
Pré-Publicações do Departamento de Matemática
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Abstract: Let {Xn, n ≥ 1} be a stationary associated sequence of random vari-
ables. We obtain a large deviations upper bound for the empirical mean Xn, from
which we derive convergence rates for the weak and strong law of large numbers.
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ation principle.
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1. Introduction
Consider a sequence {Xn, n ≥ 1} of associated real valued random vari-

ables. In this paper, we first prove a Bernstein-Hoeffding type exponential
inequality, from which, supposing convenient decrease rates of the covari-
ances Cov(X1, Xn), we derive convergence rates both for the weak and the
strong law of large numbers. Trying to be more precise on the behavior of
the tail of the distribution we also prove a large deviation principle (LDP)
for the sequence of partial means.

The concept of association was introduced in statistics by Esary, Proschan
and Walkup [7] and has found applicability in diverse fields, such as relia-
bility theory, statistical mechanics, stochastic processes, among others. Just
to give some insight into the potential applications of this concept, we recall
that association is preserved under monotone transformations and that inde-
pendent random variables are associated, so that association actually occurs
in each situation where we have monotone transformations of independent
observations. Thus, it is not surprising to notice the interest of statisticians
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on this dependence notion, well reflected in the amount of literature that has
been published recently. Excellent reviews of this subject can be found in
Roussas [17] and Dewan and Prakasa Rao [6], which include some relevant
results, numerous references and also several applications of this concept.

Large deviations results of the type of the classical Bernstein-Hoeffding
inequalities have been proved for associated random variables, also yielding
some convergence rates for the strong law of large numbers, under suitable
conditions on the covariance structure (cf. Ioannides and Roussas [10] and
Oliveira [15]). In Ioannides and Roussas [10] the authors establish an expo-
nential inequality for uniformly bounded associated random variables. An
extension replacing the boundedness assumption by the existence of Laplace
transforms was proved in Oliveira [15]. Assuming a geometrical decrease rate
of the covariances Cov(X1, Xn), it follows from the inequality proved in [10]

a convergence rate for the strong law of large numbers of order log2/3 n
n1/3 . The

extension of the exponential inequality to nonbounded variables provides a
slower convergence rate as it multiplies the previous one by log n. This is
due to a truncation argument used in the course of the proof. We notice
that, under the weaker assumption of polinomial decrease of the covariances,
neither of the above mentioned exponential inequalities is strong enough to
provide a convergence rate for the strong law of large numbers.

As already mentioned, in the present paper we will establish an exponen-
tial inequality for associated random variables assuming the variables to be
uniformly bounded. Our exponential inequality applies, thus, to the same
framework as the one by Ioannides and Roussas [10]. Under the assumption
of geometrical decrease of the covariances, our inequality yields a conver-
gence rate of order log n

n1/2 for the strong law of the large numbers. This is much
closer to the best possible strong convergence rate for the empirical mean in

the independent setting, which is O
(

(log log n)1/2

n1/2

)
. These results are stated

and proved in Section 3 of the present paper. Before that, in Section 2, we
present some definitions and auxiliary lemmas needed for the proof of the
main results of this paper.

Finally, in Section 4, we will find conditions under which the large deviation
principle (LDP) holds for the sequence of empirical means of associated ran-
dom variables. For an account of the relevant results on LDPs, see, for exam-
ple, Dembo and Zeitouni [4] and the references therein. We will prove a LDP
assuming a hyper-geometric decrease rate on the covariances Cov(X1, Xn).
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This is in accordance with analogous results obtained under mixing assump-
tions, where deviations from independence were conveniently controlled (see,
for example, Nummelin [13], Bryc [2] and Bryc and Dembo [3]). In fact,
as is well known, the covariance structure of a collection of associated ran-
domvariables highly determines its approximate independence (cf. Newman
[12]). So, the referred condition on the decrease rate of the covariances is, for
association, the counterpart of the hyper-geometric mixing rates assumed
to establish the LDP under φ-mixing and α-mixing in Bryc [2] and Bryc
and Dembo [3] (see Theorem 1 of Bryc [2] and Proposition 2 of Bryc and
Dembo [3]).

