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ABSTRACT. The quasi—steady power—law Stokes flow of a mixture of inm@ssible flu-
ids with shear—dependent viscosity is studied. The fluidsramiscible and have constant
densities. Existence results are presented for both thglipand the no—stick boundary
value conditions. Use is made of Schauder’s fixed—pointrdmpcompactness arguments,
and DiPerna-Lions renormalized solutions.
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1. Introduction

In chemical engineering, blood rheology, ice mechanicd gmology, one comes
across a wide range of incompressible fluids that cannot eguadely described
by using the Navier—Stokes theory. Those fluids are gepaefirred to as non—
Newtonian fluids. There are many examples for which the @i$galepends on
the modulus of the symmetric part of the velocity gradient{X1, 12, 14]. Such
fluids are called generalised Newtonian fluids or fluids witbaa—dependent vis-
cosity.

Our purpose is to study the quasi—steady flowMdfimmiscible fluids with
shear—dependent viscosity. We assume that the fluids odoupydependent
subdomaing,,(t), 1 < m < M, of a fixed domair2 ¢ R? d > 2. In each
subdomain the Cauchy stress tensgrasp—structure, i.e.,

Om = QN(pm) T(e(um)) — T 1d, (1.1)
whereT'(e(u,,)) = v(k+|e(u,)|)P2e(uy), 1 < p < oo, e(u,,) is the symmetric
part of the velocity gradieny,, is the density,(p,,) is the viscosity, and,, is
the pressure. For different values pdifferent phenomena are captured. The
quantity |e(u,,)| is called the shear rate and a fluid obeying the constituéive |
(1.1) is named shear thinning if < 2, and shear thickening i > 2. The
non—miscibility conditions at the interfaces between th&lfl are equivalent to a
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transport equation for the viscosities on the whole donaif;16]. Coupling this
transport equation with the quasi—steady power—law Stegaations leads to the
system

—div(2u(p) T(e(u))) + Vr = pf,
pr +div(pu) = 0,
divu = 0

We consider this system under no—slip and under no—stickdemy value con-
ditions. The aim of the paper is to derive existence resaltsveak solutions of
the coupled system. This will be obtained by a Galerkin angatl a fixed—point
argument. We first show how to solve the transport equatiamsinyg the concept
of renormalized solution introduced by DiPerna and Lior]s Next we consider
an approximated Stokes problem in a finite dimensional spadesolve it us-
ing monotonicity techniques and Korn’s inequality (inaitedly, an extension of
Korn’s second inequality to general boundary conditionsbiained, cf. Lemma
7.1, which is interesting in its own right). A solution to tbeupled approximated
problem is then obtained through Schauder’s fixed—pointréra. Finally, we
pass to the limit in the dimension using rather delicate cactipess arguments.

Up to now, mixtures of incompressible viscous fluids haveydiden studied
in the linear cas@ = 2. In [16] an existence theorem for the multi—fluid Stokes
problem is given. The full incompressible multi—fluid Naw&tokes system is
treated in [15]. Moreover, two—dimensional flows are stddie [3], and two—
phase flows of fluids with surface tension are consideredih [1

The outline of the paper is as follows. The model and the apsans on the
data are stated in the next section. In Section 3 we discasttitinuity equation.
Sections 4 and 5 are devoted to some auxiliary Galerkin probland the fixed—
point argument. The main results are stated and proved im8s® and 7.

2. Quasi—steady Stokes flow
We considerM fluids with shear—dependent viscosity flowing in an open do-

mainQ) Cc R? (d > 2). Let(,,(t) be the domain occupied by the-th fluid at
timet € (0, T7]; thus, for eacht, we have

M
Q=] ..
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Denote byu,, the velocity field of then-th fluid, with components.! , ..., u?

m

by p.. its density, and by:(p,,) its viscosity. We assume that the density of
each fluid is constant, and thatis a C'—function. Furthermore, each fluid is
incompressible, that is,

divu,, =0 in Q,,(t), a.e. t € (0,T].
We define the velocityr and the density, globally in©Q2 x (0, 7], by setting
u(z,t) =uy,(x,t) and p(x,t) = pn(x,t),

forz € Q,,(t) andl < m < M.
Now, let us establish the system of equationsd@ndp. For1l < m < M, let

