
Pré-Publicações do Departamento de Matemática
Universidade de Coimbra
Preprint Number 06–15

A PRACTICAL MAP LABELING ALGORITHM UTILIZING
IMAGE PROCESSING AND FORCE-DIRECTED METHODS

GEORG STADLER, TIBOR STEINER AND JÜRGEN BEIGLBÖCK

Abstract: Automatic placement of text corresponding to graphical objects is an
important issue in several applications such as Geographical Data Systems (GIS),
Cartography, and Graph Drawing. While usually only a finite number of possible
placements is available, in this paper we allow for an infinite number of placements
and only require the label to be as close as possible to its corresponding feature.
We focus on realistic data and present a hybrid algorithm for labeling both line
and point features. In the method’s first step that works on the discretized map
image processing tools are used to obtain an initial placement of all labels in allowed
(i.e., non overlapping) position. The second step works on the continuous map and
uses a force-directed iterative algorithm to improve this initial placement. In a
comprehensive study on realistic data sets we investigate the performance of our
method.

Keywords: automatic label placement, GIS-data, computational geometry, image
processing, force-directed methods.

1. Introduction
Annotating realistic maps with pieces of text is an important problem in

information visualization (see also the ACM Computational Geometry Task
Force Report (Chazelle et al. 1999, [1]). Among others, it occurs frequently
in automated cartography, i.e., in automated drawing of clear maps from
geographical information science (GIS) data or state diagrams in technical
drawings. Manual placing of map labels in visualizing systems yields optically
appealing label arrangements, but this task is very laborious and thus usually
too time-consuming. Since the data that has to be visualized proliferates
rapidly, efficient algorithms for automatic label placements become more and
more important. In order to obtain an overview over the current state of
research for automatic map labeling we refer to the excellent bibliography
(Wolff 2005, [14]).

There are many variants of labeling problems such as fixed position models
with or without scalable labels, slider models, label number or size maximiza-
tion problems. Complexity analysis reveals that the most interesting variants

Received March 14, 2006.

1

2 G. STADLER, T. STEINER AND J. BEIGLBÖCK

of these problems are NP-hard (we refer to the overview and the references
given in Neyer (2001, [9]), Klau and Mutzel (2003, [8]), and Wolff (1999, [13]).
Thus, to deal with these problems in practice, we must rely on good heuristic
methods. This is especially the case if one has to deal with realistic problems
arising in applications, where both point and line features have to be labeled.

Due to the large number of different problem formulations, several algo-
rithms for map labeling can be found in literature. Comprehensive surveys
of algorithms for map labeling are, e.g., Christensen et al. (1995, [2]) and
Wagner and Wolff (1997, [12]). The methods usually rely on techniques such
as greedy and exhaustive search algorithms, methods based on physical mod-
els (such as simulated annealing) and methods from integer programming.
We refer to the papers mentioned above and to the selected contributions
by Christensen et al. (1995, [2]), Ebner, Klau and Weiskircher (2003, [4]),
Hirsch (1982, [6]), Klau and Mutzel (2003, [8]), Wolff (1999, [13]) and Wolff
et al. (1999, [15]).

Here, we aim at an automatic map labeling algorithm that is able to
deal with complicated maps arising, e.g., in geographical information sys-
tem (GIS) applications. While usually for each label there is only a finite
(usually small) number of possible placements, we consider an infinite num-
ber of possible label placements. In the problems we are dealing with both
point and polygonal line features must be labeled, taking into account the
following well accepted basic rules for map labeling:

• Unambiguity: Each label can be easily identified with exactly one
graphical feature of the layout. It should be intuitively apparent to
the reader of the map which label belongs to which point feature.

• Avoidance of Overlaps: Labels should not overlap with other labels
or other graphical features of the layout.

Unlike in synthetic maps, in the practical applications we consider in this
paper several additional requirements and adaptations of these basic rules
have to be taken into account:

• All labels have to be placed, and no scaling of labels is admissible.
• Possibly several labels can belong to the same graphical feature.
• Each feature has an infinite set of possible label positions.The labels

shall be placed as close as possible to the point features in order to
maximize legibility of the maps.