2. Definitions, assumptions and auxiliary results
A sequence of random variables Xn, n ≥ 1, is said to be associated if for

any m ∈ IN and any two real-valued coordinatewise nondecreasing functions
f and g it holds

Cov
(
f (X1, . . . , Xm) , g (X1, . . . , Xm)

)
≥ 0 ,

whenever this covariance exists.
Throughout the paper we will always assume that {Xn, n ≥ 1} is an as-

sociated sequence. This will not be explicitly stated elsewhere in this paper
to avoid unnecessary repetitions. Other assumptions to be considered in the
sequel are gathered together below.

(A1) The sequence {Xn, n ≥ 1} is strictly stationary.
(A2) The sequence {Xn, n ≥ 1} is covariance stationary.
(A3) The variables of the sequence {Xn, n ≥ 1} are uniformly bounded,

that is, |Xn| ≤ M, n ≥ 1.
(A4) For each n ≥ 1, Xn has density function bounded by a1(B1)

n, for some
a1 > 0 and some B1 > 1.

(A5)
∑∞

n=1 Cov(X1, Xn) < +∞.

In addition, we will consider the following more precise conditions on the
decay rate of the covariances

(P) Cov(X1, Xn) = a0n
−a, with a0 > 0 and a > 1.

(G) Cov(X1, Xn) = a0a
−n, with a0 > 0 and a > 1.

(H) Cov(X1, Xn) = a0 exp(−n log1+a n), with a0 > 0 and a > 0.
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In the framework of association, it is usual to state conditions on the co-
variance structure in terms of the sequence

u(n) =
∞∑

j=n+1

Cov(X1, Xj) .

The previous assumptions on Cov(X1, Xn) imply the following decrease rates
for the sequence u(n).

Lemma 2.1. (a) Under (P), there exists a1 > 0 such that

u(n) ≤ a1n
−(a−1) , n ≥ 1 .

(b) Under (G), there exists a1 > 0 such that

u(n) ≤ a1a
−n , n ≥ 1 .

(c) Under (H), there exists a1 > 0 such that

u(n) ≤ a1e
−n log1+a n , n ≥ 1 .

Proof: To prove (a), just use the inequality

u(n) ≤
∫ ∞

n

f(x) dx , (1)

where f(x) = a0x
−a, x ∈ [1, +∞).

The proof of (b) is immediate.

For the proof of (c), let f(x) = e−x log1+a x, x ∈ [1, +∞), and define v(x) =∫∞
x f(t) dt, x ∈ (1, +∞). Taking into account (1), we have u(n) ≤ a0v(n), so

that it is enough to prove that v(n)
f(n) −→ 0. This follows from the l’Hospital

rule, since, by some elementary calculation, limx→+∞
v′(x)
f ′(x) = 0.

The following two lemmas will be needed for the proof of the main result
of Section 4. We first present a result contained in Newman [11, 12], which
generalizes the classical Hoeffding identity (see relation (2.2) in [11] or (4.10)
in [12]). Also, this results is a special case of Theorem 2.3 of Yu [19].

Lemma 2.2. Let f and g be two absolutely continuous functions. If X1 and
X2 are random variables such that E

(
f(X1)

2
)

< +∞ and E
(
g(X2)

2
)

< +∞,
then

Cov (f(X1), g(X2)) =

∫ +∞

−∞

∫ +∞

−∞
f ′(x1)g

′(x2)H1,2(x1, x2) dx1 dx2 ,
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where H1,2(x1, x2) = Cov
(
I(x1,+∞)(X1), I(x2,+∞)(X2)

)
.

The next result follows from relation (21) in Newman [11] and Corollary
to Theorem 1 in Sadikova [18]. The detailed proof is given in Roussas [16]
(see Lemma 2.6).

Lemma 2.3. (Roussas [16]) Let X1 and X2 be two associated random vari-
ables having density functions bounded by B0. Then, for all x1, x2 ∈ IR,

Cov
(
I(−∞,x1](X1), I(−∞,x2](X2)

)
≤ B1Cov1/3 (X1, X2) ,

where B1 = 2 max(2/π2, 45B0).

