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ABSTRACT: The quasi–steady power–law Stokes flow of a mixture of incompressible flu-
ids with shear–dependent viscosity is studied. The fluids are immiscible and have constant
densities. Existence results are presented for both the no–slip and the no–stick boundary
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1. Introduction

In chemical engineering, blood rheology, ice mechanics, and geology, one comes
across a wide range of incompressible fluids that cannot be adequately described
by using the Navier–Stokes theory. Those fluids are generally referred to as non–
Newtonian fluids. There are many examples for which the viscosity depends on
the modulus of the symmetric part of the velocity gradient; cf. [11, 12, 14]. Such
fluids are called generalised Newtonian fluids or fluids with shear–dependent vis-
cosity.

Our purpose is to study the quasi–steady flow ofM immiscible fluids with
shear–dependent viscosity. We assume that the fluids occupytime–dependent
subdomainsΩm(t), 1 ≤ m ≤ M , of a fixed domainΩ ⊂ R

d, d ≥ 2. In each
subdomain the Cauchy stress tensorσm hasp–structure, i.e.,

σm = 2µ(ρm) T (e(um)) − πm Id, (1.1)

whereT (e(um)) = ν(κ+ |e(um)|)p−2e(um), 1 < p < ∞, e(um) is the symmetric
part of the velocity gradient,ρm is the density,µ(ρm) is the viscosity, andπm is
the pressure. For different values ofp different phenomena are captured. The
quantity |e(um)| is called the shear rate and a fluid obeying the constitutive law
(1.1) is named shear thinning ifp < 2, and shear thickening ifp > 2. The
non–miscibility conditions at the interfaces between the fluids are equivalent to a
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transport equation for the viscosities on the whole domain;cf. [16]. Coupling this
transport equation with the quasi–steady power–law Stokesequations leads to the
system

−div (2 µ(ρ) T (e(u))) + ∇π = ρ f ,

ρt + div (ρu) = 0,

div u = 0.

We consider this system under no–slip and under no–stick boundary value con-
ditions. The aim of the paper is to derive existence results for weak solutions of
the coupled system. This will be obtained by a Galerkin ansatz and a fixed–point
argument. We first show how to solve the transport equation byusing the concept
of renormalized solution introduced by DiPerna and Lions [5]. Next we consider
an approximated Stokes problem in a finite dimensional spaceand solve it us-
ing monotonicity techniques and Korn’s inequality (incidentally, an extension of
Korn’s second inequality to general boundary conditions isobtained, cf. Lemma
7.1, which is interesting in its own right). A solution to thecoupled approximated
problem is then obtained through Schauder’s fixed–point theorem. Finally, we
pass to the limit in the dimension using rather delicate compactness arguments.

Up to now, mixtures of incompressible viscous fluids have only been studied
in the linear casep = 2. In [16] an existence theorem for the multi–fluid Stokes
problem is given. The full incompressible multi–fluid Navier–Stokes system is
treated in [15]. Moreover, two–dimensional flows are studied in [3], and two–
phase flows of fluids with surface tension are considered in [17].

The outline of the paper is as follows. The model and the assumptions on the
data are stated in the next section. In Section 3 we discuss the continuity equation.
Sections 4 and 5 are devoted to some auxiliary Galerkin problems and the fixed–
point argument. The main results are stated and proved in Sections 6 and 7.

2. Quasi–steady Stokes flow

We considerM fluids with shear–dependent viscosity flowing in an open do-
mainΩ ⊂ R

d (d ≥ 2). Let Ωm(t) be the domain occupied by them-th fluid at
time t ∈ (0, T ]; thus, for eacht, we have

Ω =

M⋃

m=1

Ωm(t).
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Denote byum the velocity field of them-th fluid, with componentsu1
m, . . . , ud

m,
by ρm its density, and byµ(ρm) its viscosity. We assume that the densityρm of
each fluid is constant, and thatµ is a C1–function. Furthermore, each fluid is
incompressible, that is,

div um = 0 in Ωm(t), a.e. t ∈ (0, T ].

We define the velocityu and the densityρ, globally inΩ × (0, T ], by setting

u(x, t) = um(x, t) and ρ(x, t) = ρm(x, t),

for x ∈ Ωm(t) and1 ≤ m ≤ M .
Now, let us establish the system of equations foru andρ. For1 ≤ m ≤ M , let

T (e(um)) = ν(κ + |e(um)|)p−2e(um),

wheree(um) = 1
2

(
∇um + (∇um)T

)
is the symmetric part of the velocity gradi-

ent,1 < p < ∞, κ ≥ 0, andν > 0. We define the stress tensor

σm = 2 µ(ρm) T (e(um)) − πm Id ,

whereπm is the pressure. The balance of momentum for the quasi–steady Stokes
flow is given by

−div σm = ρm fm ,

wherefm = (f 1
m, . . . , f d

m)T is a given body force. Furthermore, the mathematical
formulation of the physical principle of mass conservationis expressed by the
continuity equation

∂tρm + div (ρmum) = 0.

