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A LOGIC OF INJECTIVITY

JIŘÍ ADÁMEK, MICHEL HÉBERT AND LURDES SOUSA

Abstract: Injectivity of objects with respect to a set H of morphisms is an im-
portant concept of algebra and homotopy theory; here we study the logic of con-
sequences of H, by which we understand morphisms h such that injectivity with
respect to H implies injectivity with respect to h. We formulate three simple de-
duction rules for the injectivity logic and for its finitary version (where morphisms
between finitely ranked objects are considered only), and prove that they are sound
(in all categories) and complete (in all ”reasonable” categories).

1. Introduction

Recall that an object A is injective w.r.t. a morphism h : P → P ′ provided
that every morphism from P to A factors through h. We address the following
problem: given a set H of morphisms, which morphisms h are consequences
of H in the sense of injectivity (i.e., every object injective w.r.t. all members
of H is also injective w.r.t. h)? We denote the consequence relationship by
H |= h.

This is a classical topic in general algebra: the equational logic of Garrett
Birkhoff [6] is a special case. In fact, an equation s = t is a pair of elements
of a free algebra F , and that pair generates a congruence ∼ on F . An algebra
A satisfies s = t iff it is injective w.r.t. the canonical epimorphism

h : F → F/ ∼ .

Thus, if we restrict our sets H to regular epimorphisms with free domains,
then the logic of injectivity becomes precisely the equational logic. However,
there are other important cases in algebra: recall for example the concept of
injective module, where H is the set of all monomorphisms (in the category
of modules).

To mention an example from homotopy theory, recall that a Kan complex
[9] is a simplicial set injective w.r.t. all the monomorphisms ∆k

n →֒ ∆n (for
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n, k ∈ N, k ≤ n) where ∆n is the complex generated by a single n-simplex
(with 1-simplexes 0, 1, . . . , n) and ∆k

n is the subcomplex obtained by deleting
the 1-simplex k and all adjacent faces. We can ask for example whether Kan
complexes can be specified by a simpler collection of monomorphisms, as a
special case of our injectivity logic.

Injectivity is a Galois correspondence between objects and morphisms of
a category. The closed families on the side of objects are called injectivity
classes : for every set H of morphisms we obtain the injectivity class InjH,
i.e., the class of all objects injective w.r.t. H. In [4] small-injectivity classes
in locally presentable categories were characterized as precisely the full acces-
sible subcategories closed under products, and in [12] this was sharpened in
the following sense. Let us call a morphism λ-ary if its domain and codomain
are λ-presentable objects. Injectivity classes with respect to λ-ary morphisms
are precisely the full subcategories closed under products, λ-filtered colimits,
and λ-pure subobjects.

In the present paper we study closed sets in the side of morphisms, i.e., we
develop a logic of the above consequence relationship |=. It has altogether
three deduction rules, which are quite intuitive. Firstly, observe that every
object injective w.r.t. a composite h = h2 · h1 is injective w.r.t. h1. This
gives us the first deduction rule

cancellation
h2 · h1

h1

It is also easy to see that injectivity w.r.t. h implies injectivity w.r.t. any
morphism h′ opposite to h in a pushout (along an arbitrary morphism), which
yields the rule

pushout
h
h′ for every pushout

h //

�� ��h′

//

Finally, an object injective w.r.t. two composable morphisms is also injective
w.r.t. their composite. The same holds for three, four, . . . morphisms – but
also for a transfinite composite as used in homotopy theory. For example,
given an ω-chain of morphisms

A0
h0 // A1

h1 // A2
h2 // . . .
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then their ω-composite is the first morphism c0 : A0 → C of (any) colimit
cocone cn : An → C (n ∈ N) of the chain. Observe that c0 is indeed a
consequence of {hi; i < ω}. For every ordinal λ we have the concept of a
λ-composite of morphisms (see 2.11 below) and the following deduction rule,
expressing the fact that an object injective w.r.t. each hi is injective w.r.t.
the transfinite composite:

transfinite composi-

tion

hi (i < λ)
h

for every λ-composite h of (hi)i<λ

We are going to prove that the Injectivity Logic based on the above three
rules is sound and complete. That is, given a set H of morphisms, then
H |= h holds for precisely those morphisms h which can be proved from
assumptions in H using the three deduction rules above. This holds in a
number of categories, e.g., in

(a) every variety of algebras,
(b) the category of topological spaces and many nice subcategories (e.g.

Hausdorff spaces), and
(c) every locally presentable category of Gabriel and Ulmer.

We introduce the concept of a weakly locally presentable category encompass-
ing (a)-(c) above, and prove the soundness and completeness of our Injectivity
Logic in all such categories.

Observe that the above logic is infinitary, in fact, it has a proper class
of deduction rules: one for every ordinal λ in the instance of transfinite

composition. We also present the corresponding Finitary Injectivity Logic:
it is the restriction of the above logic to λ finite. Well, all we need to consider
are the cases λ = 2, called composition, and λ = 0, called identity:

composition
h1 h0

h for h = h1 · h0

identity idA

The resulting finitary deductive system has only four deduction rules; it
is clearly sound, and the main result of our paper (Theorem 6.2) says that
it is also complete with respect to finitary morphisms, i.e., morphisms with
domain and codomain of finite rank. This implies the expected compactness
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theorem: every finitary consequence of a set H of finitary morphisms is a
consequence of some finite subset of H.

The completeness theorem for Finitary Injectivity Logic will then be ex-
tended to the k-ary Injectivity Logic, defined in the expected way. Then the
full completeness theorem easily follows.

The fact that the full Injectivity Logic above is complete in weakly locally
presentable categories can also be derived from Quillen’s Small Object Argu-
ment [11], see Remark 3.9 below. However our sharpening to the k-ary logic
for every cardinal k cannot be derived from that paper, and we consider this
to be a major step.

Related work The finitary deductive system above was formulated in [5],
where a (rather simple) proof of its completeness restricted to sets of finitary
epimorphisms is presented. A related result was previously obtained by G.
Roçu, see [13]. In the algebraic context, this restricted injectivity logic can
be expressed by quasi-equations, that is, by sentences of the form

∀x(E(x) → F (x))

where E and F are conjunctions of equations. More generally, the unre-
stricted injectivity logic for arbitrary finitary morphisms can be expressed
by the regular sentences, i.e., of the form

∀x(E(x) → ∃yF (x,y)).

For a different approach to categorical regular logic (including a completeness
theorem), see [10].

2. Logic of Injectivity

2.0. Assumption Throughout the paper we assume that we are working in
a cocomplete category.

2.1. Definition A morphism h is called a consequence of a set of morphisms
H, notation

H |= h

provided that every object injective w.r.t. all morphisms in H is also injective
w.r.t. h.

2.2. Examples (1) A composite h = h2 · h1 is a consequence of h1 and h2.
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(2) Conversely, in every composite h = h2 · h1 the morphism h1 is a conse-
quence of h:

A
h1 //

  @
@@

@@
@@

@ A′
h2 //

��

A′′

}}|
|

|
|

X

(3) In every pushout

A
h //

u
��

A′

v
��

B
h′

// B′

h′ is a consequence of h:

A
h //

u
��

A′

v
��

��0
0

0
0

0
0

0
0

B
h′

//

((PPPPPPPPPPPPPPPP B′

  A
A

A
A

X

2.3. Remark The above examples are exhaustive in the sense of the follow-
ing logic, introduced in [5] (where, however, it was only applied to epimor-
phisms):

2.4. Definition The Finitary Injectivity Deduction System consists of one
axiom

identity
idA

and three deduction rules

composition
h h′

h′ · h
if h′ · h is defined

cancellation
h′ · h

h

and
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pushout
h
h′ if

h //

�� ��

h′

//

We say that a morphism h is a formal consequence of a set H of morphisms
(notation H ⊢ h) in the Finitary Injectivity Logic if there exists a proof of h
from H.

2.5. Remark In 2.4, a proof of h means, as usual, a finite sequence h1, ..., hn =
h of morphisms such that for every i = 1, ..., n the morphism hi lies in H or is
a conclusion of one of the deduction rules whose premises lie in {h1, ..., hi−1}.