3. Exponential inequality and convergence rates
In this section we will obtain a large deviation upper bound for the em-

pirical mean, Xn = n−1∑n
i=1 Xi, of the kind of Bernstein and Hoeffding

inequalities. To do this we use the classical technique, frequently employed
to establish exponential type inequalities for dependent variables, of decom-
posing the sum X1 + . . . + Xn into blocks, and then treating the sum of
the odd blocks, say B1,n, and of the even blocks, say B2,n, separately, estab-
lishing for each one an exponential bound for the probability P(Bi,n ≥ ε).
If the sequence {Xn, n ≥ 1} is asymptotically independent, as each Bi,n is
a sum of non adjacent blocks, this technique enables an approximation to
independence when the blocks are sufficiently far-apart.

Let us define Sn = n−1∑n
i=1(Xi−E(Xi)). In order to decompose this sum

into blocks, we will consider a sequence of positive integers pn, such that
pn −→ +∞ and, for each n ∈ IN , pn < n/2. Also, let rn be the greatest
integer such that rn ≤ n

2pn
and assume that rn −→ +∞. We now define the

variables which consist of the sum in each block,

Un,i =

(2i−1)pn∑
j=2(i−1)pn+1

(Xj−E(Xj)), Vn,i =

2ipn∑
j=(2i−1)pn+1

(Xj−E(Xj)), i = 1, . . . , rn,

and

Zn =
n∑

j=2rnpn+1

(Xj − E(Xj)) .

Note that these variables are associated, as they are nondecreasing functions
of the variables X1, X2, . . ., which are assumed throughout to be associated.
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Setting

Un =
1

n

rn∑
i=1

Un,i , V n =
1

n

rn∑
i=1

Vn,i and Zn =
1

n
Zn ,

we then obtain
Sn = Un + V n + Zn . (2)

We will first establish an exponential bound for Un, which is also valid for
V n, and then we will see that the remainder term, Zn, is negligible. For the
first task we will have to obtain some control over the deviation from indepen-
dence, that is, over the difference between what we really have and what we
would have if the blocks were independent. This control is achieved through
the following lemma, which is a version for moment generating functions of
a result by Newman [12] for characteristic functions.

Lemma 3.1 (Dewan and Prakasa Rao [5]). Let Y1, Y2, ..., Yn be associated
random variables that are bounded by a constant M . Then, for any θ > 0,∣∣∣∣∣E(eθ

∑n
i=1 Yi

)
−

n∏
i=1

E
(
eθYi
)∣∣∣∣∣ ≤ θ2enθM

∑
1≤i<j≤n

Cov(Yi, Yj) .

To obtain the exponential bound for Un, we will also need to control the
independent like term, that is, the product of the moment generating func-
tions of the Un,i blocks. First, an adaptation of the proof of Lemma 2.2 of
Oliveira [14] gives control over the asymptotics of the block variances.

Lemma 3.2. Let {Xn, n ≥ 1} be a sequence of random variables satisfying
(A2) and (A5), then

1

pn
Var(Un,1) −→ ν = Var(X1) + 2

∞∑
i=1

Cov(X1, Xi+1) .

Proof: By (A2), we may write

Var(Un,1) = pnV ar(X1) + 2

pn−1∑
i=1

(pn − i)Cov(X1, Xi+1) .

Defining vn =
∑n−1

i=1 (n− i)Cov(X1, Xi+1), the result follows from

1

n
vn −→

∞∑
i=1

Cov(X1, Xi+1) ,
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which is a direct consequence of the classical result concerning Cesàro means,
since vn+1 − vn =

∑n
i=1 Cov(X1, Xi+1) −→

∑∞
i=1 Cov(X1, Xi+1) .

The proof of the following auxiliary lemma closely follows the arguments
used in the proof of Lemma 6 in Henriques and Oliveira [8], to which we refer
the reader for any details.

Lemma 3.3. Suppose (A2) is satisfied. We then have, for the variables Un,i,
i = 1, . . . , rn, defined earlier,∑

1≤i<j≤rn

Cov(Un,i, Un,j) ≤ rnpn

∞∑
k=pn+1

Cov(X1, Xk) .

The same result holds for the variables Vn,i, i = 1, . . . , rn.

The following lemma provides control over the independent like terms.

Lemma 3.4. Suppose (A2), (A3) and (A5) are satisfied and let {dn, n ≥ 1}
be a sequence of positive reals such that dn > 1 for every sufficiently large n.