We only consider immiscible fluids,i.e., um · nm = 0 holds on the interfaces
between the fluids, wherenm is the outward normal of∂Ωm(t), t ∈ (0, T ]. The
immiscibility property is equivalent to the fact that

∂tµ(ρ) + u · ∇µ(ρ) = 0 in Ω × (0, T ],

if the interfaces are smooth; cf. [16]. This equation is satisfied ifρt+div (ρu) = 0,
divu = 0, andµ is aC1–function. Thus, we arrive at the following quasi–steady
Stokes system:

−div (2 µ(ρ) T (e(u))) + ∇π = ρ f in Ω × (0, T ], (2.1)

ρt + div (ρu) = 0 in Ω × (0, T ], (2.2)

div u = 0 in Ω × (0, T ], (2.3)

whereT (e(u)) = ν(κ + |e(u)|)p−2e(u) ande(u) = 1
2

(
∇u + (∇u)T

)
ared × d–

matrices andf is defined globally as before.
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We consider the system (2.1)–(2.3) under the initial condition

ρ(x, 0) = ρ0 in Ω, (2.4)

whereρ0(x) ∈ {ρ1, . . . , ρM}, a.e. inΩ, and the no–slip boundary condition

u = 0 on∂Ω × (0, T ]. (2.5)

We refer to (2.1)–(2.5) as problem(P1) and our aim is to show the existence of
M fluids, with constant densitiesρ1, . . . , ρM , satisfying(P1) in the sense of the
following

Definition 2.1: A weak solution of problem(P1) is a triple (u, ρ, π) such that

u ∈ L∞
(
0, T ; W 1,p

0 (Ω; Rd)
)

, divu = 0;

ρ ∈ L∞(ΩT ), π ∈ L∞(0, T ; Lp′(Ω));∫

Ω

2 µ(ρ) T (e(u)) : e(w) −

∫

Ω

π∇ ·w =

∫

Ω

ρ f · w, ∀w ∈ W
1,p
0 (Ω; Rd) ,

for a.e.t ∈ (0, T ]; andρ is a renormalized solution of the initial-value problem

ρt + div (ρu) = 0 in Ω × (0, T ],

ρ(x, 0) = ρ0 in Ω.

We need the following set of assumptions on the data:

(i) Ω ⊂ R
d (d ≥ 2) is a smooth bounded domain.

(ii) 1 < p < ∞, κ ≥ 0, andν > 0.

(iii) ρi > 0, i = 1, . . . , M .

(iv) µ ∈ C1(R) andµ ≥ µ0 > 0.

(v) f ∈ Lp′(Ω; Rd).

Theorem 2.1: Under the previous assumptions, there exists a weak solution
(u, ρ, π) of problem(P1) in the sense of Definition 2.1. Moreover, there is a
constantc, depending only on the data, such that

‖u‖L∞(0,T ;W 1,p(Ω)) + ‖π‖L∞(0,T ;Lp′(Ω)) ≤ c,

andρ(x, t) ∈ {ρ1, . . . , ρM}, a.e. inΩ × (0, T ].

Remark 2.1: If M = 1, the system is the well-knownp–Stokes system for incom-
pressible fluids with constant densities. Various regularity results are available;
see, for instance, [6, 7, 8], where steady flows are treated.
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Remark 2.2: Our method of proof can be applied to the full multi–fluid system of
incompressible fluids with shear-dependent viscosities. Due to the low regularity
of the convective term this leads to restrictions concerning the range ofp.

Remark 2.3: In Section 7, we prove similar results for the no–stick boundary
condition

u · n = 0 on∂Ω,

n · σ(u, π) · t = 0 on∂Ω, for all t ∈ Mn ,

wheren is the outward normal of∂Ω, σ(u, π) = 2 µ(ρ) T (e(u))− π Id, and

Mn = {t ∈ R
d : t · n = 0, on∂Ω}.

If p = 2 this is the classical slip–condition.

We conclude this section by fixing some notation. The space-time cylinder is
denoted byΩT = Ω × (0, T ), u = (u1, . . . , ud)

T is a vector field, and∂i = ∂
∂xi

.
The Euclidean scalar products inR

d andR
d×d are denoted byu · v and∇u : ∇v,

respectively, and(f, g) is theL2(Ω)–scalar product. We use the usual notation
for Sobolev spaces, andc is a constant which is allowed to vary from equation to
equation.