T(e(un)) = v(k + le(un) )" e(un),

wheree(u,,,) = 5 (Vu,, + (Vu,,)") is the symmetric part of the velocity gradi-
ent,1 < p < oo,k > 0, andrv > 0. We define the stress tensor

om =2 p(pm) T(e(un)) — mn Id,
wherer,, is the pressure. The balance of momentum for the quasiys&ialles
flow is given by
—divo,, = pm £,
wheref,, = (fL,..., f)T is a given body force. Furthermore, the mathematical
formulation of the phy5|cal principle of mass conservatisrexpressed by the
continuity equation
Orpm + div (pu,,) = 0.
We only consider immiscible fluids,e., u,, - n,, = 0 holds on the interfaces
between the fluids, whene,, is the outward normal a®<2,,(¢), t € (0,7]. The
immiscibility property is equivalent to the fact that

Op(p) +u-Vu(p) =0 inQx(0,T],

if the interfaces are smooth; cf. [16]. This equation issegd if p,+div (pu) = 0,
divu = 0, andp is aC'—function. Thus, we arrive at the following quasi—steady
Stokes system:

—div(2u(p) T(e(u))) +Vr = pf in Q x (0,7, (2.1)
pr+div(pu) = 0 in 2 x (0,71, (2.2)
divu = 0 inQ x (0 (2.3)

T]

) ]7

whereT (e(u)) = v(k + |e(u)|)’%e(u) ande(u) = 1 (Vu+ (Vu)?) ared x d—
matrices and is defined globally as before.
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We consider the system (2.1)—(2.3) under the initial cooalit

p(z,0)=py InQ (2.4)
wherepy(x) € {p1,...,pum}, a.e. inQ), and the no-slip boundary condition
u=0 ono x (0,T]. (2.5)

We refer to (2.1)—(2.5) as proble(#;) and our aim is to show the existence of
M fluids, with constant densities, . . ., pas, satisfying(P;) in the sense of the
following

Definition 2.1: A weak solution of problerti, ) is a triple (u, p, 7) such that
uec L™ (O,T; Wol’p(Q;]Rd)) . divu=0;
p€L>Qr), meL™0,T;L7(Q));
[ 2uo) e setw) = [ 7Vw= [ v, vw e W@,

fora.e.t € (0,77]; andp is a renormalized solution of the initial-value problem
pr +div(pu) = 0 in Q x (0,7,
p(xz,0) = po in Q.

We need the following set of assumptions on the data:

(i) Q c R?(d > 2)is a smooth bounded domain.
(i) 1<p<oo,k>0,andv > 0.
(i) p;>0,i=1,..., M.
(iv) p € CYR)andy > pg > 0.
(v) f e LV (Q;RY.
Theorem 2.1: Under the previous assumptions, there exists a weak swolutio

(u, p, ) of problem(P;) in the sense of Definition 2.1. Moreover, there is a
constant, depending only on the data, such that

HU-HLOO(O,T;WLP(Q)) + |\7T|\Loo(o,T;Lp’(Q)) < ¢
andp(z,t) € {p1,...,pm}, a.e. inQ x (0,7T].
Remark 2.1: If M = 1, the system is the well-known-Stokes system for incom-

pressible fluids with constant densities. Various regtyaesults are available;
see, for instance, [6, 7, 8], where steady flows are treated.
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Remark 2.2: Our method of proof can be applied to the full multi—fluid gyatof
iIncompressible fluids with shear-dependent viscositiage © the low regularity
of the convective term this leads to restrictions conceytiee range op.

Remark 2.3: In Section 7, we prove similar results for the no—stick baamd
condition
u-n=0 o0nof,
n-o(u,m)-t=0 onodQ, forallt € M,,

wheren is the outward normal a¥2, o(u, 7) = 2 u(p) T'(e(u)) — = Id, and
My={tcR’:t-n=0, onoN}.

If p = 2 this is the classical slip—condition.

We conclude this section by fixing some notation. The spawce-tylinder is
denoted by)r = Q x (0,7),u = (uy,...,uy)" is a vector field, and; = a%-
The Euclidean scalar productsif andR?*? are denoted by - v andVu : Vv,
respectively, andf, g) is the L?(Q2)—scalar product. We use the usual notation
for Sobolev spaces, ands a constant which is allowed to vary from equation to
equation.