2.6. Lemma The Finitary Injectivity Logic is sound, i.e., if a morphism h
is a formal consequence of a set of morphisms H, then h is a consequence
of H. Shortly: H ⊢ h implies H |= h.

The proof follows from 2.2.

2.7. Remark Later we define finitary morphisms (as morphisms whose do-
mains and codomains are finitely presentable (Section 3) or of finite rank
(Section 5)), and in Section 6 we prove that the resulting Finitary Injectivity
Logic is complete, i.e., that

H |= h implies H ⊢ h

for every set H of finitary morphisms and every h finitary.

2.8. Example The following rule

finite coproduct
h1 h2

h1 + h2

(where for hi : Ai → Bi the morphism h1 + h2 : A1 + A2 → B1 + B2 is the
canonical coproduct morphism) is obviously sound. Here is a proof in the
Finitary Injectivity Logic:
Using the pushouts

A1
h1 //

��

B1

��

A1 + A2
h1+idA2

// B1 + A2

A2
h2 //

��

B2

��

B1 + A2
idB1

+h2

// B1 + B2

we can write
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h1 h2

h1 + idA2
idB1

+h2

h1 + h2

via pushout

via composition

since h1 + h2 = (idB1
+h2) · (h1 + idA2

).

2.9. Example The following rule

finite wide pushout
h1 . . . hn

h
for every wide pushout

h1

}}zz
zz

zz
zz

h2

��
...

hn

!!D
DD

DD
DD

D

k1
��@

@@
@@

@@

k2
��

...

kn��~~
~~

~~
~

C

where h = ki · hi

is sound. Here is a proof in the Finitary Injectivity Logic:
If n = 2 we have

h1 h2

k2

h = k2 · h2

via pushout

via composition

If n = 3 denote by r a pushout of h1, h2, then a pushout, h′
3,

h1

����
��

��
�

r

��

h2

��?
??

??
??

h3 //

k3

��k1 ��?
??

??
??

k2����
��

��
�

h′

3

//

of h3 along r forms a wide pushout of h1, h2 and h3:
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h1 h2 h3

k2

r

k3

h = k3 · h3

via pushout

via composition

via pushout

via composition

Etc.

2.10. Remark We want to define a composition of a chain of λ morphisms
for every ordinal λ (see the case λ = ω in the Introduction.). Recall that a
λ-chain is a functor A from λ, the well-ordered category of all ordinals i < λ.
We call A smooth if for every limit ordinal i < λ we have

Ai = colim
j<i

Aj

with the colimit cocone of all aji = A(j → i).

Recall that λ+ denotes the successor ordinal, i.e., the set of all i ≤ λ.

2.11. Definition A morphism h is called a λ-composite of morphisms (hi)i<λ,
where λ is an ordinal, if there exists a smooth λ+-chain A with connecting
morphisms aij : Ai → Aj for i ≤ j ≤ λ such that

hi = ai,i+1 for all i < λ

and

h = a0,λ.

We call h a transfinite composite of morphisms if it is a λ-composite for some
λ.

2.12. Examples λ = 0: No morphism hi is given, just an object A0; and
h = a0,0 is the identity morphism of A0.

λ = 1: A morphism h0 is given, and we have h = a0,1 = h0. Thus, a
1-composite of h0 is h0.

λ = 2: This is the usual concept of composition: given morphisms h0,
h1, their 2-composite exists iff they are composable. Then h1 · h0 is the
2-composite.

λ = ω: This is the case mentioned in the Introduction. Observe that,
unlike the previous cases, an ω-composite is only unique up to isomorphism.
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2.13. Lemma A transfinite composite of morphisms (hi)i<λ is a consequence
of these morphisms.

Proof This is a trivial transfinite induction on λ. In case λ = 0 this states
that idA is a consequence of ∅, etc.

2.14. Definition The Injectivity Deduction System consists of the deduction
rules

cancellation
h′ · h

h

pushout
h
h′ for every pushout

h //

�� ��h′

//

and the rule scheme (one rule for every ordinal λ)

transfinite

composition

hi (i < λ)
h

for every λ-composite h of (hi)i<λ

We say that a morphism h is a formal consequence of a set H of morphisms
(notation H ⊢ h) in the Injectivity Logic if there exists a proof of h from H.

2.15. Remark The Injectivity Logic is infinitary: here a proof of h is a
chain (hi)i≤n of morphisms, where n is an ordinal, such that h = hn, and
each hi either lies in H, or is a conclusion of one of the deduction rules whose
premises lie in {hj}j<i.

2.16. Lemma The Injectivity Logic is sound, i.e., if a morphism h is a
formal consequence of a set H of morphisms, then h is a consequence of H.
Shortly: H ⊢ h implies H |= h.

The proof (using 2.13) is elementary.

2.17. Remark In 2.14 we can replace transfinite composition by the
deduction rule wide pushout, see below, which makes use of the (obvious)
fact that an object A injective w.r.t. a set {hi}i<λ of morphisms having a
common domain is also injective w.r.t. their wide pushout. Let us remark
here that this rule does not replace pushout of 2.14 (because in the latter
a pushout of h along an arbitrary morphism is considered).
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2.18. Definition The deduction rule

wide pushout
hi (i < λ)

h for h a wide pushout of {hi}i<λ

applies, for every cardinal λ, to an arbitrary object P and an arbitrary set
{hi} of λ morphisms with the common domain P and the following wide
pushout

P
hi

��~~
~~

~~
~

�� ##G
GGGGGGGGGG

Pi

ki ��?
??

??
??

��

. . .

{{wwwwwwwwwww

Q

h = ki · hi (for any i)

Remark Again, this is a scheme of deduction rules: for every cardinal
λ we have one rule λ-wide pushout. Observe that λ = 0 yields the rule
identity.

2.19. Lemma The Injectivity Deduction System 2.14 is equivalent to the
deduction system

composition, cancellation, pushout and wide pushout.

Proof (1) We can derive wide pushout from 2.14. For every ordinal num-
ber λ we derive the rule

hi (i < λ)
h

for h a wide pushout of {hi}i<λ

by transfinite induction on the ordinal λ. We are given an object P and
morphisms hi : P → Pi (i < λ). The case λ = 0 is trivial, from λ derive λ+1
by using pushout, and for limit ordinals λ form the restricted multiple
pushouts Qj of morphisms hi for i < j, and observe that they form a smooth
chain whose composite is a multiple pushout of all hi’s.

(2) From the system in 2.19 we can derive the rule λ-composition, where
λ is an arbitrary ordinal: the case λ = 0 follows from 0-wide pushout. The
isolated step uses composition: a transfinite composite of (hi)i≤λ is simply
hλ · k where k is a transfinite composite of (hi)i<λ. In the limit case, use the
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fact that a composite h of (hi)i<λ is a wide pushout of {ki}i<λ, where ki is a
composite of (hj)j<i.

2.20. Remark For every infinite cardinal k the k-ary Injectivity Deduction
System is the system 2.14 where λ ranges through ordinals smaller than k.
A proof of a morphism h from a set H in the k-ary Injectivity Logic is, then,
a proof of length n < k using only the deduction rules with λ restricted as
above. The last lemma can, obviously, be formulated under this restriction
in case we use the scheme λ-wide pushout for all cardinals λ < k.

2.21. Definition The deduction rule

coproduct

hi (i < λ)

∐
i<λ hi

applies, for every cardinal λ, to an arbitrary collection of λ morphisms hi :
Ai → Bi.

2.22. Lemma The Injectivity Deduction System 2.14 is equivalent to the
deduction system of 2.19 with wide pushout replaced by

identity + coproduct

Proof (1) coproduct follows from 2.19. In fact,
∐

i<λ hi :
∐

i<λ Ai →
∐

i<λ Bi

is a wide pushout of the morphisms kj :
∐

i<λ Ai →
∐

i<j Ai + Bj +
∐

j<i<λ Ai,
where j ranges through λ, with components idAi

(i 6= j) and hj, and kj is a
pushout of hj along the j-th coproduct injection of

∐
i<λ Ai.