A PRACTICAL MAP LABELING ALGORITHM 3

• “Point features” are usually boxes; only in special cases these boxes
can degenerate and become non-expanded boxes.

• Both label and point boxes are of different size.
• Besides point and line features, other features can occur that shall not

overlap with labels as well, i.e., the regions for possible label place-
ments might be further restricted.

• Preferred label positions (e.g., left or right to the object) have to be
taken into account.

In this paper we present a hybrid approach for automatic label placing that
consists of two steps. First, we work on a discretization of the map to obtain
a collision-free initial position for each label. Then, this initial position is
iteratively improved using a continuous force-based method.

To obtain an initial configuration we utilize techniques from image process-
ing (see, e.g., the textbook by Sonka et al. (1998, [10])). The starting position
is generated on a discrete map generated from pixelizing the map as a binary
image. To avoid overlaps, regions around line and point features are excluded
before a label is placed. In order to find feasible regions for labels we use
a dilation technique for both point and line labels. This first step of our
method results in a feasible configuration, i.e., besides possible discretization
errors labels do not overlap among each other nor with features of the map.
However, some labels are possibly far from their corresponding features. To
improve the label placement obtained in this first step we apply an iterative
force-directed strategy as a second step.

Force-directed methods have a rather long history in the context of graph
drawing. Starting form the pioneering paper by Eades (1984, [3]), force-
directed methods have attracted a considerable amount of research, we refer,
e.g., to the book by Tollis et al. (1999, [11]) and the references given therein.
These methods rely on the use of virtual forces between features and labels
that lead to a clear and well legible label placement. Moreover, an advantage
of force-directed methods is that they allow to implement aesthetic criteria
in the system of virtual forces, which often leads to a good and visually clear
label distribution.

However, to obtain good results, such a force-directed approach must be
combined with a discrete method, e.g., with a simulated annealing algorithm.
Such a hybrid approach has been followed in Ebner, Klau and Weiskircher
(2003, [4]), where the label number maximization problem is addressed com-
bining force-directed methods and simulated annealing.

4 G. STADLER, T. STEINER AND J. BEIGLBÖCK

Here, a related but different approach is used. We start with a feasible (or
almost feasible) initial configuration generated by our discrete method and
use virtual force vectors to improve this initial configuration. During the
iteration process only few labels may overlap temporarily.

This paper is organized as follows. In the next section we introduce some
notations and give basic definitions. In Section 3, our approach for finding
an initial placement for all labels is presented. This initial position can be
iteratively improved with the techniques presented in Section 4. In Section
5, we present our computational results on real world examples. In the
concluding section 6, we draw conclusions and give an outlook for possible
extensions of our methods.

2. Preliminaries
Here, we intend to explain the problem under consideration in more detail

and introduce some notations and definitions. For the sake of simplicity, in
the following presentation of our method we first restrict ourselves to the case
that only point features have to be labeled and that at most one label has to
be placed for each point feature. In this simplified problem line features are
only treated as obstacles that should not be overlapped. After explaining our
approach for this simplified problem, we will comment on the generalization
of the approach for the problem in its full complexity, i.e., to problems where
line features have to be labeled as well (horizontally and in parallel to the
lines) and that several labels correspond to one feature. In Section 5 that
contains our test examples we deal with real world problem data and thus
with the the problem in its full complexity.

We now state the simplified problem that will be used to present our ideas.
We intend to place n ≥ 1 labels Λ = (λ1, . . . , λn) having width wi and height
hi. The point features are Π = (π1, . . . , πn, πn+1, . . . , πn+k), where the label
corresponding to πi is λi for 1 ≤ i ≤ n. The point features πn+1, . . . , πn+k

are not labeled but have to be taken into account as obstacles. As men-
tioned above, point features are rectangles, whose center points are located
at the coordinates x = (xi, yi), and whose length and width are ai and bi,
respectively. Moreover, the lines (ℓ1, . . . , ℓm) have to be taken into account
as obstacles.