If 0 < λ < (dn−1) n
dnpn2M then

rn∏
i=1

E
(
e

λ
nUn,i

)
≤ exp

(
λ2

n2rndnVar(Un,1)

)
,

and
rn∏
i=1

E
(
e

λ
nVi

)
≤ exp

(
λ2

n2rndnVar(Un,1)

)
.

Proof: By (A3), we have |Un,i| ≤ pn2M , for each i = 1, . . . , rn. Remembering
that E(Un,i) = 0, i = 1, . . . , rn, we get, using a Taylor expansion, and the
stationarity assumption (S2),

E
(
e

λ
nUn,i

)
= 1 +

∞∑
k=2

(
λ

n

)k

E(Uk
n,i)

1

k!

≤ 1 +

(
λ

n

)2

Var(Un,1)
∞∑

k=2

(
λ

n
pn2M

)k−2

= 1 +

(
λ

n

)2

Var(Un,1)
1

1− λpn2M/n
,
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noticing that λ
npn2M < 1, as λ < (dn−1) n

dnpn2M < n
pn2M . Finally, as 1

1−λpn2M/n < dn,

we have

E
(
e

λ
nUn,i

)
≤ 1 +

(
λ

n

)2

Var(Un,1)dn ≤ exp

(
λ2

n2 dnVar(Un,1)

)
,

which completes the proof.

The exponential inequality for Un and V n is proved in the next lemma.

Lemma 3.5. Suppose (A2), (A3) and (A5) are satisfied. Let {dn, n ≥ 1}
and {εn, n ≥ 1} be two sequences of positive reals such that dn > 1 and
εn < ν

4M
dn−1
pn

, for every sufficiently large n. Further suppose that

ε2
n n

ν2 d2
n

exp

(
2Mεn n

ν dn

) ∞∑
k=pn+1

Cov(X1, Xk) ≤ C0. (3)

Then, for every sufficiently large n,

P(
∣∣Un

∣∣ ≥ εn) ≤ 2(1 + C0) exp

(
− ε2

n n

4ν dn

)
,

and the same for V n.

Proof: Given λ > 0, using Lemmas 3.1 and 3.3 we obtain

E
(
eλUn

)
≤

≤
rn∏
i=1

E
(
e

λ
nUn,i

)
+

λ2

n2 exp

(
λ rn pn2M

n

)
rn pn

∞∑
k=pn+1

Cov(X1, Xk)

≤
rn∏
i=1

E
(
e

λ
nUn,i

)
+

λ2

2n
exp (λM)

∞∑
k=pn+1

Cov(X1, Xk),

remembering that 2rnpn ≤ n.
Suppose we choose λ such that the requirements of Lemma 3.4 are verified.

Thus, applying the Markov inequality and Lemma 3.4 we get

P(Un ≥ εn) ≤ exp

(
−λεn +

λ2

n2rndnVar(Un,1)

)
(4)

+e−λεn
λ2

2n
exp (λM)

∞∑
k=pn+1

Cov(X1, Xk).
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Now choose λ = εn n2

2rndnVar(Un,1)
, the minimizer of the first term on the right-

hand side above. We will check that this choice for λ fulfils the requirement
of Lemma 3.4. In fact, for every sufficiently large n, εn < ν

4M
dn−1
pn

. So, as
2rnpn

n −→ 1 and, by Lema 3.2,
Var(Un,1)

pn
−→ ν, we have, for every sufficiently

large n,

2rnVar(Un,1)(dn − 1)

2Mnpn
>

ν

4M

dn − 1

pn
> εn ,

proving that λ = εn n2

2rndnVar(Un,1)
< (dn−1) n

dnpn2M .

Inserting this choice for λ in (4), we obtain

P(Un ≥ εn) ≤ exp

(
− ε2

n n2

4rndnVar(Un,1)

)

×

1 +
ε2
n n3

2[2rndnVar(Un,1)]2
exp

(
Mεn n2

2rndnVar(Un,1)

) ∞∑
k=pn+1

Cov(X1, Xk)

.