(2) Conversely, wide pushout follows from identity+coproduct. We
obviously need to consider only λ > 1 and then we use the fact that given
morphisms hi : A → Bi (i < λ), their wide pushout h : A → C can be
obtained from

∐
i<λ hi by pushing out along the codiagonal ∇ :

∐
λ A → A:

∐
A

∐
hi

//

∇
��

∐
Bi

��

A
h

// C
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2.23. Remark The deduction system of the last lemma has five rules, but
the advantage against the system 2.14 is that they are particularly simple to
formulate.

identity idA

cancellation
h2 · h1

h1

composition
h2 h1

h2 · h1 if h2 · h1 is defined

pushout
h
h′ given

h //

�� ��h′

//

coproduct
hi (i < λ)∐

i<λ hi

We prove below that 2.14, and therefore the above equivalent deduction
system, is not only sound but (in a number of categories) also complete.

3. Completeness in Locally Presentable Categories

3.1. Assumption In the present section we study injectivity in a locally
presentable category A of Gabriel and Ulmer, see [7] or [3]. This means that:

(a) A is cocomplete,

and

(b) there exists a regular cardinal λ such that A has a set of λ-presentable
objects whose closure under λ-filtered colimits is all in A.

Recall that an object A is λ-presentable if its hom-functor hom(A,−) : A →
Set preserves λ-filtered colimits. That is, given a λ-filtered diagram D with
a colimit ci : Di → C (i ∈ I) in A, then for every morphism f : A → C

(i) a factorization of f through ci exists for some i ∈ I,

and
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(ii) factorizations are essentially unique, i.e., given i ∈ I and ci ·g
′ = ci ·g

′′

for some g′, g′′ : A → Di, there exists a connecting morphism dij :
Di → Dj of the diagram with dij · g

′ = dij · g
′′.

3.2. Examples Sets, presheaves, varieties of algebras and simplicial sets are
examples of locally presentable categories. Categories such as Top (topolog-
ical spaces) or Haus (Hausdorff spaces) are not locally presentable.

3.3. Remark (a) In the present section we prove that the Injectivity Logic
is complete in every locally presentable category.

(b) The reader may decide to skip this section since we prove a more general
result in Section 6. Both of our proofs are based on the fact that for every
set H of morphisms the full subcategory InjH (of all objects injective w.r.t.
morphisms of H) is weakly reflective. That is: every object A ∈ A has a
morphism r : A → A, called a weak reflection, such that

(i) A lies in InjH

and

(ii) every morphism from A to an object of InjH factors through r (not
necessarily uniquely).

Here we will utilize the classical Small Object Argument of D. Quillen [11]:
this tells us that every object A has a weak reflection r : A → A in InjH
such that r is a transfinite composite of morphisms of the class

Ĥ = {k; k is a pushout of a member of H along some morphism}.

(c) The reason for proving the completeness based on the Small Object
Argument in the present section is that the proof is short and elegant. How-
ever, by using a more refined construction of weak reflection in InjH, which
we present in Section 5, we will be able to prove the completeness in the so-
called weakly locally presentable categories, which include Top and Haus.
However the proof will be technically much more involved.

The spirits of the two proofs are quite different. Given a consequence h of
a set of morphisms, in this section we will show how to derive a formal proof
of h from Quillen’s construction of the weak reflection; this construction
is “linear”, forming a transfinite composite. In the next section, a weak
reflection will be constructed as a colimit of a filtered diagram which somehow
presents simultaneously all the possible formal proofs.
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3.4. Definition A morphism is called λ-ary provided that its domain and
codomain are λ-presentable objects. For λ = ℵ0 we say finitary.

3.5. Remark (a) The λ-ary morphisms are precisely the λ-presentable ob-
jects of the arrow category A→. In contrast, M. Hébert introduced in [8]
λ-presentable morphisms; these are the morphisms f : A → B which are
λ-presentable objects of the slice category A ↓ A. In the present paper we
will not use the latter concept.

(b) We work now with the Finitary Injectivity Logic, i.e., the deduction
system 2.4 applied to finitary morphisms. We generalize this to the k-ary
logic below.

3.6. Theorem The Finitary Injectivity Logic is complete. That is, given a
set H of finitary morphisms, then every finitary morphism h which is a con-
sequence of H is a formal consequence in the deduction system 2.4. Shortly:

H |= h implies H ⊢ h.

Proof Without loss of generality H can be assumed to be closed under
binary composition and binary coproduct (see Example 2.8). It then easily

follows that the closure Ĥ of H under pushout is also closed under binary
composition.

Given a finitary morphism h : A → B which is a consequence of H, we
prove that

H ⊢ h.

(a) The above object A has a weak reflection

r : A → A

such that r is a transfinite composition of morphisms in Ĥ, see 3.3(b). Since
H ⊢ h, it follows that A is injective w.r.t. h, which yields a morphism u
forming a commutative triangle

A
r //

h ��?
??

??
??

? A

B

u

??��������

(b) Consider all commutative triangles as above where r : A → A is any

α-composite of morphisms in Ĥ for some ordinal α and u is arbitrary. We
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prove that the least possible α is 0 or 1. This finishes the proof of H ⊢ h: In
case α = 0, we have

A
id //

h ��@
@@

@@
@@

A

B
u

??~~~~~~~

and the formal proof of h is obvious:

u · h

h

via identity

via cancellation

In case α = 1, we have r ∈ Ĥ and thus there exists k ∈ H and a pushout

D
k //

p
��

D′

p′
��

A r
//

h ��?
??

??
??

? A

B

u

>>~~~~~~~~

Then we have a proof of h as follows

k

r

h

via pushout

via cancellation

Assuming that the least possible α is larger than 1, we derive a contradic-
tion:

A. Assume α = β + 2 for some ordinal β. Then we can simply compose
the two last morphisms:

A
a01 //

h
))TTTTTTTTTTTTTTTTTTTTTTT A1

a12 // Aβ
aβ,β+1

// Aβ+1
aβ+1,β+2

// Aβ+2 = A

B

u

33hhhhhhhhhhhhhhhhhhhhhhhhhh

. . .
))

We conclude that r is an (α − 1)-composite of morphisms in Ĥ, a contra-
diction.
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B. Assume α = β + 1 for some ordinal β. Due to A., β is a limit ordinal
(since α ≥ 2). Since aβ,β+1 lies in Ĥ, we can express it as a pushout of some
morphism k : D → D′ in H:

D
q

ssfffffffffffffffffffffffffffffffffffff
k //

p
��

D′

p′
��

A0 a01

// A1 a12

// Ai ai,i+1

//

vi

��

Ai+1ai+1,i+2

//

vi+1

��

Ai+2ai+2,i+3

//

vi+2

��

Aβ aβ,β+1

//

vβ

��

Aβ+1

yyyyyyyy

yyyyyyyy

Pi pi,i+1

// Pi+1pi+1,i+2

// Pi+2pi+2,i+3

// Pβ

= A. . .

. . .

. . .

We have a colimit Aβ = colimi<β Ai of a chain of morphisms. Hence,
because D is finitely presentable, p factorizes as p = aiβ · q for some i < β
and some morphism q : D → Ai. Let vi be a pushout of k along q, and
form a sequence vj of pushouts of k along aij · q (j < β) as illustrated in the
diagram above (taking colimits at the limit ordinals). Then it is easily seen,
due to p = aiβ · q, that vβ = colimj<β vj is a pushout of k along p. Thus,
without loss of generality,

Pβ = A and vβ = aβ,β+1.

Observe that, since aj,j+1 lies in Ĥ,

pj,j+1 ∈ Ĥ for all i ≤ j < β.