3. The continuity equation

Existence and uniqueness results in the context of the Cauchy problem for the
transport equation follow from the method of characteristics in the classical setting
of a velocity fieldw ∈ L1

(
0, T ; W 1,∞(Ω; Rd)

)
. For less regular velocity fields,

as is the case of the coupled problem we are considering, for which the natural as-
sumption isw ∈ L∞

(
0, T ; W 1,p(Ω; Rd)

)
, we have to resort to the theory of renor-

malized solutions introduced by DiPerna and Lions in their celebrated paper [5].
They only considered the case of an equation defined in the whole spaceRd but
included a remark about the possible extension of the results for bounded smooth
domainsΩ ⊂ R

d and a velocity field satisfyingw ∈ L1
(
0, T ; W 1,1(Ω; Rd)

)
and

the condition

w · n = 0 on∂Ω,

which prevents the need to use boundary conditions. For thismore complex case,
the extension was pursued in [16].

Define the solenoidal vector spaces

V =
{
v ∈ W 1,p(Ω; Rd) : div v = 0 and v · n = 0 on∂Ω

}
(3.1)
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V0 =
{
v ∈ W

1,p
0 (Ω; Rd) : div v = 0

}
(3.2)

and consider the initial value problem for the transport equation

ρt + div (ρw) = 0 in Ω × (0, T ], (3.3)

ρ(x, 0) = ρ0 in Ω. (3.4)

Definition 3.1: Letw ∈ L∞(0, T ; V ). A weak solution of (3.3)–(3.4) is a function
ρ ∈ L∞(ΩT ) such that
∫ T

0

∫

Ω

ρ

(
∂ϕ

∂t
+ w · ∇ϕ

)
=

∫

Ω

ρ0ϕ(0), ∀ ϕ ∈ C∞(ΩT ), with ϕ(T ) = 0.

A renormalized solution of (3.3)–(3.4) is a functionρ ∈ L∞(ΩT ) such that, for
anyβ ∈ C1(R), β(ρ) is a weak solution of (3.3)–(3.4) for the initial datumβ(ρ0).

The following existence result is proved in [16, section 4].

Theorem 3.1:For any given vector fieldw ∈ L∞(0, T ; V0), and any initial datum
ρ0 ∈ L∞(Ω) such thatρ0 ∈ {ρ1, . . . , ρM}, a.e. inΩ, there exists a unique weak
solution of (3.3)–(3.4). Moreover, this weak solution is a renormalized solution
and satisfies

ρ(x, t) ∈ {ρ1, . . . , ρM}, a.e. inΩ × (0, T ]. (3.5)

Remark 3.1: It is a simple matter to obtain (3.5); cf. [16]. Indeed, letβ be a
C1(R)–function,β(s) = 0 for s = ρ1, . . . , ρM , andβ > 0 elsewhere. Then,β(ρ)
is a weak solution of (3.3)–(3.4). Sinceβ(ρ0) = 0, it follows from the uniqueness
thatβ(ρ) = 0, a.e. inΩT . This yields (3.5).

We conclude this section by stating the following result, which is a straightfor-
ward extension to theLp setting of Corollary 5.1 in [16].

Lemma 3.1: Letwi ⇀ w weakly–∗ in L∞(0, T ; W 1,p(Ω; Rd)). If ρi andρ are the
associated renormalized solutions of(3.3)–(3.4), thenρi → ρ strongly inLp(ΩT ).

4. The approximated Stokes problem

We make a Galerkin ansatz. The spaceV0, defined by (3.2), is separable. Thus,
there is a set of divergence freeW 1,∞(Ω; Rd)–functionsyk, k = 1, 2, . . ., that is
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dense inV0. We now introduce the space

Sn =

{
v ∈ L∞(0, T ; V0) : v(x, t) =

n∑

k=1

αk(t)yk(x), αk ∈ L∞(0, T )

}
.

For a givenρ ∈ L∞(ΩT ), we are looking for a functionwn(x, t) ∈ Sn solving the
algebraic system

(2 µ(ρ) T (e(wn)), e(vn)) = (ρ f ,vn), ∀vn ∈ Sn, a.e.t ∈ (0, T ] . (4.1)

Before proving the existence and uniqueness of a solution, let us state some
useful inequalities.