Since both, labels and point features are rectangles, we define an appropri-
ate distance function to measure the distance between two rectangles. This
polygonal distance function will be used in both steps of our method. For

A PRACTICAL MAP LABELING ALGORITHM 5

d
r
 = d

r
(ρ

1
,ρ

3
) d

r
 = d

r
(ρ

1
,ρ

2
)

d
13

d

12
ρ

1

ρ
2

ρ
3

Figure 1. Visualization of the polygonal distance dr and the
unit length vector d.

two rectangles ρ1, ρ2 we define the polygonal distance as

dr = dr(ρ1, ρ2) :=

{

0 if ρ1 and ρ2 overlap,

min{‖p − d‖ : p ∈ ρ1, q ∈ ρ2} else.
(1)

In the above definition, ‖·‖ denotes the Euclidean norm. The above definition
is visualized in Figure 1, where also a vector d is drawn, that will be used
in Section 4. The direction of this unit length vector is given by two points
realizing the minimum in the above definition.

3. Initial positions
While calculating the initial positions of the feature labels, we heavily

rely on image processing ideas. Since in applications many features and
many regions that should be avoided have to be taken into account, finding
admissible positions for each label is a highly nontrivial issue. As mentioned
above, we first restrict ourselves to a simplified problem where only point
features are labeled. Generalizations, for instance, the case that line features
have to be labeled as well are discussed in Section 3.2

3.1. Label placement on a binary map. In order to find an initial con-
figuration, we create a pixelized (binary) image ℑ of the reserved areas and
the objects (points and polylines) for labeling. In ℑ, discrete map positions
marked with 0 (“white pixels”) are free, i.e., not occupied by any object,
while positions marked with 1 (“gray pixels”) are occupied by an object or
an already placed label. Whenever a label has been placed, ℑ is updated
with its discrete position.

6 G. STADLER, T. STEINER AND J. BEIGLBÖCK

In order to create the pixmap ℑ, we let the user choose a pixel size which
can be selected according several aspects (e.g., map complexity, required
label placement precision). For large maps of realistic complexity, ℑ must
be split up into smaller rectangular regions. These image regions (tiles) need
not to be held all in the core memory. They can be stored on a secondary
medium, and only the currently necessary (few) tile(s) can be loaded into
the core memory.

At hand of ℑ, the following questions can be answered and operations be
performed easily:

• Is a position (i, j) of ℑ free?
• Are all pixels belonging to a label free? (In this process, labels can be

either parallel to the axis or can be in a general, rotated position.)
• Mark all pixels belonging to a polyline, box or label as free/occupied.
• Find one of the closest free positions to a specified image position (i, j).

Here, one can either use discrete analogues of the usual Euclidean
distance or of the polygonal distance as defined in (1). Restrict the
search to positions that have a smaller distance from (i, j) than a user
specified threshold.

• Perform morphological operations (dilation, erosion, etc.) on a rec-
tangular cut-out of ℑ. For the basics of mathematical morphology,
its operations and applications we refer, e.g., to the textbook by Sonka
et al. (1998, [10]).

Placing a point label λ as close as possible to a point feature π can be done
as follows. We extract a square cut-out centered at π of the given map (see
the left plot in Figure 2). Then, we create a binary pixmap of this cut-out
(Figure 2, middle plot) and use the label we shall place as dilation structuring
element (Figure 2, right plot). If now the label’s midpoint is placed on one of
the white (i.e., free) pixels, no overlaps with line or point features occur. We
now choose one of the closest (either measured in Euclidean or the polygonal
distance) free pixels to π and set all the pixels corresponding to the label λ
to 1. Finally, the cut-out is copied back into ℑ.

Normally, our method might detect several possible placements of compa-
rable quality for each label. If a certain finite number of such placements is
available, it might be useful to combine the search with a combinatorial tech-
nique such as simulated annealing (see, e.g., Kirkpatrick et al. (1983, [7])).
However, this method can only deal with a finite number of possible positions

A PRACTICAL MAP LABELING ALGORITHM 7

 label

Figure 2. Procedure for initial placing of labels: Section of map
and label to be placed (left), result after conversion into a binary
map (middle) and result after dilation of the label (right)

for each label. For this reason, a step that detects possible placements (as
described above) is always necessary.