Also vi ∈ Ĥ since it is a pushout of k along q. Consequently, r is a composite
of the β-chain of morphisms of Ĥ as follows:

aj,j+1 for all j < i,
pi,i+1 · vi,

and
pj,j+1 for all i < j < β

This contradicts the minimality of α.
C. Assume α is a limit ordinal. The morphism

u : B → A = colim
i<α

Ai

factors, since B is finitely presentable, through some aiα, i < α:

u = aiα · u for some u : B → Ai.
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The parallel pair

A = A0

u·h //

a0i

// Ai

is clearly merged by the colimit morphism aiα of Aα = colimi<α Ai. Since A
is finitely presentable, hom(A,−) preserves that colimit, consequently (see
(ii) in 3.1.b), the parallel pair is also merged by a connecting morphism
aij : Ai → Aj, for some i < j < α:

aij · u · h = a0j.

This gives us a commutative triangle

A0
a01 //

h   B
BB

BB
BB

B
A1

a12 // Aj

B
aij ·u

88qqqqqqqqqqqqqq

. . .

in contradiction to the minimality of α.

3.7. Remark The above theorem immediatly generalizes to the k-ary Injec-
tivity Logic, i.e., to the deduction system of 2.20 applied to k-ary morphisms.
Recall that for every set of objects in a locally presentable category there ex-
ists a cardinal k such that all these objects are k-presentable. Consequently,
for every set H∪ {h} of morphisms there exists k such that all members are
k-ary. The proof that H |= h implies H ⊢ h is completely analogously to 3.6:
Cases A. and C. need no modification. Case B. is clear if the limit ordinal
β is cofinal with some γ < k: by picking up a subchain of (Ai)i<β we derive

that ai,β : A0 → Aβ is a γ-composite of members of Ĥ. It follows that r is a
(γ + 1)-composite, and γ + 1 < k. In case β is not cofinal with any γ < k,
every β-chain is a k-filtered category and the rest of the proof is as in 3.6.

3.8. Corollary The Injectivity Logic is sound and complete in every locally
presentable category.

In fact, given

H |= h

find a cardinal k such that all members of H ∪ {h} are k-ary morphisms.
Then h is a formal consequence of H by 3.7.

3.9. Remark The above corollary also follows from the Small Object Argu-
ment (see 3.3(b)): if h : A → B is a consequence of H and if r : A → A is
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the corresponding weak reflection, then r is clearly a formal consequence of
H. Since A is injective w.r.t. h, it follows that r factors through h, thus, h
is a formal consequence of r (via cancellation).

4. Weakly Locally Presentable Categories

4.1. Remark Recall that a factorization system in a category is a pair
(E , M) of classes of morphisms containing all isomorphisms and closed under
composition such that

(a) every morphism f : A → B has a factorization f = m · e with e : A →
C in E and m : C → B in M

and

(b) given another such factorization f = m′ · e′ there exists a unique
“diagonal fill-in” morphism d making the diagram

A
e //

e′
��

C
d

~~}}
}}

}}
}

m
��

C ′
m′

// B

commutative.

The factorization system is called left-proper if every morphism of E is an
epimorphism. In that case the E-quotients of an object A are the quotient
objects of A represented by morphisms of E with domain A.

4.2. Definition Let (E ,M) be a factorization system. We say that an object
A has M-rank λ, where λ is a regular cardinal, provided, that

(a) hom(A,−) preserves λ-filtered diagrams of M-morphisms (i.e., given
a λ-filtered diagram D whose connecting morphisms lie in M, then
every morphism f : A → colimD factors, essentially uniquely, through
a colimit map of D)

and

(b) A has less than λ E-quotients.

If λ = ℵ0 we say that the object A has finite M-rank.

4.3. Examples (1) For the factorization system (Iso, All), rank λ is equiv-
alent to λ-presentability.
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(2) In the category Top of topological spaces, choose (E , M) = (Epi,
Strong Mono). Here the M-subobjects are precisely the embeddings of sub-
spaces. Every topological space A of cardinality α has M-rank λ whenever
λ > 22α

. In fact, hom(A,−) preserves λ-directed unions of subspaces since
α < λ. And the amount of quotient objects of A (carried by epimorphisms)
is at most

∑
β≤α EβTβ where Eβ is the number of equivalence relations on A

of order β and Tβ is the number of topologies on a set of cardinality β. Since

Eβ and Tβ are both ≤ 22β

, we have
∑

β≤α EβTβ ≤ α · 22α

· 22α

< λ, thus we
conclude that A has less than λ quotients.

4.4. Remark Every E-quotient of an object of M-rank λ also has M-rank
λ. In fact (a) in 4.2 follows easily by diagonal fill-in, and (b) is obvious.

4.5. Definition A category A is called weakly locally presentable provided
that it has a left-proper factorization system (E , M) such that

(i) A is cocomplete;
(ii) every object has an M-rank, and all objects of the same M-rank form

a set up to isomorphism;
(iii) for every cardinal µ the collection of all objects of M-rank µ is closed

under E-quotients and under µ-small colimits, i.e., colimits of dia-
grams with less than µ morphisms;

and

(iv) the subcategory of all objects of A and all morphisms of M is closed
under filtered colimits in A.

Remark The statement (iv) means that, given a filtered colimit with con-
necting morphisms in M, then

(a) the colimit cocone is formed by morphisms of M

and

(b) every other cocone of M-morphisms has the unique factorizing mor-
phism in M.

4.6. Examples (1) Every locally presentable category is weakly locally pre-
sentable: choose

E ≡ isomorphisms, M ≡ all morphisms.

In fact, see [3], 1.9 for the proof of (ii), whereas (iii) and (iv) hold trivially.
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(2) Choose

E ≡ epimorphisms, M ≡ strong monomorphisms.

Here categories such as Top (which are not locally presentable) are included.
In fact, for a space A of cardinality α we have that hom(A,−) preserves λ-
filtered colimits (=unions) of subspaces whenever α < λ. Thus, by choosing
a cardinal λ > α bigger than the number of quotients of A we get an M-rank
of A. It is easy to verify (iii) and (iv) in Top.

(3) Let B be a full, isomorphism closed, E-reflective subcategory of a weakly
locally presentable category A. If B is closed under filtered colimits of M-
morphisms in A, then B is weakly locally presentable. In fact, B is closed
under M in the sense that given m : A → B in M with B ∈ B, then A ∈ B.
(Indeed, we have a reflection rA : A → A′ in E and m = m′ · rA for a unique
m′; this implies that rA ∈ E is an isomorphism, thus, A ∈ B.) Therefore the
restriction of (E , M) to B yields a factorization system. It fulfils (ii)-(iv) of
4.5 because B is closed under filtered colimits of M-morphisms.

(4) The category Haus of Hausdorff spaces is weakly locally presentable:
it is an epireflective subcategory of Top closed under filtered unions of sub-
spaces.

4.7. Observation In a weakly locally presentable category the class M is
closed under transfinite composition. This follows from (iv).

4.8. Definition A morphism is called k-ary if its domain and codomain have
M-rank k. In case k = ℵ0 we speak of finitary morphisms.

5. A construction of weak reflections

5.1. Assumption In the present section A denotes a weakly locally pre-
sentable category, and, for every infinite cardinal k, Ak a set of objects of
M-rank k closed under E-quotients and k-small colimits. In particular, one
may of course choose Ak to be a set of representatives of all the objects of
M-rank k up to isomorphism.

Given a set H ⊆ M of k-ary morphisms of Ak (considered as a full subcat-
egory of A), [1] provides a construction of a weak reflection in InjH, which
generalizes the Small Object Argument (see 3.3). However, this does not
appear to be sufficient to prove our Completeness Theorem for the finitary
case. The aim of this section is to present a different, more appropriate
construction.
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We begin with the case k = ω and come back to the general case at the
end of this section.

5.2. Convention (a) Morphisms with domain and codomain in Aω are called
petty.

(b) Given a set H of petty morphisms,

H

denotes the closure of H under finite composition and pushout in Aω. (That
is, H is the closure of H ∪ {idA; A ∈ Aω} under binary composition and
pushout along petty morphisms.)

(c) Since H ⊆ morAω is a set, we can, for every object B of Aω, index
all morphisms of H with domain B by a set – and that indexing set can be
chosen to be independent of B. That is, we assume that a set T is given and
that for every object B ∈ Aω,

{hB(t) : B → B(t) ; t ∈ T} (5.1)

is the set of all morphisms of H with domain B.