Lemma 4.1: Letv,w ∈ W 1,p(Ω; Rd). For each1 < p < 2, there exists a constant
c = c(‖e(v)‖Lp(Ω) , ‖e(w)‖Lp(Ω)) > 0 such that

‖e(v) − e(w)‖2
Lp(Ω) ≤ c

∫

Ω

(T (e(v))− T (e(w))) : (e(v) − e(w)) . (4.2)

For each2 < p < ∞, there exists a constantc′ > 0 such that

‖e(v) − e(w)‖p

Lp(Ω) ≤ c′
∫

Ω

(T (e(v))− T (e(w))) : (e(v) − e(w)) . (4.3)

Proof: ForA,B ∈ R
d×d, and1 < p < ∞, there exists a constantc > 0 such that

∫ 1

0

(κ + |tA + (1 − t)B|)p−2dt ≥ c(κ + |A| + |B|)p−2 ; (4.4)

cf. [4]. Using Taylor’s expansion and (4.4), it easily follows that there exists a
constantcp > 0, depending onp, such that

(
(κ + |A|)p−2A − (κ + |B|)p−2B

)
: (A − B)

≥ cp(κ + |A| + |B|)p−2|A −B|2. (4.5)
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The Hölder inequality yields (withp1 = 2
p

andp2 = 2
2−p

)
∫

Ω

|e(v) − e(w)|p

=

∫

Ω

(κ + |e(v)| + |e(w)|)
(p−2)p

2 |e(v) − e(w)|p (κ + |e(v)| + |e(w)|)
(2−p)p

2

≤
(∫

Ω

(κ + |e(v)| + |e(w)|)p−2 |e(v) − e(w)|2
) p

2

×

×
(∫

Ω

(κ + |e(v)| + |e(w)|)p
)2−p

2

.

Using estimate (4.5), the assertion (4.2) follows. Furthermore, for2 < p < ∞,
we find

|A −B|p = |A −B|p−2 |A − B|2 ≤ (κ + |A| + |B|)p−2 |A −B|2.

Taking (4.5) into account we obtain assertion (4.3).

We now solve problem (4.1).

Lemma 4.2: Givenρ ∈ L∞(ΩT ), there exists a unique solutionwn ∈ Sn of (4.1).
Moreover, the following a priori estimate holds:

‖wn‖L∞(0,T ;W 1,p(Ω)) ≤ c, (4.6)

wherec = c (data, ‖ρ‖∞) is independent ofn.

Proof: Note thatµ ≥ µ0 > 0. Using Lemma 4.1, we estimate, forwn
1 ,w

n
2 ∈ Sn,

∫

Ω

2 µ(ρ) (T (e(wn
1) − T (e(wn

2))) : (e(wn
1)−e(wn

2)) ≥ c ‖e(wn
1) − e(wn

2 )‖
α(p)
Lp(Ω) ,

whereα(p) = 2 if p < 2, andα(p) = p if p > 2. From Korn’s second inequality
[9],

∃ c > 0 : ‖v‖W 1,p(Ω) ≤ c ‖e(v)‖Lp(Ω) , ∀ v ∈ W
1,p
0 (Ω; Rd),

we obtain the monotonicity, puttingv = wn
1 − wn

2 . This implies, using clas-
sical results concerning monotone operators, the existence and uniqueness of a
solution. Testing equation (4.1) withwn, we deduce, for a.e.t ∈ (0, T ],

2µ0ν

∫

Ω

(κ + |e(wn)|)p−2|e(wn)|2 ≤ ‖ρ‖∞ ‖f‖Lp′(Ω) ‖w
n‖Lp(Ω) . (4.7)

Due to Poincaŕe’s inequality and Korn’s second inequality, estimate (4.6) follows.
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The following is a stability result for problem (4.1).

Lemma 4.3: If (ρi,w
n
i ) ∈ L∞(ΩT ) × Sn solve(4.1)andρi → ρ in Lp(ΩT ) and

wn
i ⇀ wn weakly–∗ in L∞(0, T ; V0), then(ρ,wn) also solve(4.1).

Proof: Due to the assumed convergence, the sequencewn
i is uniformly bounded

in L∞(0, T ; V0) and we have

‖wn
i −wn‖Lp(Ω) → 0, a.e.t ∈ (0, T ],

asi → ∞. Using the representationswn
i =

∑n
k=1 αi

k yk andwn =
∑n

k=1 αk yk

we may conclude that

αi
k(t) → αk(t), a.e.t ∈ (0, T ], ∀k ∈ {1, . . . , n}.

Therefore,

‖T (e(wn
i )) − T (e(wn))‖Lp′(Ω) → 0, a.e.t ∈ (0, T ].