Again, by the fact that 2rnpn

n −→ 1 and that
Var(Un,1)

pn
−→ ν, we have, for every

sufficiently large n, n3

2[2 rndnVar(Un,1)]2
< n

ν2 d2
n
, and n

2ν dn
< n2

2rndnVar(Un,1)
< 2n

ν dn
, so

that,

P(Un ≥ εn) ≤ exp

(
− ε2

n n

4ν dn

)1 +
ε2
n n

ν2 d2
n

exp

(
2Mεn n

ν dn

) ∞∑
k=pn+1

Cov(X1, Xk)

 ,

which yields, due to (3),

P(Un ≥ εn) ≤ (1 + C0) exp

(
− ε2

n n

4ν dn

)
.

To conclude the proof just notice that the previous inequality also holds
for −Un.

For the term Zn we have the following result.

Lemma 3.6. Suppose (A3) is satisfied. Let {εn, n ≥ 1} be a sequence of
positive reals such that nεn

pn
−→ +∞. Then, for every sufficiently large n,

P(
∣∣Zn

∣∣ ≥ εn) = 0.
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Proof: Since
∣∣Zn

∣∣ ≤ 2M n−2pnrn

n ≤ 4pn

n M , P
(∣∣Zn

∣∣ ≥ εn

)
≤ P

(4pn

n M ≥ εn

)
=

0, for every sufficiently large n.

Taking decomposition (2) into account, the exponential inequality for Sn

is now a direct consequence of the two previous lemmas.

Theorem 3.7. Suppose (A2), (A3) and (A5) are satisfied. Let {dn, n ≥ 1}
and {εn, n ≥ 1} be two sequences of positive reals such that dn > 1 and
εn < ν

4M
dn−1
pn

, for every sufficiently large n, and also n
pn

εn −→ +∞. Further

suppose that (3) holds true. Then, for every sufficiently large n,

P(
∣∣Sn

∣∣ ≥ εn) ≤ 4(1 + C0) exp

(
− ε2

n n

36ν dn

)
.

Condition (3) is not very explicit, as it depends on the covariances
Cov(X1, Xn) and also on the sequences pn, dn and εn. For a more convenient
exploration of this condition and in order to determine explicit convergence
rates for Sn, we will have to assume some particular behavior on the covari-
ance structure. We will then suppose (P), (G) or (H) to hold, and, in each
case, we will identify convergence rates for the convergence in probability
and for the almost sure convergence of Sn.

We will first investigate the convergence rate for the convergence in proba-
bility. For this, consider in the previous theorem εn independent of n. Obvi-
ously, the best possible convergence rate for Sn obtains for dn such that n/dn

tends to +∞ with maximal rate. For the sake of verification of ε < ν
4M

dn−1
pn

,
for every sufficiently large n, dn must be chosen such that dn −→ +∞ with
a rate at least equal to the growth rate of pn. With these considerations in
mind we now prove the following corollary.

Corollary 3.8. Suppose (A2), (A3) and (A5) are satisfied. If

n

p2
n

exp

(
n

4 pn

) ∞∑
k=pn+1

Cov(X1, Xk) ≤ C1 , (5)

Then, for ε ∈ (0, 1), we have, for every sufficiently large n,

P(
∣∣Sn

∣∣ ≥ ε) ≤ C2 exp

(
− ε2 n

288 Mpn

)
,

where C2 = 4
(
1 + C1

64M2

)
.
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Proof: In Theorem 3.7 choose, for each n ≥ 1, εn = ε and dn = δpn where
δ = 8M

ν .

The preceding corollary implies that we must choose pn with a minimal
growth rate to get the maximal rate of convergence for Sn. We will now look
for the optimal pn such that (5) holds true under each of the assumptions
(P), (G), or (H). In the sequel, const stands for a generic positive constant,
which may take different values in each appearance.

If we assume (G) to hold, by Lemma 2.1, (5) follows from

log

(
n

p2
n

)
+

n

4 pn
− pn log a ≤ const.

So, the optimal choice for pn corresponds to pn ∼ n1/2. We will then choose
pn = [b n1/2], with b > 1

(4 log a)1/2 , where [x] denotes the integer part of x.

In fact, with this choice, the sequence on the left-hand side of the previous
inequality is easily verified to converge to −∞, being thus bounded above.