5.3. Diagram DA For every object A ∈ Aω we define a diagram DA in A
and later prove that a weak reflection of A in InjH is obtained as a colimit of
DA. The domain D of DA, independent of A, is the poset of all finite words

ε, M1, M1M2, . . . , M1 . . .Mk (k < ω)

where ε denotes the empty word and each Mi is a finite subset of T . The
ordering is as follows:

M1 . . .Mk ≤ N1 . . . Nl iff k ≤ l and M1 ⊆ N1, . . . , Mk ⊆ Nk.

Observe that ε is the least element.
We denote the objects DA(M1 . . .Mk) of the diagram DA by

AM where M = M1 . . .Mk,

and if M1 . . .Mk ≤ N1 . . . Nl = N , we denote by

aM,N : AM → AN

the corresponding connecting morphism of DA. We define these objects
and connecting morphisms by induction on the length k of the word M =
M1 . . .Mk considered.

Case k = 0: Aε = A.
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Induction step: Assume that all objects AM with M of length less than
or equal to k and all connecting morphisms between them are defined. For
every word M of length k + 1 denote by

M ⋆ ≤ M

the prefix of M of length k, and define the object AM as a colimit of the
following finite diagram

AK

hAK
(t)

//

aK,M⋆

��

AK(t)

• //

����
��

��
��

��
��

��
�

• //

uulllllllllllllllll

AM⋆ . . .

where K ranges over all words K ∈ D with K ≤ M ⋆ and t ranges over the
set Mk+1. Thus, AM is equipped with (universal) morphisms

aM⋆,M : AM⋆ → AM (connecting morphism of DA)

and

dK
M(t) : AK(t) → AM for all K ≤ M ⋆, t ∈ Mk+1,

forming commutative squares

AK
aK,M⋆

||yy
yy

yy
yy

y hAK
(t)

##G
GG

GG
GG

GG

AM⋆

aM⋆,M ""E
EE

EE
EE

EE
AK(t)

dK
M (t){{ww

ww
ww

ww
w

AM

(5.2)

This defines the objects AM for all words of length k + 1. Next we define
connecting morphisms

aN,M : AN → AM

for all words N ≤ M . If the length of N is at most k, then N ≤ M ⋆ and
we define aN,M through the (already defined) connecting morphism aN,M⋆ by
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composing it with the above aM⋆,M . If N has length k + 1, we define aN,M

as the unique morphism for which the diagrams

AK
aK,N⋆

||yyyyyyyy hAK
(t)

##G
GG

GG
GG

GG

AN⋆

aN⋆,N

""D
DD

DD
DD

DD

aN⋆,M

��-
--

--
--

--
--

--
--

--
--

--
--

AK(t)
dK

N (t)

{{ww
ww

ww
ww

w

dK
M (t)

����
��
��
��
��
��
��
��
��
��
��
��

AN

aN,M

��

(K ≤ N ⋆, t ∈ Nk+1)

AM

(5.3)

commute.
It is easy to verify that the morphisms aN,M are well-defined and that

DA : D → A preserves composition and identity morphisms.

5.4. Lemma All connecting morphisms of the diagram DA lie in H.

Proof We first observe that, given a finite diagram

Ai
hi //

fi

��

Bi

C

(i ∈ I)

with all hi in H, a colimit

Ai
hi //

fi

��

Bi

di

��

C
h

// D

(i ∈ I)

(5.4)

is obtained by first considering pushouts h′
i of hi along fi and then forming a

wide pushout h of all h′
i (i ∈ I). Consequently, the connecting morphisms of

DA are formed by repeating one of the following steps: a finite wide pushout
of morphisms in H, a composition of morphisms in H, and a pushout of a
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morphism in H along a petty morphism. Since H is closed, by 5.2, under
the latter, then it is closed under the first one in the obvious sense, see the
construction of a finite wide pushout described in Example 2.9.

5.5. Lemma For every object AM of the diagram DA and every morphism
h : AM → B of H there exists a connecting morphism aM,N : AM → AN of
DA which factors through h.

Proof We have M = M1 . . .Mk and h = hAM
(t) for some t ∈ T . Put

N = M1 . . .Mk{t}.

Then for K = M the definition of dK
N (t) (see (5.2)) gives the following com-

mutative diagram:

AM

hAM
(t)

//

id
��

AM(t)

dK
N (t)

��

AM aM,N

// AN

Consequently,

aM,N = dK
N (t) · hAM

(t)

as required.

5.6. Proposition Let H be a set of petty morphisms with H ⊆ M. Then
for every object A ∈ Aω a colimit γM : AM → Â (M ∈ D) of the diagram
DA yields a weak reflection of A in InjH via

rA = γε : A → Â.

Proof (1) Â is injective w.r.t. H: We want to prove that given h ∈ H and
f as follows

B
h //

f
��

C

Â

then f factors through h. Firstly, since Â = colimDA is a directed colimit
of H-morphisms (see 5.4) with H ⊆ M, and B has finite M-rank (because
B ∈ Aω), it follows that hom(B,−) preserves the colimit of DA. Thus, there
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exists a colimit morphism γN : AN → Â through which f factors, f = γN ·f ′.

B
h //

f
�� f ′   B

BB
BB

BB
B C

f ′′

##H
HHHHHHHH

Â ANγN

oo

aN, M

��

h′

// AN(t)

h′′{{ww
ww

ww
ww

w

AM

γM

``AAAAAAAA

By pushing h ∈ H out along f ′ we obtain a morphism h′ ∈ H. Then by 5.5
there exists M ≥ N such that aN,M = h′′ · h′ for some h′′ : AN(t) → AM .
The above commutative diagram proves that f factors through h.

(2) Let B be injective w.r.t. H. For every morphism f : A → B we define
a compatible cocone fM : AM → B of the diagram DA by induction on

k = the length of the word M

such that fε = f . Then the desired factorization of f is obtained via the
(unique) factorization g : Â → B with g · γM = fM : in fact, g · rA = f .

For k 7→ k + 1, choose for every word N of length k and every t ∈ T a
morphism fN(t) forming a commutative triangle

AN

hAN
(t)
//

fN

��

AN(t)

fN (t){{wwwwwwwww

B

(recalling that B is H-injective because it is H-injective). Then for every
word M of length k+1 we have a unique factorization fM : AM → B making
the following diagrams

AK

hAK
(t)

//

aK, M⋆

��

AK(t)

dK
M (t)

��
fK(t)

��3
33

33
33

33
33

33
33

33

AM⋆

fM⋆
**VVVVVVVVVVVVVVVVVVVVVVVVVVV

aM⋆,M
// AM

fM
##F

FF
FF

FF
FF

B

(5.5)

commutative for all K ≤ M ⋆ and t ∈ Mk+1.
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Let us verify the compatibility

fM = fN · aM,N for all M ≤ N in D. (5.6)

The last diagram yields fM⋆ = fM ·aM⋆,M . Therefore, it is sufficient to prove
(5.6) for words M and N of the same length k + 1. In order to do that, we
will show that

fM · dK
M(t) = fN · aM,N · dK

M(t), for all K ≤ M ⋆ and t ∈ Mk+1, (5.7)

and

fM · aM⋆,M = fN · aM,N · aM⋆,M . (5.8)

Concerning (5.7), we have

fM · dK
M(t) = fK(t)

= fN · dK
N (t), by replacing M by N in (5.5)

= fN · aM,N · dK
M(t), by (5.3).

As for (5.8), we have

fM · aM⋆,M = fM⋆

= fN⋆ · aM⋆,N⋆

= fN · aN⋆,N · aM⋆,N⋆, by replacing M by N in (5.5)

= fN · aM,N · aM⋆,M .