3.2. Generalizations. At hand of the image ℑ and the algorithm for point
feature labels, it is straightforward to find a collision free position for a label
λl that is parallel to the coordinate axis and corresponds to a polyline ℓ.

Normally, there are several feasible positions for polyline labels. Then, we
can select among those either using simulated annealing, or according to user
preferences (e.g., labels shall be close to the middle of line segments, etc.).

In many maps, it is desirable that the line labels are placed parallel to one
of the line segment. We assume at hand of the observation of practical data
sets that line labels have a relatively small width compared to the lengths of
the line segments or at least some of the line segments are comparably long
as the label width. Therefore, we do not have to lean on more sophisticated
approaches, e.g., splitting the label in at least two parts and placing every
part parallel to different line segment (see for instance Wolff et al. (1999,
[15])). Figure 3 shows the idea of placing a line label. In order to place a line
label belonging to polyline, all polyline segments are potential candidates for
bearing the line label. If the label collides an obstacle (e.g., a line obstacle
in the figure), it is moved parallel to the polyline segment.

4. Iterative improvement using force-directed methods
To improve the label placement obtained with our discrete algorithm, we

use an iterative force-directed method. That is, we define virtual forces

8 G. STADLER, T. STEINER AND J. BEIGLBÖCK

s

v

p1

Obstacle line

Polyline to be
labeled

point label

Figure 3. Due to an obstacle the line label must be shifted
parallel to a line segment.

acting between labels, point and line features. These forces shall drag or
push the labels into better positions. Already in 1982, Hirsch (1982, [6])
describes a strategy that uses virtual forces for moving a label on a circle
around a point in order to obtain a collision-free placement. Enhancements
of this approach are used in a patent held by Feigenbaum (1993, [5]), in
which labels are placed as close as possible to corresponding point features
by means of attractive as well repulsive forces acting between point features
and labels. In this approach every label is initially of zero size and grows
slowly to its original size. This shall enable movements in areas with a high
density of labels. Our approach is related to this approach, but besides
point features we have to label line features as well and, what makes the
problem significantly more complex, lines shall not be overlapped by labels.
Instead of shrinking the labels at the beginning of the iteration we rely on
the initial configuration obtained by the methods described in the previous
section. Another interesting contribution is the recent paper by Ebner, Klau
and Weiskircher (2003, [4]), where a combination of a force-directed method
and simulated annealing is used for a label number maximization problem.

4.1. Force-directed iterative algorithm. We now give a summary of
our algorithm for improving the initial label placement. We assume that we
are given a label placement that is feasible or almost feasible, i.e., only few
overlaps occur (such a starting position can be obtained using the methods
from the previous section) and we intend to improve this placement by means
of a force-directed iterative algorithm. The method is sketched next.

A PRACTICAL MAP LABELING ALGORITHM 9

Force-directed iterative algorithm (FDA)

(1) For each label λi (1 ≤ i ≤ n) centered at the coordinates ui = (ui, vi)
sum up the forces acting on this label. To be precise,

• Derive the virtual force vector fλi,πi
that connects the label λi

with the corresponding point feature πi.
• Derive the repulsive force vectors fλi,λj

(1 ≤ j ≤ n, j 6= i) from
the other labels, from point features fλi,πj

(1 ≤ j ≤ n + k) and
from line features fλi,ℓl

(1 ≤ l ≤ m).
• Sum up all force vectors, i.e., derive

f i := fλi,πi
+

∑

1≤j≤n
j 6=i

fλiλj
+

∑

1≤j≤n+k

fλiπj
+

∑

1≤l≤m

fλiℓl
.

(2) If all force vectors f i, 1 ≤ i ≤ n are small enough or the maximum
number of iterations is reached, stop the iteration. Otherwise perform
a gradient-like step, i.e., update the label’s centers ui according to

ui := ui + κf i

with an appropriate stepsize κ > 0.
(3) Update variables (such as for instance the step size) and go to Step 1.

The next subsection is mainly concerned with Step 1 of the above algo-
rithm, i.e., with assembling the forces between different features. More de-
tails for the Steps 2 and 3 will be given in Section 4.4.