Suppose now that (P) holds true. Then, by Lemma 2.1, condition (5) can
be rewritten as

log

(
n

p2
n

)
+

n

4 pn
− (a− 1) log pn ≤ const. (6)

It is easy to verify that, if pn has a slower growth rate than n
log n , then the

sequence on the left-hand side of (6) tends to +∞, and is consequently not
bounded above. If we take pn = [b n

log n ], with b > 1
4(a−1) , then the sequence

on the left-hand side of (6) will converge to −∞.

A similar analysis will lead to the choice pn =
[
b n1/2

log(1+a)/2 n

]
, with b > 2a−1,

for the case of hyper-geometric decreasing covariances, (H).
The next result, stating explicit convergence rates for the weak law of

large numbers under (P), (G) or (H), is now an immediate consequence of
Corollary 3.8.

Corollary 3.9. Suppose (A2), (A3) and (A5) are satisfied.

(a) Under (G) we have, for each ε ∈ (0, 1) and for every sufficiently large

n, P(
∣∣Sn

∣∣ ≥ ε) ≤ const exp
(
− ε2

288 Mbn
1/2
)
, with b > 1

(4 log a)1/2 .

(b) Under (P) we have, for each ε ∈ (0, 1) and for every sufficiently large

n, P(
∣∣Sn

∣∣ ≥ ε) ≤ const n
− ε2

288 Mb , with b > 1
4(a−1) .
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(c) Under (H) we have, for each ε ∈ (0, 1) and for every sufficiently large

n, P(
∣∣Sn

∣∣ ≥ ε) ≤ const exp
(
− ε2

288 Mbn
1/2 log(1+a)/2 n

)
, with b > 2a−1.

We now turn to the problem of identifying a convergence rate for the strong
law of large numbers. For this, we will take

εn =

(
36 ν α

dn log n

n

)1/2

, (7)

for some α > 1, in order to obtain a convergent series on the right-hand
side of the exponential inequality of Theorem 3.7. Therefore, by the Borel-
Cantelli Lemma, Sn = O(εn) almost surely if εn −→ 0. We now have to
find the sequences dn and pn, such that εn tends to zero at a maximal rate
and, simultaneously, all the assumptions of Theorem 3.7 are verified. We
first note that, in order to get εn −→ 0, dn must satisfy

dn log n

n
−→ 0 . (8)

Inserting (7) in (3) this assumption becomes equivalent to

36α log n

ν dn
exp

{(
144 M 2 α

ν

n log n

dn

)1/2
} ∞∑

k=pn+1

Cov(X1, Xk) ≤ const,

which follows from

log

(
log n

dn

)
+

(
144 M 2 α

ν

n log n

dn

)1/2

+ log u(pn) ≤ const. (9)

Assuming (G), this inequality may be replaced by

log

(
log n

dn

)
+

(
144 M 2 α

ν

n log n

dn

)1/2

− pn log a ≤ const. (10)

By (8), the second term on the left-hand side above tends to +∞. So, in
order to have (10) satisfied, we must choose pn with growth rate at least equal

to
(

n log n
dn

)1/2
. In addition, we must have εn < ν

4M
dn−1
pn

, for every sufficiently

large n, which means that, inserting εn,
dnp2

n log n
n(dn−1)2 must be bounded above.

This and the minimal rate of
(

n log n
dn

)1/2
for pn, imply that dn must grow at
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least as log n. The above considerations lead to the following choices

dn = b0 log n, with b0 >
288 M 2α

ν log a
, (11)

and

pn = [b1n
1/2], with

12 M α1/2

log a (ν b0)1/2 < b1 <
ν1/2 b

1/2
0

24Mα1/2 . (12)

It is easy to verify that, choosing εn, dn and pn according to (7), (11) and
(12), all the conditions of Theorem 3.7 hold true under (G), from which we
obtain part (a) of Theorem 3.10 below. To prove part (b), just follow the
same arguments, which lead to the choices

dn = b0, with b0 > 1,

and

pn =

[
b1

n1/2

log1/2+a n

]
, with b1 >

(
144M 241+aα

νb0

)1/2

.

Note also that under (P), condition (9) follows from

log

(
log n

dn

)
+

(
144 M 2 α

ν

n log n

dn

)1/2

− (a− 1) log pn.

For this condition to hold we would have to choose pn such that log pn has

a growth rate at least equal to
(

n log n
dn

)1/2
. But, this means that εn does

not converge to zero. We cannot, therefore, identify a convergence rate for
the strong law of large numbers, under the weaker assumption of polinomial
decreasing covariances, (P).