3. The continuity equation

Existence and unigueness results in the context of the @gualem for the
transport equation follow from the method of charactesssiin the classical setting
of a velocity fieldw € L' (0,7; W'>(Q;R?)). For less regular velocity fields,
as is the case of the coupled problem we are considering Himtwvthe natural as-
sumptionisw € L (0, T, Whr(Q; Rd)), we have to resort to the theory of renor-
malized solutions introduced by DiPerna and Lions in thelebrated paper [5].
They only considered the case of an equation defined in théeveipaceR? but
included a remark about the possible extension of the mefarlbounded smooth
domains? ¢ R? and a velocity field satisfyingr € L' (0, 7; W'!(Q; R%)) and
the condition

w-n=0 onol,

which prevents the need to use boundary conditions. Fonthre complex case,
the extension was pursued in [16].
Define the solenoidal vector spaces

V={veW"(QRY) :dvv=0 and v-n=0 ondQ} (3.1)
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V = {v e WH(RY : divy = o} (3.2)

and consider the initial value problem for the transportzaetigun
pr+div(pw) = 0 in Q x (0,7, (3.3)
p(x,0) = po in Q. (3.4)

Definition 3.1: Letw € L*>°(0,7; V). A weak solution of (3.3)—(3.4) is a function
p € L*(Qr) such that

/OT/QP (%f W W) = /onso(O), Vo e C%(Qr), with o(T) = 0.

A renormalized solution of (3.3)—(3.4) is a functipre L>°({2r) such that, for
any3 € C1(R), 5(p) is a weak solution of (3.3)—(3.4) for the initial datuip).

The following existence result is proved in [16, section 4].

Theorem 3.1:For any given vector fiele&v € L>°(0,T; V5), and any initial datum
po € L>*(Q) such thatpy € {p1,...,pn}, a.e. inQ, there exists a unique weak
solution of (3.3)—(3.4). Moreover, this weak solution isemermalized solution
and satisfies

plz,t) € {p1,...,pm}, a.e. inf x (0,7]. (3.5)

Remark 3.1: It is a simple matter to obtain (3.5); cf. [16]. Indeed, lebe a
C1(R)—function,3(s) = 0 for s = py, ..., par, and3 > 0 elsewhere. Therj(p)
is a weak solution of (3.3)—(3.4). Sinc&p,) = 0, it follows from the uniqueness
that3(p) = 0, a.e. inQ7. This yields (3.5).

We conclude this section by stating the following resultjolihis a straightfor-
ward extension to thé? setting of Corollary 5.1 in [16].

Lemma 3.1: Letw; — w weakly-« in L>(0, T; WP(Q; R?)). If p; andp are the
associated renormalized solutions(@: 3)3.4), thenp, — p strongly inL? (7).

4. The approximated Stokes problem

We make a Galerkin ansatz. The sp&gedefined by (3.2), is separable. Thus,
there is a set of divergence fré8">(Q; RY)—functionsy;, k = 1,2, ..., that is
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dense inl,. We now introduce the space

Sy = {V € L0, T; V) = v(z,t)= iak(t) yie(z), ap € LOO(O,T)} :

For a giverp € L>(Q)r), we are looking for a functiow™(z, t) € S, solving the
algebraic system

(2u(p) T(e(w")),e(v") = (pf,v"), w"e s, aete (0,7]. (4.1)

Before proving the existence and uniqueness of a soluteinyd state some
useful inequalities.

Lemmad4.l:Letv, w € WHP(Q; RY). For eachl < p < 2, there exists a constant
¢ = c(l[e(v)ll ) lle(W)l o)) > 0 such that

le(v) = e(W) [0y < C/Q(T(G(V)) —T(e(w))): (e(v) —e(w)).  (4.2)

For each2 < p < oo, there exists a constant > 0 such that

le(v) = e(w)l7oq) < C’/Q(T(e(V)) —T(e(w))) : (e(v) —e(w)).  (4.3)

Proof: For A, B € R¥? andl < p < oo, there exists a constant> 0 such that
1
/ (k+[tA + (1 —t)B|)P~2dt > c(k + |A| + |B|)P?; (4.4)
0

cf. [4]. Using Taylor's expansion and (4.4), it easily falls that there exists a
constant;, > 0, depending omp, such that

((s+|A])P?A — (k+|B|)’ ’B) : (A — B)
> c,(k+|A|+|B|)P3A - B]% (4.5)
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The Holder inequality yields (withp, = ]% andp, = 2%]3)

/Q e(v) — e(w)
N /Q(“  le(w)] + e(w)) 7 le(v) = e(W)P (i + le(v)] + [e(w) ) F*

< ([t e+ e 2 lew) - ew))
([ trt kel + etwly)

Using estimate (4.5), the assertion (4.2) follows. Furthae, for2 < p < oo,
we find

[A-B["=|A-BPP*|A-B|’ < (s +|A[ + |B|)*|A - BJ”.
Taking (4.5) into account we obtain assertion (4.3). |

[S]isd

2—p
2

We now solve problem (4.1).