4.2. Description of the used forces. Here we explicitly describe the force
vectors used in our implementation. Since we are dealing with rectangles as
labels and point features, in the following we utilize the distance function
dr as defined in Section 2. We first start with defining the attractive forces
between a label λi and its corresponding point feature πi. We assume that
the point and the label features are centered at x = (xi, yi) and u = (ui, vi),
respectively. Then, we use the attractive force vector

fλi,πi
=

dr

‖x − u‖
(x − u), (2)

i.e., the force increases linearly as the label moves away from its corresponding
feature. In the left plot in Figure 4 the above defined force vectors are
visualized. On the right hand side of Figure 4 we show the repulsive force
between a label and its corresponding point feature. Again we utilize the

10 G. STADLER, T. STEINER AND J. BEIGLBÖCK

polygonal distance function dr as defined in (1); As direction for the force
we use the vector d defined by two points that realize the minimum in (1),
see Section 2. If dr = 0, that is, the two rectangles overlap, we choose for
d := (u−x)/‖u−x‖. Moreover, we define d̃r := max(ε, c1dr) with ε, c1 > 0.
Then, the repulsing forces are given by

fλi,πi
:=

(

d̃r − 2 + 1/d̃r

)

(max(0, sgn(1 − c1dr))) d. (3)

Above, the parameter 0 < ε ≪ 1 has been introduced to obtain an upper
bound for the repulsive force. This is needed to avoid possible difficulties
in case of an overlap (i.e., in case that dr = 0). For reasons of graphical
representation this upper bound has been chosen relatively small for the right
plot in Figure 4, in our implementation larger values are used. Moreover, in
(3) the parameter c1 allows one to control the size of the neighborhood where
repulsive forces occur. Note that the middle term in (3) has the effect that
repulsive forces have a compact area of support, i.e., they vanish outside a
certain neighborhood of the point feature. To avoid zigzagging of (FDA) it
is useful to have a smooth (at least C1) transition along the boundary where
the repulsive forces become zero. A brief calculation shows that the function
given in (3) satisfies this requirement.

Observe in Figure 4 that the forces are well adopted to the rectangle shape
of the features. To be precise, as direction for the repulsive forces we do not
use the connection line between the rectangle’s mid points but a direction
that treats both space directions separately.

Clearly, analogous repulsive force as defined in (3) is used to avoid overlaps
between labels with non-corresponding point features and labels among each
other.

In many real world data sets one also has to take into account that la-
bels shall not overlap with lines or, more generally, polygons. To deal with
this problem we introduce repulsive forces between labels and polygons, see
Figure 5. To derive the repulsive force for the labels we sum up the repul-
sive forces affecting all four corners of the label. To do so, we first calculate
the footpoint (or the approximate footpoint) on the polygon for each corner.
Then we evaluate a simple barrier-like 1D-function to obtain the repulsive
force. As direction for the force we use the connection line between cor-
ner and corresponding footpoint on the polygon. Again, these 1D-repulsive
forces have compact support and tend to zero smoothly.

A PRACTICAL MAP LABELING ALGORITHM 11

Figure 4. Forces (visualized by arrows) acting on the midpoint
of label (light grey box) around point feature (dark grey box).
Right: Attracting forces; Left: Repulsive forces; if the label’s
midpoint is inside the black box, features overlap.

Figure 5. Forces (visualized by arrows) acting on the midpoint
of label (light grey box) that repulse the label from a polygon
(black line).

12 G. STADLER, T. STEINER AND J. BEIGLBÖCK

4.3. Generalizations in the presence of polygons. So far we have ex-
plained the forces needed to shift labels corresponding to point features.
However, the generalization of the above ideas to (horizontal) labels corre-
sponding to lines or to polygons is straight forward: Attractive forces between
a label and the corresponding polygon are reduced to attractive forces be-
tween the label’s midpoint and its footpoint on the polygon. The choice of
repulsive forces to avoid overlaps is analogous as described above for labeling
point features.

4.4. Some implementation details. In our implementation of the iterative
methods described above we also use heuristics that have turned out to be
useful in our numerical experiments.

