tensored?-category.

(1) The associated pseudofunct@t-: 2°° — Cat(2) factors throughCat(2).
(2) Cis moreover cotensored if and only#¢ factors throughiMap(Caty y(2)).
(3) Cis cocomplete if and only i#¢ factors throughCocont(2).

(4) Cis skeletal and cocomplete if and only#t: factors throughCocontge(2).

Proof: (1) Is the content of.4.

(2) Is a combination 08.6,4.3and4.¢€.

(3) By 2.11a tensored and cotensor&ds cocomplete if and only if it is order-
cocomplete, i.e. eacliy is a cocomplete order. Now appl@)( recalling that
Cocont(2) is precisely the full sub-2-category dfap(Caty y(2)) determined by
the (order-)cocomplete objects.

(4) Is a variation on3): a 2-categoryC is skeletal if and only if eac€ x is an
antisymmetric (i.e. skeletal) order. O

Proposition 4.8.Let F': C—C’ be a functor between tensore#tcategories.
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(1) The corresponding lax natural transformatigi : .%-=.%¢ has compo-
nents inCatg (2).

(2) F is tensor-preserving if and only ¢ is pseudonatural.

(3) F is left adjoint if and only ify” is pseudonatural and its components are
in Map(Catg(2)).

(4) If C andC’ are moreover cotensored, thénis left adjoint if and only if
¢! is pseudonatural and its components aréMap(Cat, ,(2)).

(5) If C and C’ are cocomplete, thet is left adjoint if and only if” is
pseudonatural and its components areCiscont(2).

(6) If C andC’ are skeletal and cocomplete, théhis left adjoint if and only
if oI is pseudonatural and its components areCistontgye (2).

Proof: (1) Is the content o4.4.

(2) To say thatF': C—C' preserves tensors, means that for gnyX —Y in
2andy € Cy, Fly® f) = Fy® f in Cx. Interms of the transformatiop’ this
means thap% o Z¢c(f) = Fo o ¢f instead of merely the inequality*”; hence
it is pseudonatural instead of merely lax natural.

(3) By 3.1and the previous point.

(4) Is a variation on the previous point, usiad (2).

(5) Follows from ), taking into account that all y andC'; are cocomplete
orders.

(6) Is a variation on%). O

We may now state our conclusion.

Theorem 4.9.The equivalence i4.3 reduces to the following equivalences of
locally ordered 2-categories:

(1) Caty(2) ~ CIPsd|x(2°P, Caty(2)),

(2) Tens(2) ~ CIPsd(2°°, Tens(2)),

(3) Map(Catg (y(2)) ~ CIPsd(2°°, Map(Catg (,(2))),

(4) Cocont(2) ~ CIPsd(2°P, Cocont(2)),

(5) Cocontgye(2) ~ CIPsd(2°P, Cocontgel(2)).

Actually, Cocontg(2) = Sup and a closed pseudofunctor fra@f? to Sup is
really a quantaloid homomorphism; moreovEgconty () is biequivalent to
Cocont(2). So we may end with the following.

Corollary 4.10. The quantaloid of right2-modules (c15.1) is biequivalent to the
locally cocompletely ordered category of cocomplé&teategories and cocontin-
uous functorsQUANT (2°P, Sup) ~ Cocont(2).
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5. Appendix: action, representation and variation

Let K denote a quantale, i.e. a one-object quantaloid. Now thinking afs
a monoid inSup, let “unit” and “multiplication” in K (the single identity arrow
and the composition in the one-object quantaloid) correspond to sup-morphisms
e: I—K andy: K ® K— K. A right actionof K on some sup-latticd/ is a
sup-morphismy: M @ K — M such that the diagrams

1® 1
MOKoK MoK e2% Mol

s

MoK M
¢

commute (we do not bother writing the associativity and unit isomorphisms in
the symmetric monoidal closed categ&@yp); (M, ¢) is then said to be aght
K-module In elementary terms we have a set-mappiigc K — M : (m, f) —

o(m, f), preserving suprema in both variables, and such that (with obvious nota-
tions)

¢(m,1) = mandg(m,go f) = d(d(m,g), f).

By closedness dup, to the sup-morphism: M ® K — M corresponds a unique
sup-morphisnp: K —Sup(M, M). In terms of elements, this sends every ¢
K to the sup-morphism(—, f): M — M, it satisfies

¢(1) = 1y andg(g o f) = ¢(f) © ().

That is to sayg: K —Sup(M, M) is areversed representatioof the quantale

K by endomorphisms on the sup-lattid¢é: a homomorphism of quantales that
reverses the multiplication (whefip(M, M) is endowed with composition as
binary operation and the identity morphisihyy as unit to form a quantale). Re-
calling thatK is a one-object quantaloi?, such a multiplication-reversing homo-
morphism¢: K — Sup(M, M) is really aSup-valued quantaloid homomorphism

F: 2% Sup: *— M, f— o(f).

In the same way it can be seen that morphisms between modules correspond

to Sup-enriched natural transformations betweéeimp-presheaves. Explicitly, for
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two right moduleg M, ¢) and (N, ), a module-morphisna: M — N is a sup-
morphism that makes

®1
MoK KNk
qﬂ M
M ~ N

commute. In elementary terms, such a sup-morphismd/ —N: m — a(m)
satisfies

a(¢(m, f)) = (a(m), f).

By adjunction — and with notations as above — this gives for Ang K the

commutative square
M N
¢(f)h h b(f)

M=y N

«
"

which expresses precisely the naturalitynofiewed as (single) component of a
natural transformation.: F'= G, whereF, G: 2°°—=Sup denote the homomor-
phisms corresponding t&/ and V.

Conclusively, actions, representations d&hg-presheaves are essentially the
same thing. The point now is that the latter presentation straightforwardly makes
sense for any quantaloid, and not just those with only one object.

Definition 5.1. A right 2-module M is a homomorphism/: 2°° — Sup. And
a module-morphismu: M = N between two right2-modules)M and N is an
enriched natural transformation between these homomorphisms.

That is to sayQUANT (2°P, Sup) is the quantaloid of righ2-modules.

We have chosen here to work witight actions,reversedrepresentations, and
contravariantSup-presheaves. Clearhgft actions correspond tstraightrepre-
sentations and toovariantSup-valued presheaves.
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