Noting thatµ(ρi) → µ(ρ) in Lp(ΩT ), it follows that, for anyvn ∈ Sn,

(2 µ(ρi) T (e(wn
i )), e(v

n)) → (2 µ(ρ) T (e(wn)), e(vn)), a.e.t ∈ (0, T ],

and also
(ρi f ,v

n) → (ρ f ,vn), a.e.t ∈ (0, T ].

The conclusion follows.

5. The fixed–point argument

The purpose of this section is to prove the existence, for each n ∈ N, of a
solution to the following approximated problem:

(Pn

1
) Find (un, ρn) ∈ Sn × L∞(ΩT ) such that

(2 µ(ρn) T (e(un)), e(vn)) = (ρnf ,vn) , ∀vn ∈ Sn, a.e.t ∈ (0, T ]; (5.1)

andρn is a renormalized solution of

ρn
t + div (ρn un) = 0 in Ω × (0, T ]; (5.2)

ρn(x, 0) = ρ0 in Ω, (5.3)

whereρ0 ∈ {ρ1, . . . , ρM}, a.e. inΩ.

The solution will be obtained, using Schauder’s theorem, asa fixed–point of a
nonlinear mappingT , defined in the closed and convex set

K = {̺ ∈ Lp(ΩT ) : ρ1 ≤ ̺(x, t) ≤ ρM , a.e. inΩT}
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of the Banach spaceLp(ΩT ).
Given ̺ ∈ K, solve the Stokes problem obtained from (5.1) by replacingρn

with ̺. Since̺ ∈ L∞(ΩT ), it follows from Lemma 4.2 that there exists a unique
solutionun ∈ Sn. For thisun, solve the initial value problem (5.2)–(5.3) for the
transport equation using Theorem 3.1. Sinceun ∈ Sn ⊂ L∞ (0, T ; V0), we obtain
a uniqueρn ∈ L∞(ΩT ). We finally defineT (̺) := ρn. From (3.5), it is apparent
thatT (K) ⊂ K so it remains to be proved thatT is continuous and thatT (K) is
precompact.

T is continuous: Let ̺i ∈ K be a sequence such that

̺i → ̺0 strongly inLp(ΩT ) (5.4)

for some function̺ 0 ∈ Lp(ΩT ). Consider the sequence of solutions(un
i )i ∈ Sn of

the Stokes problem (5.1) corresponding to the choiceρn = ̺i. Since the constant
c in (4.6) only depends onρ through itsL∞ norm, we obtain the uniform bound
‖un

i ‖L∞(0,T ;V0) ≤ c. We can then extract a subsequence, still denoted by(un
i )i,

such that
un

i ⇀ un weakly–∗ in L∞(0, T ; V0) (5.5)

for some functionun ∈ L∞(0, T ; V0). Using Lemma 4.3, and the convergences
(5.4) and (5.5), we conclude thatun is the solution of the Stokes problem (5.1)
corresponding to the choiceρn = ̺0.

Finally, we consider the solutions of the initial value problem for the transport
equation corresponding toun

i andun, i.e., T (̺i) andT (̺0). By Lemma 3.1, we
obtain that

T (̺i) → T (̺0) strongly inLp(ΩT )

and the conclusion follows.

T (K) is precompact: Take an arbitrary sequence̺i ∈ K. The corresponding
solutions of the Stokes problem form a bounded sequence inL∞(0, T ; V0), so we
can extract a subsequence weakly converging to someu ∈ L∞(0, T ; V0). Again
by Lemma 3.1, we conclude that, up to a subsequence,T (̺i) strongly converges
in Lp(ΩT ) to the solution of (5.2)–(5.3) with velocity fieldu.

We have just proved, as a consequence of Schauder’s fixed–point theorem, the
following

Theorem 5.1: For eachn ∈ N, there exists a weak solution(un, ρn) ∈ Sn ×
L∞(ΩT ) to the approximated problem(Pn

1
).
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Remark 5.1: Weak solutions(un, ρn) of problem(Pn

1
) are uniformly bounded in

L∞(0, T ; V0) × L∞(ΩT ). In fact, (4.6) yields a constantc independent ofn such
that

‖un‖L∞(0,T ;W 1,p(Ω)) ≤ c,

and (3.5) implies thatρn(x, t) ∈ {ρ1, . . . , ρM}, a.e. inΩ × (0, T ].

6. Existence for problem(P1)

The aim of this section is to take the limit asn → ∞ in problems(Pn

1
) and

obtain existence for problem(P1), thus proving Theorem 2.1. First, we discuss
an analogue of problem(P1) in the solenoidal vector spaceV0.