5.7. Convention Generalizing the above construction from ω to any infinite
cardinal k, we call the morphisms of Ak k-petty. Let us now denote by

Hk

the closure of H under k-composition (2.11) and pushout in Ak. Following
2.20, Hk is closed under k-wide pushout. We again assume that a set T is
given such that, for every object B ∈ Ak we have an indexing hB(t) : B →
B(t), t ∈ T of all morphisms of Hk with domain B.
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5.8. Diagram DA The poset D of 5.3 is generalized to a poset Dk: Let PkT
be the poset of all subsets of T of power < k. The elements of Dk are all
functions

M : λ → PkT

where λ < k is an ordinal, including the case ε : 0 → PkT . The ordering is
as follows: for N : λ′ → PkT put

M ≤ N iff λ ≤ λ′ and Mi ⊆ Ni for all i < λ.

We define, for every A ∈ Ak, the diagram DA : Dk → A. The objects
DA(M) = AM and the connecting morphisms aM,N : AM → AN (M ≤ N)
are defined by transfinite induction on λ < k. For λ = 0 we have Aε = A.
The isolated step is precisely as in 5.3, where for M : λ + 1 → PkT we
denote by M ⋆ : λ → PkT the domain-restriction. The limit steps are defined
via colimits of smooth chains, see 2.10: if λ < k is a limit ordinal and
M : λ → PkT is given, then AM is a colimit of the chain AM/i (i < λ), where
M/i is the domain restriction of M to i, with the connecting morphisms
aM/i,M/j : AM/i → AM/j for all i ≤ j < λ. The proof that these chains are
smooth is an easy transfinite induction.

It is also easy to see that all the above results hold: Â = colimDA is
an H-injective weak reflection of A, and all connecting morphisms of DA

are members of H. Consequently, the proof of the following proposition is
analogous to that of 5.6:

5.9. Proposition Let H be a set of k-petty morphisms with Hk ⊆ M. Then
for every object A ∈ Ak a colimit γM : AM → Â of DA yields a weak reflection
of A in InjH via rA = γε : A → Â.

6. Completeness in Weakly Locally Presentable Cate-

gories

6.1. Assumption Throughout this section A denotes a weakly locally pre-
sentable category. We first prove the completeness of the finitary logic. Recall
that the finitary morphisms are those where the domain and codomain are
of finite M-rank. Let us remark that whenever the class M is closed under
pushout, then the method of proof of Theorem 3.6 applies again. However,
this excludes examples such as Haus (where strong monomorphisms are not
closed under pushout).
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6.2. Theorem The Finitary Injectivity Logic is complete. That is, given
a set H of finitary morphisms, then every finitary morphism h which is a
consequence of H is a formal consequence (in the deduction system of 2.4).
Shortly: H |= h implies H ⊢ h.

6.3. Remark We do not need the full strength of weak local presentation
for this result. We are going to prove the completeness under the following
milder assumptions on A:

(i) A is cocomplete and has a left-proper factorization system (E , M);
(ii) Aω is a set of objects of finite M-rank, closed under finite colimits

and E-quotients;
(iiii) M is closed under filtered colimits in A (see 4.5 (iv)).

The statement we prove is, then, concerned with petty morphisms (see 5.2).
We show that for every set H of petty morphisms we have

H |= h implies H ⊢ h (for all h petty).

The choice of Aω as a set of representatives of all objects of finite M-rank
yields the statement of the theorem.

Proof of 6.2 and 6.3 Let then H be a set of petty morphisms, and let

H

denote the closure of H as in 5.2.
(1) We first prove that the theorem holds whenever H ⊆ M. Moreover, for

every petty consequence H |= h we have a formal proof of h from assumptions
in H such that the use of pushout is always restricted to pushing out along
petty morphisms.

To prove this, consider, for the given petty consequence h : A → B of H,
the weak reflection rA : A → Â in InjH of 5.6. The object Â is injective
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w.r.t. h, thus rA factors through h via some f : B → Â:

A
h //

rA

��

B

g

��

f

}}||
||

||
||

||
||

||
||

||
||

||
||

||
||

||
||

AM

γN
xx

Â ANγN

oo

aN, M

aa

Since B ∈ Aω, it has finite M-rank, and 5.4 implies that hom(B,−) pre-

serves the colimit Â = colimDA. Then f factors through one of the colimit
morphisms γN : AN → Â:

f = γN · g for some g : B → AN .

We know that rA = γε is the composite of the connecting morphism aε,N :
A → AN of DA and γN , therefore,

γN · aε,N = rA = γN · g · h.

This implies that the colimit morphism γN merges the parallel pair aε,N , g ·
h : A → AN . Now the domain A has finite M-rank, thus hom(A,−) also

preserves Â = colimDA. Consequently, by (ii) in 3.1(b) the parallel pair is
also merged by some connecting morphism aN,M : AN → AM of DA:

aN,M · aε,N = aN,M · g · h : A → AM .

The left-hand side is simply aε,M , and this is a morphism of H, see Lemma
5.4. Recall that the definition of H implies that every morphism in H can
be proved from H using Finitary Injectivity Logic in which pushout is
only applied to pushing out along petty morphisms. Thus, we have a proof
of the right-hand side aN,M · g · h. The last step is deriving h from this by
cancellation.

(2) Assuming H ⊆ E , then InjH is a reflective subcategory of A, and for

every object A ∈ Aω the reflection map rA : A → Â is a formal consequence
of H lying in E :

H ⊢ rA and rA ∈ E .
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In fact, from H ⊆ E it follows that H ⊆ E (since E is closed under composition
and pushout). Since A has only finitely many E-quotients, see 4.2, we can

form a finite wide pushout, rA : A → Â, of all E-quotients of A lying in H.
Clearly, H ⊢ rA, in fact, rA ∈ H.
The object Â is injective w.r.t. H: given h : P → P ′ in H and f : P → Â,
form a pushout h′ of h along f . This is an E-quotient in H, then the same is
true for h′ ·rA. Consequently, rA factors through h′ ·rA, and the factorization,
i : B → Â, is an epimorphism split by h′, thus, f = i · g · h:

P
h //

f
��

P ′

g
��

A
rA // Â

h′

//
B

i
oo

The morphism rA is a weak reflection: given a morphism u from A to an
object C of InjH, then u factors through rA because C is injective w.r.t. H
and rA ∈ H.

(3) Let H be arbitrary. We begin our proof by defining an increasing
sequence of sets Ei ⊆ E of petty morphisms (i ∈ Ord). For every member
f : A → B of H we denote by fi a reflection of f in Inj Ei:

A
f

//

rA

��

B

rB

��

Â fi

// B̂

First step: E0 = {idA; A ∈ Aω}. Here Inj E0 = A, thus f0 = f .
Isolated step: For each f ∈ H, let fi = f ′′

i · f ′
i be the (E , M)-factorization

of the reflection fi of f in Inj Ei, and put

Ei+1 = Ei ∪ {f ′
i ; f ∈ H}.

Limit step: Ej = ∪i<jEi for limit ordinals j.
We prove that for every ordinal i we have

H ⊢ f ′
i for every f ∈ H (6.1)

and

InjH = Inj Ei ∩ Inj{fi}f∈H. (6.2)
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For i = 0, (6.1) and (6.2) are trivial (use cancellation for (6.1) and
identity for (6.2)). Given i > 0, assuming that H ⊢ f ′

j for all j < i, with

f : A → B in H, that is, H ⊢ Ei, we have, by (2), that

H ⊢ rB (6.3)

where rB is the reflection of B in Inj Ei. Thus, H ⊢ fi · rA. Moreover, rA is
an epimorphism, therefore the following square

A
rA //

rA

��

Â
fi // B̂

id
��

Â
fi // B̂

is a pushout, which proves H ⊢ fi (via pushout). H ⊢ f ′
i then follows by

cancellation.
To prove (6.2), observe that (6.1) implies InjH ⊆ Inj Ei, and our previous

argument yields InjH ⊆ Inj {fi}f∈H. Thus, it remains to prove the reverse
inclusion: every object X injective w.r.t. Ei ∪ {fi}f∈H is injective w.r.t. H.
In fact, given f : A → B in H and a morphism u : A → X, then since
X ∈ Inj Ei we have a factorization u = v · rA, and then the injectivity of X
w.r.t. fi yields the desired factorization of u through f .

A
f

//

rA

��

u

  @
@@

@@
@@

B

rB

��

X

Â

v
??��������

fi

// B̂

__?
?

?
?