Lemma 4.2: Givenp € L>({)r), there exists a unique solutien” € S, of (4.1).
Moreover, the following a priori estimate holds:

HWnHLoo(o,T;WLp(Q)) <eg, (4.6)
wherec = ¢ (data ||p|| ) is independent of.
Proof: Note thaty > 1o > 0. Using Lemma 4.1, we estimate, fet}, wi € .5,

/Q2u(p) (T(e(w}) = T(e(w5))) : (e(wi)—e(w3)) > clle(wi) — e(wh) [,

wherea(p) = 2 if p < 2, anda(p) = p if p > 2. From Korn’s second inequality
[9],
Lp(y.
Je>0: HVHWLP(Q) <c He(V)HLP(Q)7 Vv e Wy (2 RY),
we obtain the monotonicity, putting = w{ — wj. This implies, using clas-
sical results concerning monotone operators, the existand unigqueness of a
solution. Testing equation (4.1) witk", we deduce, for a.¢.< (0,77,

2o / (4 1w D)2l P < ol €l @) W ey - (47)

Due to Poinca#’s inequality and Korn’s second inequality, estimate YfoBows.
|
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The following is a stability result for problem (4.1).

Lemma 4.3: If (p;, w}') € L>®(Qr) x S, solve(4.1)andp; — pin LP(Q7) and
w! — w" weakly-x in L>(0,T; V}), then(p, w") also solveg(4.1).

Proof: Due to the assumed convergence, the sequefias uniformly bounded
in L>°(0,T; V) and we have

Wi — W[y — 0, aete (0,1

asi — oo. Using the representations! = > 7' | ol yy andw” = >, ary»
we may conclude that

ai(t) — ai(t), a.e.te€(0,7T), Vk e {l,...,n}.
Therefore,

[T (e(w;)) = T(e(W")lpr — 0, aete(0,T].
Noting thatu(p;) — u(p) in LP(2r), it follows that, for anyw” € S,,,

(2p(pi) T(e(w')),e(v") — (2u(p) T(e(w")),e(v")), ae.te (0,77,
and also
(pi £, v") — (pf,v"), a.e.te (0,T].

The conclusion follows. ]

5. The fixed—point argument

The purpose of this section is to prove the existence, foh eac N, of a
solution to the following approximated problem:

(PH) Find (u, p") € S, x L*>(Qr) such that
2u(p") T(e(u™),e(v") = (p"f,v"), W'eS,, aete (0, 7]; (5.1)
andp” is a renormalized solution of
pi +div(p"u") = 0 inQx(0,T]; (5.2)
P (x,0) = py In€, (5.3)
wherepy € {p1,...,prn}, a.€.infQ,

The solution will be obtained, using Schauder’s theoreng ased—point of a
nonlinear mapping’, defined in the closed and convex set

K = {Q - LP(QT> ;1 < Q(%,t) < pum, A.€E. inQT}
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of the Banach spack’({2r).

Givenp € K, solve the Stokes problem obtained from (5.1) by replagihg
with o. Sincep € L*({2r), it follows from Lemma 4.2 that there exists a unique
solutionu” € S,,. For thisu”, solve the initial value problem (5.2)—(5.3) for the
transport equation using Theorem 3.1. Sin€e= S,, C L*> (0,T;V;), we obtain
a uniquep” € L>*(Qr). We finally defineZ (o) := p™. From (3.5), it is apparent
that7 (K') C K so it remains to be proved thatis continuous and thaf (K) is
precompact.