Proposition 6.1: There exists(u, ρ) ∈ L∞(0, T ; V0) × L∞(ΩT ) such that

∫

Ω

2 µ(ρ) T (e(u)) : e(v) =

∫

Ω

ρ f · v, ∀v ∈ V0, a.e.t ∈ (0, T ] , (6.1)

andρ is a renormalized solution of

ρt + div (ρu) = 0 in Ω × (0, T ], (6.2)

ρ(x, 0) = ρ0 in Ω, (6.3)

satisfyingρ(x, t) ∈ {ρ1, . . . , ρM}, a.e. inΩ × (0, T ].

Proof: Theorem 5.1 yields a weak solution(un, ρn) ∈ Sn × L∞(ΩT ) to the ap-
proximated problem(Pn

1
), fulfilling ρn(x, t) ∈ {ρ1, . . . , ρM}, a.e. inΩ × (0, T ].

Note that the sequence(un)n is uniformly bounded inL∞(0, T ; V0). Thus, there
is a subsequence and a functionu ∈ L∞(0, T ; V0) such thatun ⇀ u weakly–∗ in
L∞(0, T ; V0). Let vn ∈ Sn be the best approximation ofu, that is,

‖vn − u‖L∞(0,T ;W 1,p(Ω)) ≤ ‖wn − u‖L∞(0,T ;W 1,p(Ω)) , ∀wn ∈ Sn.

Noting thatun − vn is an admissible test function in equation (5.1) we get
∫

Ω

2µ(ρn) T (e(un)) : (e(un) − e(vn)) =

∫

Ω

ρn f · (un − vn) .



12 C. EBMEYER AND J.M. URBANO

Therefore,

J1 :=

∫

Ω

2µ(ρn) (T (e(un)) − T (e(u))) : (e(un) − e(vn))

=

∫

Ω

ρn f · (un − vn)

−

∫

Ω

2µ(ρn) T (e(u)) : (e(un) − e(vn))

=: J2 + J3.

Let us note that
‖vn − u‖Lp(Ω) → 0, a.e.t ∈ (0, T ].

Moreover, there is a subsequence of(un)n, denoted again by(un)n, such that

‖un − u‖Lp(Ω) → 0, a.e.t ∈ (0, T ].

Therefore, we have

‖un − vn‖Lp(Ω) → 0, a.e.t ∈ (0, T ].

Noting thatun − vn ∈ Sn and recalling the simple form ofSn-functions this
implies that

‖un − vn‖W 1,p(Ω) → 0, a.e.t ∈ (0, T ]

(see the proof of Lemma 4.3). Due to the uniform boundedness of the sequences
(ρn)n and(µ(ρn))n in L∞(ΩT ) we deduce

lim
n→∞

J2 = 0 and lim
n→∞

J3 = 0,

and thuslimn→∞ J1 = 0. Next, we write

J1 =

∫

Ω

2µ(ρn) (T (e(un)) − T (e(u))) : (e(un) − e(u))

−

∫

Ω

2µ(ρn) (T (e(un)) − T (e(u))) : (e(vn) − e(u))

=: J11 + J12 ,

and estimateJ1 from below to show that alsolimn→∞ J11 = 0. Using Taylors’
expansion we find

|T (e(u))− T (e(un))| ≤ c |e(u) − e(un)|

∫ 1

0

(κ + |te(u) + (1− t)e(un)|)p−2 dt .
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Using the fact that (see [4])
∫ 1

0

(κ + |tA + (1 − t)B|)p−2 ≤ c(κ + |A| + |B|)p−2,

and noting that|A| + |A − B| ≤ 2(|A| + |B|) ≤ 4(|A| + |A −B|), we obtain

|T (e(u)) − T (e(un))| |e(u) − e(vn)|

≤ c (κ + |e(u)| + |e(u) − e(un)|)p−2 |e(u) − e(un)| |e(u) − e(vn)| .

Now we apply the following Young–like inequality that can befound in [2]: for
anyε > 0, there is a constantcε > 0 such that, for allλ, a, b ≥ 0,

(λ + a)p−2a b ≤ ε(λ + a)p−2a2 + cε(λ + b)p−2b2.

Puttingλ = κ + |e(u)|, a = |e(u) − e(un)|, andb = |e(u) − e(vn)| we get

(κ + |e(u)| + |e(u) − e(un)|)p−2 |e(u) − e(un)| |e(u) − e(vn)|

≤ ε(κ + |e(u)| + |e(u) − e(un)|)p−2 |e(u) − e(un)|2

+cε(κ + |e(u)| + |e(u) − e(vn)|)p−2 |e(u) − e(vn)|2 .