(4) Since Aω is a small category, there exists an ordinal j with

Ej = Ej+1.

We want to apply (1) to the category

A′ = Inj Ej,

and the set

A′
ω = Aω ∩ objA′.
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Let us verify that A′ satisfies the assumptions (i) – (iii) of Remark 6.3 w.r.t.

E ′ = E ∩ morA′ and M′ = M∩ morA′.

Ad(i): A′ is cocomplete because it is reflective in A. Moreover, since the
reflection maps lie in E , it follows that (E ′, M′) is a factorization system:
in fact, A′ is closed under factorization in A. Since E ⊆ Epi(A), we have
E ′ ⊆ Epi(A′).

Ad(iii): It is sufficient to prove that A′ is closed under filtered colimits
of M′-morphisms in A. In fact, let D be a filtered diagram in A′ with
connecting morphisms in M, and let ct : Ct → C (t ∈ T ) be a colimit of D in

A. Then C ∈ A′, i.e., C is injective w.r.t. fj : Â → E for every f ∈ H. This

follows from Â having finite M-rank (because A ∈ Aω implies Â ∈ Aω due

to the fact that rA : A → Â is an E-quotient): since hom(Â,−) preserves the

colimit of D, every morphism u : Â → C factors through some of the colimit
morphisms:

Â
v

���
�

�
�

fj
//

u
��

E

Ct ct

// C

Since Ct ∈ A′ is injective w.r.t. fj, we have a factorization of v through fj,
and therefore, u also factors through fj. This proves C ∈ A′.

Ad(ii): Due to the above, every object of A′ having a finite M-rank in
A has a finite M′-rank in A′. Also, a finite colimit of objects of A′ in A′

is a reflection (thus, an E-quotient) of the corresponding finite colimit in A.
Thus, it lies in A′

ω.
Next we claim that the set H′ = {fj; f ∈ H} fulfils

H′ ⊆ M′



A LOGIC OF INJECTIVITY 33

and H′ is closed under petty identities, composition, and pushouts along
petty morphisms. In fact, in the above (E , M)-factorization of fj:

A

rA

��

f
// B

rB

��

Â fj

//

f ′

j ��?
??

??
??

? B̂

D
f ′′

j

??��������

we know that f ′
j lies in Ej+1 = Ej and Â is injective w.r.t. Ej, thus, f ′

j is a split
monomorphism (as well as an epimorphism, since E ⊆ Epi(A)). Thus, f ′

j is
an isomorphism, which implies fj ∈ M. H′ contains idA for every A ∈ A′

ω

because H contains it; H′ is closed under composition because H is (and
f 7→ fj is the action of the reflector functor from A to Inj Ej). Finally, H′ is
closed under pushout along petty morphisms. In fact, to form a pushout of
fj : Â → B̂ along u : Â → C in A′ = Inj Ej, we form a pushout, g, of f along
u · rA in A, and compose it with the reflection map rD of the codomain D:

A
f

//

rA

��

B

rB

��

v

��4
44

44
44

44
44

44
44

44
44

44
44

44
44

4

Â
fj

//

u

����
��

��
��

��
��

��
��

��
�

B̂

v̂ ��>
>>

>>
>>

D̂

C g
//

ĝ

33hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
D

rD

__????????

Since C lies in A′, we can assume rC = idC , and the reflection ĝ = rD · g of
g in A′ is then a pushout of fj along u. Now f ∈ H implies g ∈ H, and we
have ĝ = gj ∈ H′.

(5) We are ready to prove that if a petty morphism h : A → B is a
consequence of H, then H ⊢ h in A. We write H ⊢A h for the latter since we
work within two categories: when we apply (1) to A′ we use ⊢A′ for formal

consequence in A′. Analogously with |=A and |=A′. Let ĥ : Â → B̂ be a
reflection of h in A′, then

H′ |=A′ ĥ



34 J. ADÁMEK, M. HÉBERT AND L. SOUSA

because every object C ∈ A′ = Inj Ej which is injective w.r.t. H′ = {fj}f∈H

is, due to (6.2), injective w.r.t. H in A. Then C is injective w.r.t. h, and

from C ∈ A′ it follows easily that C is injective w.r.t. ĥ. Due to (4) we can
apply (1). Therefore,

H′ ⊢A′ ĥ.

We thus have a proof of ĥ from H′ in A′. We modify it to obtain a proof of
h from H in A. We have no problems with a line of the given proof that uses
one of the assumptions fj ∈ H′: we know from (6.1) that H ⊢A fj, and we
substitute that line with a formal proof of fj in A. No problem is, of course,
caused by the lines using composition or cancellation. But we need to
modify the lines using pushout because A′ is not closed under pushout in
A. However, a pushout, g′′, of a morphism g along a petty morphism u in A′

P
g

//

u
��

Q

��
P ′

g′′
//

g′ ''OOOOOOOOOOOOOOOO

Q′

rQ′

__?????????

is obtained from a pushout, g′, of g along u in A by composing it with a
reflection map rQ′ of the pushout codomain. Recall that P, P ′, Q ∈ Aω

imply Q′ ∈ Aω. Thus, we can replace the line g′′ of the given proof by using
pushout in A (deriving g′), followed by a proof of rQ′ (recall from (6.3) that
H ⊢A rQ′) and an application of composition. We thus proved that

H ⊢A ĥ.

Since rB · h = ĥ · rA and H ⊢A rA (see (6.3)), we conclude H ⊢A ĥ · rA; by
cancellation then H ⊢A h.

6.4. Corollary (Compactness Theorem) Let H be a set of finitary mor-
phisms. Every finitary morphism which is a consequence of H is a conse-
quence of a finite subset of H.

6.5. Remark We proceed by generalizing the completeness result from fini-
tary to k-ary, where k is an arbitrary infinite cardinal. The k-ary logic, then,
deals with k-ary morphisms (i.e., those having both domain and codomain
of M-rank k) and the k-ary Injectivity Deduction System of 2.20.
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6.6. Theorem The k-ary Injectivity Logic is complete. That is, given a set
H of k-ary morphisms, then every k-ary morphism which is a consequence
of H is a formal consequence (in the k-ary Injectivity Deduction System).

Proof The whole proof is completely analogous to that of Theorem 6.2. As
described in Remark 6.3 we work under the following milder assumptions on
the category A:

(i) A is cocomplete and has a left-proper factorization system (E , M);
(ii) Ak is a set of objects of M-rank k, closed under colimits of less than

k morphisms and under E-quotients;
(iii) M is closed under k-filtered colimits in A.

The statement we prove is concerned with k-petty morphisms (see 5.7). We
denote by Hk the closure of H as in 5.7. We write H ⊢ h for the k-ary
Injectivity Logic.

(1) The theorem holds whenever Hk ⊆ M. The proof, based on the con-

struction of a weak reflection Â = colimDA of 5.8, is completely analogous
to that of (1) in 6.2.

(2) Assuming H ⊆ E , then InjH is a reflective subcategory, and the reflec-
tion maps rA fulfil H ⊢ rA and rA ∈ E . This is analogous to the proof of (2)
of 6.2.

(3) The definition of Ei is precisely as in the proof of 6.2.
(4) For the first ordinal j with Ej = Ej+1 the category A′ = Inj Ej fulfils the

assumptions (i)-(iii) above, and the set H′ = {fj; f ∈ H} fulfils H′ = H′ ⊆
M.

(5) The theorem is then proved by applying (1) to A′ and H′: we get H′ ⊢ ĥ
in A′ and we derive H ⊢ h in A precisely as in the proof of 6.2.