7T is continuous: Let p; € K be a sequence such that
0;i — oo Strongly inL?(Qr) (5.4)

for some functiorp, € LP(€)r). Consider the sequence of solutidng); € .S, of
the Stokes problem (5.1) corresponding to the chpfce: p;. Since the constant
¢ in (4.6) only depends op through itsL> norm, we obtain the uniform bound
|uf || =) < c. We can then extract a subsequence, still denotethpy;,
such that

u! = u" weakly—x in L>(0,T; Vp) (5.5)

for some functiom” € L>(0,7;V,). Using Lemma 4.3, and the convergences
(5.4) and (5.5), we conclude that is the solution of the Stokes problem (5.1)
corresponding to the choigé = p,.

Finally, we consider the solutions of the initial value pievh for the transport
equation corresponding @' andu”, i.e., 7 (¢;) and7 (¢y). By Lemma 3.1, we
obtain that

T (0i) — T (00) strongly inL”(Qr)
and the conclusion follows.

7 (K) is precompact: Take an arbitrary sequengg € K. The corresponding
solutions of the Stokes problem form a bounded sequent&ii0, 7'; ;), so we
can extract a subsequence weakly converging to serael>(0,7"; V;). Again
by Lemma 3.1, we conclude that, up to a subsequeh¢e,) strongly converges
in L?(CQ)r) to the solution of (5.2)—(5.3) with velocity field.

We have just proved, as a consequence of Schauder’s fixed-tpeorem, the
following

Theorem 5.1: For eachn € N, there exists a weak solutiqu”, p") € S, X
L*>(€)r) to the approximated proble(®7).
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Remark 5.1: Weak solutiongu”, p") of problem(P7}') are uniformly bounded in
L>(0,T;Vy) x L>=(Qr). In fact, (4.6) yields a constantindependent of. such
that

HunHLoo(o,T;WLp(Q)) <eg,

and (3.5) implies that" (z,t) € {p1,...,pm}, a.€. inQ2 x (0,7].

6. Existence for problem(P;)

The aim of this section is to take the limit as— oo in problems(Py') and
obtain existence for problertP, ), thus proving Theorem 2.1. First, we discuss
an analogue of problei®; ) in the solenoidal vector spaég.

Proposition 6.1: There existgu, p) € L>(0,7T;V;) x L>(£r) such that

/Q,u(p) T(e(w) : e(v) :/pf-v, wev aete(0,7], (6.1)
Q Q
andp is a renormalized solution of

pr +div(pu) = 0 in Q x (0,77, (6.2)
p(x,0) = pp  INQ, (6.3)
satisfyingp(x,t) € {p1,...,pn}, a.e. inQ x (0, 7.
Proof: Theorem 5.1 yields a weak solutign”, p") € S, x L*({2r) to the ap-
proximated probleniPy), fulfilling p"(z,t) € {p1,...,pm}, a.e. inQ2 x (0,7].
Note that the sequengea”),, is uniformly bounded in.>(0,7’; V4). Thus, there

is a subsequence and a functiere L>°(0,T’; Vj) such thath” — u weakly- in
L>(0,T;Vp). Letv"™ € S,, be the best approximation af that is,

[v" = uHLOO(O,T;leP(Q)) < flw" — uHLoo(o,T;WLP(Q)) ’ vw" € Sp.

Noting thatu” — v" is an admissible test function in equation (5.1) we get

/QM(p")T(e(u")) H(e(u”) —e(v)) = / prE-(ut —vt).
Q Q
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Therefore,

Ji o= /2u(p") (T(e(u")) = T(e(n))) : (e(u”) —e(v"))
Q

~ [

=: Jo+ J3
Let us note that
Iv" =19y — O, a.e.t € (0,7].
Moreover, there is a subsequencéwf),,, denoted again bju"),,, such that
[u" —ul| ) — 0, a.e.t € (0,T].

Therefore, we have
Ju” = v 1) — 0, a.e.t € (0,77.
Noting thatu” — v" € §,, and recalling the simple form of,,-functions this

implies that
[u” = v*{[yis) — 0, a.e.t € (0,77

(see the proof of Lemma 4.3). Due to the uniform boundedned®sequences
(™) and(p(p™)), in L (Qr) we deduce
lim J, =0 and lim J3 = 0,

n—oo n—oo

and thudim,,_,., J; = 0. Next, we write

Bo= [ 2 (o)) = Tle(u)) s efa) = e(w)
~ [ 20067 (T(et) = Tetu)) : (e(v") = e(w)

= Ji + Ji2,
and estimate/; from below to show that alsbm,, .., J1; = 0. Using Taylors’
expansion we find

T(e(u)) = T(e(u"))] < cle(u) — e(u”)] /O (15 + [te(u) + (1 = t)e(u™)|)"*dt.