Using estimate (4.5), we have

(κ + |A| + |A −B|)p−2|A −B|2

≤ c (κ + |A| + |B|)p−2|A − B|2

≤ c ((κ + |B|)p−2B − (κ + |A|)p−2A) : (B −A) .

Altogether, we conclude that, for anyε > 0,

|J12| ≤ ε2µ̄

∫

Ω

(T (e(un)) − T (e(u))) : (e(un) − e(u))

+cε2µ̄

∫

Ω

(T (e(vn)) − T (e(u))) : (e(vn) − e(u)) ,

whereµ̄ = max1≤k≤M µ(ρk). Puttingµ = min1≤k≤M µ(ρk) andε = µ(2µ̄)−1 we
deduce

1

2
J11 ≤ J1 + c

∫

Ω

(T (e(vn)) − T (e(u))) : (e(vn) − e(u))

and, in fact,limn→∞ J11 = 0. Estimatingµ(ρn) ≥ µ we infer

lim
n→∞

∫

Ω

(T (e(un)) − T (e(u))) : (e(un) − e(u)) = 0. (6.4)



14 C. EBMEYER AND J.M. URBANO

Due to Lemma 4.1 we conclude that

lim
n→∞

‖e(un) − e(u)‖Lp(Ω) = 0, a.e.t ∈ (0, T ] . (6.5)

Applying Korn’s second inequality it follows that

∇un → ∇u, a.e. inΩT .

Now letρ be the renormalized solution of the continuity equation associated with
u. Lemma 3.1 implies that

ρn → ρ strongly inLp(ΩT ) .

Utilizing Vitali’s convergence theorem we obtain

lim
n→∞

(2 µ(ρn) T (e(un)), e(vn)) = (2 µ(ρ) T (e(u)), e(v)) ∀v ∈ L∞(0, T ; V0) ,

as well as(ρn f ,vn) → (ρ f ,v). This yields the assertion.

We finally prove our main result.

Proof of Theorem 2.1:Due to Proposition 6.1, there exists a weak solution(u, ρ)
of (6.1)–(6.3). Moreover,ρ(x, t) ∈ {ρ1, . . . , ρM}, a.e. inΩ × (0, T ], and there is
a constantc, depending only on the data, such that

‖u‖L∞(0,T ;W 1,p(Ω)) ≤ c. (6.6)

For t ∈ (0, T ], let us introduce the functionalF ∈ W−1,p′(Ω; Rd) by setting

〈F,w〉 := −(div (2 µ(ρ) T (e(u))),w)− (ρ f ,w).

We have
〈F,w〉 = 0, ∀w ∈ V0, a.e.t ∈ (0, T ].

Applying a simplification of De Rahm’s theorem [1, Lemma. 2.7], we obtain a
functionπ ∈ Lp′(Ω) such that

F = −∇π, a.e.t ∈ (0, T ].

Moreover, noting that‖F‖W−1,p′(Ω) ≤ c, uniformly in t, due to (6.6), we get

‖∇π‖W−1,p′(Ω) ≤ c′, a.e.t ∈ (0, T ].

In view of the following estimate of Něcas [13],

‖v‖Lq(Ω) ≤ c0

(
d∑

i=1

‖∂iv‖W−1,q(Ω) + ‖v‖W−1,q(Ω)

)
,
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valid for any1 < q < ∞, and any distributionv such that∂iv ∈ W−1,q(Ω),
i = 0, 1, . . . , d, we conclude that there is a generic constantc, depending only on
the data, such that

‖π‖Lp′(Ω) ≤ c, a.e.t ∈ (0, T ].

This completes the proof. �

7. No-stick boundary condition

In this final section, we extend our results to the case of the no–stick boundary
condition

u · n = 0 on∂Ω,

n · σ(u, π) · t = 0 on∂Ω, for all t ∈ Mn ,
(7.1)

wheren is the outward normal of∂Ω, σ(u, π) = 2 µ(ρ) T (e(u))− π Id, and

Mn = {t ∈ R
d : t · n = 0, on∂Ω}.

We refer to (2.1)–(2.4), (7.1) as problem(P2).
Recall definition (3.1) of the solenoidal vector spaceV and let us introduce

W =
{
w ∈ W 1,p(Ω; Rd) : w · n = 0 on∂Ω

}
.