6.7. Corollary The Injectivity Logic is sound and complete. That is, given
a set H of morphisms of a weakly locally presentable category, then the con-
sequences of H are precisely the formal consequences of H (in the Injectivity
Deduction System). Shortly:

H |= h iff H ⊢ h (for all morphisms h)

In fact, soundness was proved in Section 2. Completeness follows from
Theorem 6.6: since H is a set, and since every object of A has an M-rank,
see 4.5(ii), there exists k such that all domains and codomains of morphisms
of H ∪ {h} have M-rank k.
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7. Counterexamples

7.1. Example In “nice” categories which are not weakly locally presentable
the completeness theorem can fail. Here we refer to ⊢ of the Deduction
System 2.14 (and the logic concerning arbitrary morphisms). We denote by

CPO(1)

the category of unary algebras defined on CPO’s. Recall that a CPO is
a poset with directed joins, and the corresponding category, CPO, has as
morphisms the continuous functions (i.e., those preserving directed joins).
The category CPO(1) has as objects the triples (A,⊑, α) where (A,⊑) is a
CPO and α : A → A is a unary operation. Morphisms are the continuous
algebra homomorphisms.

First let us observe that the assumption of cocompleteness is fulfilled.

Lemma CPO(1) is cocomplete.

Proof The category CPO is easily seen to be cocomplete. The category
CPO(1)∗ of partial unary algebras on CPO’s (defined as above except that
we allow α : A′ → A for any A′ ⊆ A) is monotopological over CPO, see [2],
since for every monosource
fi : (A,⊑) → (Ai,⊑i, αi) (i ∈ I) we define a partial operation α on A at an
element x ∈ A iff αi is defined at fi(x) for every i, and then

αx = y iff fi(y) = αi(fi(x)) for all i ∈ I.

Consequently, CPO(1)∗ is cocomplete by [2], 21.42 and 21.15. Further,
CPO(1) is a full reflective subcategory of CPO(1)∗: form a free unary al-
gebra on the given partial unary algebra, ignoring the ordering, and then
extend the ordering trivially (i.e., the new elements are pairwise incompara-
ble, and incomparable with any of the original elements). Thus, CPO(1) is
cocomplete.

We will find morphisms h1, h2 and k of CPO(1) with

{h1, h2} |= k but {h1, h2} 6⊢ k.

(i) We define a morphism h1 that expresses, by injectivity, the condition
(h1) x ⊑ αx for all x ∈ A.

Let = denote the discrete order on the set N of natural numbers, and ⊑ that
order enlarged by 0 ⊑ 1. Let s : N → N be the successor operation. Then

h1 = id : (N, =, s) → (N,⊑, s)
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is a morphism such that an algebra is injective w.r.t. h1 iff it fulfils (h1)
above.

(ii) The condition
(h2) A 6= ∅

is expressed by the injectivity w.r.t.

h2 : ∅ → (N, =, s)

where ∅ is the empty (initial) algebra. The following morphism k expresses
the existence of a fixed point of α:

k : ∅ → 1

where 1 is a one-element (terminal) algebra.

Proposition {h1, h2} |= k but {h1, h2} 6⊢ k.

Proof To prove {h1, h2} |= k, let (A,⊑, α) be injective w.r.t. h1 and h2,
i.e., fulfill x ⊑ α(x) and be nonempty. Define a smooth chain (ai)i∈Ord in
(A,⊑) by transfinite induction: a0 ∈ A is any chosen element. Given ai put
ai+1 = α(ai); we know that ai ⊑ ai+1. Limit steps are given by (directed)
joins, aj =

⊔
i<j ai. Since A is small, there exist i with ai = ai+1, that is, ai

is a fixed point of α. Thus, A is injective w.r.t. k.
To prove {h1, h2} 6⊢ k, it is sufficient to find an extension K of the category

CPO(1) in which CPO(1) is closed under colimits (therefore ⊢ has the same
meaning in CPO(1) and in K) and in which there exists an object which is
injective w.r.t. h1 and h2 but not w.r.t. k. Thus k cannot be proved in K
from h1, h2; consequently it cannot be proved in CPO(1) either.

We define K by adding a single new object K to CPO(1). The only
morphism with domain K is idK . For every algebra (A,⊑, α) of CPO(1) we
call a function f : A → Ord a coloring of A provided that it is continuous
and fulfils f(α(x)) = f(x) + 1 for all x ∈ A.
The hom-object of A and K in K is defined to be the class of all colorings of
A. The composition in K is defined “naturally”: given a continuous homo-
morphism
h : (A,⊑, α) → (B,≤, β), then for every coloring f : B → Ord of B we
have a coloring f · h : A → Ord of A. The category CPO(1) is a full sub-
category of K closed under (small) colimits. In fact, given a colimit cocone
ai : Ai → A (i ∈ I) in CPO(1), then for every compatible cocone of color-
ings fi : Ai → Ord (i ∈ I) there exists an ordinal j such that all ordinals in
∪i∈Ifi[Ai] are smaller than j. Let B = (j+,≤, s) be the object of CPO(1)
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where ≤ is the usual linear ordering of j+ (the poset of all ordinals smaller or
equal to j), and s is the successor map except s(j) = j. Then the codomain
restriction f ′

i of each fi defines a continuous homomorphism f ′
i : Ai → B,

and we obtain a compatible cocone (f ′
i)i∈I for our diagram. The unique con-

tinuous homomorphism g : A → B with g · ai = f ′
i yields, by composing it

with the inclusion j+ →֒ Ord, a coloring f : A → Ord with f ·ai = fi (i ∈ I).
It is obvious that K is injective w.r.t. h1: every coloring of (N, =, s) is also

a coloring of (N,⊑, s). And K is injective w.r.t. h2 (because the inclusion
N →֒ Ord is a coloring of (N, =, s)). But K is not injective w.r.t. k, since 1
has no coloring.

7.2. Example None of the deduction rules of the Finitary Injectivity De-
duction System can be left out. For each of them we present an example
of a finite complete lattice A in which the reduced deduction system is not
complete (for finitary morphisms).

(1) identity The deduction system cancellation, composition and
pushout is not complete because nothing can be derived from the empty
set of assumptions, although ∅ |= idA.

(2) cancellation In the poset

A :

• 0

• 1
• 2

the only object injective w.r.t. {0 → 2} is 2, thus, we see that {0 → 2} |=
0 → 1. However, 0 → 1 cannot be derived from 0 → 2 by means of identity,
composition and pushout because the set of all morphisms of A except
0 → 1 is closed under composition and pushout.

(3) composition In A above we clearly have {0 → 1, 1 → 2} |= 0 →
2. However, the set of all morphisms except 0 → 2 is closed under left
cancellation and pushout.

(4) pushout In the poset

�
�

•
0

@
@

•
1

@
@

�
�

a • • b

we have {0 → a} |= b → 1, but we cannot derive b → 1 from 0 → a
using identity, composition and cancellation because the set of all
morphisms except b → 1 is closed under composition and cancellation.

7.3. Example Here we demonstrate that in the Finitary Injectivity Logic
we cannot restrict the statement of the completeness theorem from the given
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weakly locally presentable category A to its full subcategory Aω on all objects
of finite rank: although the relation ⊢ works entirely in Aω, the relation |=
does not.

More precisely, let H |=ω h mean that every H-injective object of finite
M-rank is also h-injective. And let ⊢ω be the formal consequence w.r.t.
Deduction System 2.4. Then the implication

H |=ω h implies H ⊢ω h

does NOT hold in general for sets of finitary morphisms.
Indeed, let A = Gra be the category of graphs, i.e., binary relational

structures (A, R), R ⊆ A × A, and the usual graph homomorphisms. Recall
that Gra is locally finitely presentable, and the finitely presentable objects
are precisely the finite graphs. Let us call a graph a clique if R = A×A−∆A.
Denote by Cn a clique of cardinality n, and let 0 be the initial object (empty
graph).

For the set

H = {0 → Cn}n∈N

we have the following property:
every finite H-injective graph G has a loop (i.e., a morphism from 1 to G).
In fact, if G has cardinality less than n and is injective w.r.t. 0 → Cn, then
we have a homomorphism f : Cn → G. Since f cannot be one-to-one, there
exist x 6= y in Cn with f(x) = f(y) – and the last element defines a loop of
G because (x, y) is an edge of Cn. Hence

H |=ω (0 → 1).

However, 0 → 1 cannot be proved in the Finitary Injectivity Logic. In fact,
the graph

G =
∐

n∈N

Cn

demonstrates that H 6|= (0 → 1).
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