STOKES FLOW OF MULTIPHASE FLUIDS 13

Using the fact that (see [4])
1
/ (k5 + |tA + (1— )B)"2 < c(r + |A| + |B])P2,
0

and noting thatA| + |A — B| < 2(JA| + |B]) < 4(|A| + |A — BJ), we obtain
[T'(e(u)) = T(e(u”))][e(u) —e(v")|
< c(r+ le(u)] + le(u) — e(u™) )2 fe(u) — e(u”)] e(u) — e(v")] .

Now we apply the following Young-like inequality that can foeind in [2]: for
anye > 0, there is a constant > 0 such that, for al\, a,b > 0,

A+ a)2ab < e(A+a)P%a* + co(A + b)P 22,
Putting\ = x + |e(u)|, a = |e(u) — e(u”)
(& + [e()] + [e(u) — e(u")[)'7 |e(u) — e(u")| e(u) — e(v")]
< e(r+ le(w)] + [e(u) — e(u)[)"~ [e(u) — e(u")]?
+ee(k + [e(u)| + le(u) — e(v7)[)'7 e(u) — e(v")[*.
Using estimate (4.5), we have
(k+[A]+]|A - B[)"*|A — BJ?
< c(k+]A|+|B|)" *A - B
< c((k+|B)! B - (k+]A|)P"2A): (B - A).

Altogether, we conclude that, for amy> 0,
[Jio| < €2p / (T'(e(u”)) = T(e(u))) : (e(u”) — e(u))
Q
se2p [ (T(elw) = Tle()): (e(v") = ew),
Q

, andb = |e(u) — e(v")| we get

wherefi = max;<p<n p(px). Puttingu = miny << p(pr) ande = p(2)~" we
deduce

3 < e [ (Tl = Tle()): (elv) = efw)
and, in factlim,, ... J11 = 0. Estimatingu(p") > p we infer
lim [ (T(e(u")) —T(e(u))): (e(u") —e(u)) =0. (6.4)

n—oo QO
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Due to Lemma 4.1 we conclude that
7}1_)1(& le(u”) — e(u)|| o) = 0 a.e.t € (0,7]. (6.5)
Applying Korn’s second inequality it follows that
Vu" — Vu, a.e. inQy.

Now let p be the renormalized solution of the continuity equatioroasged with
u. Lemma 3.1 implies that

Pt —p strongly inL”(Qr) .
Utilizing Vitali’'s convergence theorem we obtain
Tim (2 p(p") T(e(u")), e(v")) = (2pu(p) T(e(u)), e(v))  ¥v € L¥(0,T; Vo),
as well agp" f,v") — (pf,v). This yields the assertion. m
We finally prove our main result.
Proof of Theorem 2.1: Due to Proposition 6.1, there exists a weak solutioyp)

of (6.1)—(6.3). Moreoverp(z,t) € {p1,...,pm}, a.e. inQ x (0,7], and there is
a constant, depending only on the data, such that

[all o 7m0y < € (6.6)
Fort € (0,T], let us introduce the functiondl ¢ W~ (Q; R?) by setting
(Fyw) = —=(div (2 u(p) T(e(u))), w) — (pf, w).
We have
(F,w) =0, Vw e 1, a.e.t € (0,7].

Applying a simplification of De Rahm’s theorem [1, Lemma. ]2we obtain a
functiont € L¥ (Q) such that

F = -V, a.e.t € (0,7T7.
Moreover, noting thaf F'||y;,-.. ) < ¢, uniformly in¢, due to (6.6), we get
IV -1y < € a.e.t € (0,7].

In view of the following estimate of N&as [13],

d
V]l 2oy < co (Z 1970 llyy-1.0(0) + Ivlwm<m> :
i=1
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valid for any1 < ¢ < oo, and any distributiony such thatd,y € W-14(Q),
i=0,1,...,d, we conclude that there is a generic constaepending only on
the data, such that

HWHLP’(Q) <., a.e.t € (0, T].
This completes the proof. -

7. No-stick boundary condition

In this final section, we extend our results to the case of tiestick boundary
condition
u-n=0 o0noe,
n-o(u,m)-t=0 onodQ, forallt € M,,

wheren is the outward normal a¥{2, o(u, ) = 2 u(p) T'(e(u)) — = Id, and
My={teR:t-n=0, onoN}.