Since the Green formula∫

Ω

(−div (2 µ(ρ) T (e(u))) + ∇π) ·w =

∫

Ω

2 µ(ρ) T (e(u)) : e(w)

−

∫

Ω

π∇ · w −

∫

∂Ω

n · (2 µ(ρ) T (e(u))− π Id) · w

holds for allw ∈ W 1,p(Ω; Rd), we obtain the following

Definition 7.1: A weak solution of problem(P2) is a triple (u, ρ, π) such that

u ∈ L∞(0, T ; V ), ρ ∈ L∞(ΩT ), π ∈ L∞(0, T ; Lp′(Ω));
∫

Ω

2 µ(ρ) T (e(u)) : e(w) −

∫

Ω

π∇ ·w =

∫

Ω

ρ f ·w, ∀w ∈ W, a.e.t ∈ (0, T ];

andρ is a renormalized solution of

ρt + div (ρu) = 0 in Ω × (0, T ],

ρ(x, 0) = ρ0 in Ω.
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In order to prove existence for this problem we need a versionof Korn’s second
inequality for the type of boundary conditions we are considering. Since a proof
seems to be missing in the literature, we include it here for the sake of complete-
ness. We feel the result is interesting in its own right.

Lemma 7.1: For any1 < p < ∞, there exists a constantc such that

‖v‖W 1,p(Ω) ≤ c ‖e(v)‖Lp(Ω) , (7.2)

for all v ∈ W 1,p(Ω; Rd) such thatv ·n = 0 on∂Ω, andn ·T (e(v)) · t = 0 on∂Ω,
∀t ∈ Mn.

Proof: It is known that

‖v‖W 1,p(Ω) ≤ c
(
‖v‖Lp(Ω) + ‖e(v)‖Lp(Ω)

)
; (7.3)

cf. [9]. It remains to show that

‖v‖Lp(Ω) ≤ c′ ‖e(v)‖Lp(Ω) . (7.4)

We argue by contradiction and assume that estimate (7.4) is false. Thus, there
exists a sequence(vk)k of functionsvk ∈ W 1,p(Ω; Rd) such that

∀k ≥ 1,
∥∥vk
∥∥

Lp(Ω)
= 1, and lim

k→∞

∥∥e(vk)
∥∥

Lp(Ω)
= 0.

Using (7.3), we find a subsequence and a limit functionv ∈ W 1,p(Ω; Rd) such that
vn ⇀ v weakly inW 1,p(Ω; Rd), vn → v strongly inLp(Ω; Rd), ande(v) = 0.
Moreover, it is known that a functionv ∈ W 1,p(Ω; Rd) satisfiese(v) = 0 if and
only if it is of the formv(x) = Ax +b, whereA ∈ R

d×d is skew–symmetric and
b ∈ R

d; cf. [10]. Now let us consider a pointx ∈ ∂Ω wheren(x) is equal to the
i-th unit vector inR

d. Let vi be thei-th component ofv. Thenn · T (e(v)) · t = 0
implies that∂jvi = 0, for all 1 ≤ j ≤ d, j 6= i. Hence, it follows thataij = 0, for
all j 6= i. Moreover,A is skew–symmetric; thus, we haveaii = 0. We conclude
thatA = 0. Furthermore,v · n = 0 on ∂Ω yieldsvi = 0 on ∂Ω. Therefore, we
also deduceb = 0. Hence, it holds thatv = 0. This contradicts

∥∥vk
∥∥

Lp(Ω)
= 1

∀k ≥ 1.

We can then establish the following existence result.

Theorem 7.1: Under assumptions(i)–(v), there exists a weak solution(u, ρ, π)
of problem(P2) in the sense of Definition 7.1. Moreover, there is a constantc,
depending only on the data, such that

‖u‖L∞(0,T ;W 1,p(Ω)) + ‖π‖L∞(0,T ;Lp′(Ω)) ≤ c,
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andρ(x, t) ∈ {ρ1, . . . , ρM}, a.e. inΩ × (0, T ].

Proof: We argue as in the proof of Theorem 2.1, but instead ofV0 we use the space
V . We now consider a finite dimensional spaceS̃n ⊂ L∞(0, T ; V ). Proceeding
as in Sections 4 and 5, and making use of (7.2), we obtain, for eachn ∈ N, the
existence of a weak solution(un, ρn) of the following approximated problem:

(Pn

2
) Find (un, ρn) ∈ S̃n × L∞(ΩT ) such that

(2 µ(ρn) T (e(un)), e(vn)) = (ρnf ,vn) , ∀vn ∈ S̃n, a.e.t ∈ (0, T ];

andρn is a renormalized solution of

ρn
t + div (ρn un) = 0 in Ω × (0, T ];

ρn(x, 0) = ρ0 in Ω,

whereρ0 ∈ {ρ1, . . . , ρM}, a.e. inΩ.
Taking the limit asn → ∞, we obtain the analogue of Proposition 6.1. Apply-

ing again De Rahm’s theorem, the assertion follows.
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