Choice of the stepsize in (FDA). The choice of an appropriate steplength
is a delicate issue. Too conservative stepsizes lead to a slow movement of
the labels and therefore to a large number of needed iterations. Too large
stepsizes may lead to overlaps between labels among each other or between
labels and features. Though the algorithm is able to resolve such overlaps,
they are clearly perturbing the convergence process since they cause the
appearance of very large virtual forces. In our implementation we use the
following simple strategy to adopt the stepsize: We start with a small value
and slightly increase this value as long as no overlaps occur. If two features
overlap, the stepsize is halved. Moreover, we use a lower and an upper bound
for the stepsize.

Speeding up the force assembling. In each iteration of (FDA) one has to
assemble all forces acting on a label. In principal, forces to all other labels
and features have to be derived and summed up. However, since all repulsing
forces have compact support and since we do not expect the configuration to
change very quickly we can decrease the computational effort significantly:
Only in the first iteration we test a larger number of force field and store
those labels or features that have an influence (or are close to having an
influence) on the label. In the following iterations only these (few) labels
and features are taken into account. After a certain number of iterations one
can again check a larger number of features and labels to update our list.

5. Computational Examples
Here we show some results obtained with our algorithms. We use GIS data

and data taken from the visualization of telephone networks. To see the

A PRACTICAL MAP LABELING ALGORITHM 13

effects of our algorithms we show cutouts of maps before and after applying
our methods.

5.1. Choice of parameters. In our implementation we use the following
settings and parameters: The initial placement is usually done on a rather
rough grid. The maximum number of iteration in the force-directed method
is set to 30. Furthermore, we use ε = 0.01 and c1 = 3.

5.2. Results. To begin with, we show in Figure 6 cutout of label placements
for certain maps, where labels are indicated by rectangles. From Figure 6,
one can already guess the abilities of our algorithms: The label placement
resulting from our methods is quite good for maps with a moderate density
of data (standard labeling situations). In these applications, there is usually
enough free space for the force-directed method to move labels in a better
position. For maps with an extremely large number of labels and many line
features as obstacles, sometimes our force-directed method does not exhibit
enough flexibility to rearrange the labels. For instance, in general a label
cannot be tracked over a line and thus the initial placement already fixes the
final position’s range.

We now turn to a complex, realistic data set, in which 171 and 253 labels
corresponding to point and label features, respectively, have to be placed.
The data origins from a data base of a telephone company who is interested
in a visualization of its networks. For the initial placement of the labels on the
map whose approximate dimension is 1km times 1km, a grid of 2000× 2000
grid points has been chosen.

In Figure 7 we show a cutout of the initial configuration, where every
label is on an initial (default) position. Here, the label’s texts have been
inserted in the corresponding rectangles and the map has been prepared
using software for the visualization of GIS-data. Due to overlapping labels,
the map is not legible, thus the resulting map is not suitable for delivering
to a customer. (The visualization has been done with Autocad. For the sake
of better legibility, the lines of the figure are thicker in the figure than they
are in the original Autocad figure.)

Figure 8 shows the results of the application of our algorithm. Observe
that the texts can be unambiguously assigned to the corresponding line and
point features. In 8, all line labels are placed in horizontal position and not

14 G. STADLER, T. STEINER AND J. BEIGLBÖCK

Figure 6. Cutouts of different maps; labels are represented by rectangles.

Figure 7. Cutout of map before label placement.

A PRACTICAL MAP LABELING ALGORITHM 15

Figure 8. Same cutout as in Figure 7 after labels have been placed.

Figure 9. Same cutout as in Figure 8, but with line labels par-
allel to the corresponding line features.

parallel to one segment of the polyline. The labels are positioned collision
free. The overall quality of placement suits well the practical requirements.

Finally, Figure 9 shows the same cutout as Figures 7 and 8, but now most
line labels are parallel to the polylines. Comparing the result to 8 yields that
this even improves the legibility of the map due to the fact that line labels
can more easily be identified with the corresponding polylines.