We refer to (2.1)—(2.4), (7.1) as problgmRs).
Recall definition (3.1) of the solenoidal vector spatand let us introduce

W ={weW"(QR") :w-n=00nd0}.

Since the Green formula

[ (e 2t T(e(w)) + V) - = [ 20) Te(w) s el

Q

(7.1)

—/WV'W— n-2ulp)Tle(u))—rld) - -w

Q o0

holds for allw € W!r(Q; RY), we obtain the following

Definition 7.1: A weak solution of probleri,) is a triple (u, p, 7) such that
ue L®0,T;V), pelL>Qp), meL>®0,T;L"(Q)):

/2,u(p)T(e(u)) :e(w) —/ﬂ'V-W = / pf-w, VweW, aete(0,T]
) Q )
andp is a renormalized solution of

pr +div(pu) = 0 in Q x (0,77,
p(x,0) = po in Q.
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In order to prove existence for this problem we need a vemsidtorn's second
inequality for the type of boundary conditions we are coesith. Since a proof
seems to be missing in the literature, we include it hereHersake of complete-
ness. We feel the result is interesting in its own right.

Lemma 7.1: For anyl < p < oo, there exists a constantsuch that
IVIwre@) < clleM)l o - (7.2)

forall v.e Whr(Q; RY) such thatv-n = 0 on 9, andn - T'(e(v)) -t = 0 on 91,
vVt € M.

Proof: It is known that

[Vl < € (¥l + 1lelzagey ) (7.3)
cf. [9]. It remains to show that
V1l ooy < € lleM) ey - (7.4)

We argue by contradiction and assume that estimate (7.4)ss.f Thus, there
exists a sequende’*), of functionsv® € W?(Q; R?) such that

Vk>1, |v =1, and lim ||e(v =0.

k
dim e[ g

o)

Using (7.3), we find a subsequence and a limit functian 1717 (Q; R?) such that
v — v weakly inWr(Q; R9Y), v — v strongly inL?(Q; R?), ande(v) = 0.
Moreover, it is known that a function € W?(Q; R?) satisfiese(v) = 0 if and
only if it is of the formv(z) = Az + b, whereA € R?¥? is skew—symmetric and
b € RY cf. [10]. Now let us consider a point € 92 wheren(z) is equal to the
i-th unit vector inR?. Letwv; be thei-th component ofr. Thenn - T'(e(v)) -t = 0
implies thatd,;v; = 0, forall 1 < j <d, j # i. Hence, it follows that;;; = 0, for
all ;7 # 1. Moreover,A is skew—symmetric; thus, we haug = 0. We conclude
that A = 0. Furthermorey - n = 0 on 9f) yieldsv; = 0 on 9f). Therefore, we
also deducé = 0. Hence, it holds that = 0. This contradicts|v"|| , , = 1

Vk > 1. ]

We can then establish the following existence result.

Theorem 7.1: Under assumption@)—v), there exists a weak solutidm, p, )
of problem(P2) in the sense of Definition 7.1. Moreover, there is a constant
depending only on the data, such that

HU-HLOO(O,T;WLP(Q)) + |\7T|\Loo(o,T;Lp'(Q)) <c

Y
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andp(z,t) € {p1,...,pm}, a.e. inQ2 x (0,7T].

Proof: We argue as in the proof of Theorem 2.1, but instead,o¥e use the space
V. We now consider a finite dimensional spatec L>(0,T;V). Proceeding
as in Sections 4 and 5, and making use of (7.2), we obtain,acne € N, the
existence of a weak solutidm”, p") of the following approximated problem:

(Py) Find (u™, p") € S, X L*>(Qr) such that
(2 u(p") T(e(u™), e(v") = (p"£,v"), W' € S,, a.e.t e (0,T7;
andp” is a renormalized solution of

py +div(p"u") = 0 inQx (0,77
pn('xao) = Po in Q)

wherepy € {p1,...,pun}, a.€.infQ,
Taking the limit asn — oo, we obtain the analogue of Proposition 6.1. Apply-
ing again De Rahm’s theorem, the assertion follows. |
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