16 G. STADLER, T. STEINER AND J. BEIGLBÖCK

6. Summary and Conclusions
The algorithm described in this paper has been developed to obtain reliable

results in automatic map labeling. To the best of the authors’ knowledge the
combination between a discrete method based on image processing ideas and
a continuous force-directed methods for automatic map labeling is a novel
approach. Our test data contains, among others, GIS-data and data from
telephone companies. In these applications many and possibly large regions
of the map shall be avoided in order not to cover important information in the
map. The results obtained with our hybrid method are of good quality, i.e.,
the labels do not overlap and can be uniquely assigned to the corresponding
features. Thus, usually no manual adjustment of the labels is necessary
anymore.

Acknowledgments
We are greatful to Helmut Pottmann (Vienna University of Technology) for

helpful discussions and to Martin Peternell (Vienna University of Technology)
and Martin Fink (rmDATA) for their kind assistance with the production of
figures.

References
[1] B. Chazelle and 36 co-authors. The computational geometry impact task force report. In

J. E. Goodman B. Chazelle and R. Pollack, editors, Advances in Discrete and Computational
Geometry, volume 223, pages 407–463. American Mathematical Society, Providence, 1999.

[2] J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms for point-feature
label placement. ACM Trans. Graph., 14(3):203–232, 1995.

[3] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:146–160, 1984.
[4] D. Ebner, G. W. Klau, and R. Weiskircher. Force-based label number maximization. Technical

Report TR–186–1–03–02, Vienna University of Technology, 2003.
[5] M. Feigenbaum. Method and apparatus for autmatically generating symbol images against

a background image without collision utilizing distance-dependent attractive and repulsive
forces in a computer simulation. United States Patent 5.355.314, 1993.

[6] S. A. Hirsch. An algorithm for automatic name placement around point data. The American
Cartographer, 9(1):5–17, 1982.

[7] S. Kirkpatrick and M. P. Vecchi C. D. Gelatt. Optimization by simulated annealing. Science,
220(4598):672–680, 1983.

[8] G. W. Klau and P. Mutzel. Optimal labelling of point features in rectangular labelling modells.
Mathematical Programming (Series B), 94:435–458, 2003.

[9] G. Neyer. Map labeling with application to graph drawing. In D. Wagner and M. Kaufmann,
editors, Drawing Graphs: Methods and Models, volume 2025 of Lecture Notes in Computer
Science, pages 247–273. Springer-Verlag, 2001.

[10] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis and Machine Vision. ITPS
Thomson Learning, 1998.

A PRACTICAL MAP LABELING ALGORITHM 17

[11] I. G. Tollis, G. Di Battista, P. Eades, and R. Tamassia. Graph Drawing: Algorithms for the
Visualization of Graphs. Pretice Hall, 1999.

[12] F. Wagner and A. Wolff. A practical map labeling algorithm. Computational Geometry: The-
ory and Applications, 7:387–404, 1997.

[13] A. Wolff. Automated Label Placement in Theory and Practice. PhD thesis, FU Berlin, 1999.
[14] A. Wolff. The map labeling bibliography. URL location:

http://i11www.ilkd.uni-karlsruhe.de/∼awolff/map-labeling/, 2005.
[15] A. Wolff, L. Knipping, M. van Kreveld, T. Strijk, and P. K. Agarwal. A simple and efficient

algorithm for high-quality line labeling. In D. Martin and Fulong Wu, editors, Proc. GIS
Research UK 7th Annual Conference (GISRUK’99), pages 146–150, 1999.

Georg Stadler

Center of Mathematics, University of Coimbra, Apartado 3008, 3001-454 Coimbra, Por-

tugal

E-mail address: georgst@mat.uc.pt

Tibor Steiner

Geometric Modelling and Industrial Geometry, Vienna University of Technology, Wied-

ner Hauptstrasse 8–10, 1040 Vienna, Austria

E-mail address: tibor@geometrie.tuwien.ac.at

Jürgen Beiglböck

rmDATA Datenverarbeitungsges.m.b.H., Prinz-Eugen-Str. 12, 7400 Oberwart, Austria

E-mail address: beiglboeck@rmdata.at