Theorem 3.10. Suppose (A2), (A3)and (A5) are satisfied.
(a) Under (G), we have

Sn = O

(
log n

n1/2

)
a.s.

(b) Under (H), we have

Sn = O

(
log1/2 n

n1/2

)
a.s.
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4. Large deviation principle
This section is devoted to proving the large deviation principle for the

sequence of empirical means of associated variables.
For the proof of the main theorem in this section, we follow the methodol-

ogy of proof of Theorem 6.4.4 of Dembo and Zeitouni [4], which deals with
the large deviation principle of the empirical mean, under a certain mixing
assumption.

For n,m ≥ 1, define

X
m
n =

1

n−m

n∑
i=m+1

Xi .

For sake of simplicity, we write Xn instead of X
0
n. The following two results

are key tools to prove the LDP for the empirical mean Xn. These results are
the analogues for our framework of Lemmas 6.4.6 and 6.4.7 of Dembo and
Zeitouni [4],

Lemma 4.1. Suppose that (A1), (A3) and (H) are satisfied. Then, for each
function g : IR −→ IR concave, continuous and bounded above, the following
limit exists

Λg = lim
n→+∞

1

n
log E

(
en g(Xn)

)
.

Proof: Let g : IR −→ IR be a concave, continuous and bounded above
function. Being concave and continuous, g is also Lipschitz continuous on
[−M, M ], that is, there exists L > 0 such that, for all x, y ∈ [−M, M ],
|g(x)− g(y)| ≤ L |x− y|. Without loss of generality, we assume that −∞ <
−B ≤ g(x) ≤ 0, for all x ∈ [−M, M ].

Defining h(n) = − log E
(
eng(Xn)

)
, we have

h(n + m) ≤ 2lLM − log E
(
eng(Xn)emg(X

n+l

n+m+l)
)

, (13)

(see the proof of Lemma 6.4.6 of Dembo and Zeitouni [4] for details).
For each n ∈ IN , define fn(x) = eng(x), x ∈ [−M, M ]. Since g is Lipschitz

continuous and non-negative on [−M, M ], we have, for each n ∈ IN ,

|fn(x)− fn(y)| ≤ |ng(x)− ng(y)| ≤ Ln |x− y| , x, y ∈ [−M, M ] .

So, the functions fn are Lipschitz continuous, being then almost everywhere
differentiable, with derivative satisfying |f ′n(x)| ≤ nL. Applying Lemma 2.2,
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we obtain∣∣∣Cov
(
eng(Xn), emg(X

n+l

n+m+l)
)∣∣∣

=

∣∣∣∣∫
[−M,M ]2

f ′n(x)f ′m(y)Cov
(
I(−∞,x](Xn), I(−∞,y](X

n+l
n+m+l)

)
dx dy

∣∣∣∣
≤ nmL2

∫
[−M,M ]2

Cov
(
I(−∞,x](Xn), I(−∞,y](X

n+l
n+m+l)

)
dx dy

= nmL2Cov
(
Xn, X

n+l
n+m+l

)
,

remembering that all the covariances above are non-negative by association.
Using the stationarity assumption (A2), we get∣∣∣Cov

(
eng(Xn), emg(X

n+l

n+m+l)
)∣∣∣ ≤ L2n

∞∑
i=l+2

Cov(X1, Xi) = L2(n + m)u(l) ,

and then

E
(
eng(Xn)emg(X

n+l

n+m+l)
)

E
(
eng(Xn)

)
E
(
emg(X

n+l

n+m+l)
) ≥ 1− L2(n + m)u(l)

E
(
eng(Xn)

)
E
(
emg(X

n+l

n+m+l)
)

≥ 1− L2(n + m)u(l)e(n+m)B ,

as g(x) ≥ −B, for all x ∈ [−M, M ].
Now, define Θ(l, n) = 1 − L2nu(l)enB, l, n ∈ IN . From the preceding

inequality we obtain

log E
(
eng(Xn)emg(X

n+l

n+m+l)
)
≥ −h(n)− h(m) + log (Θ(l, n + m) ∨ 0) ,

so that, from (13) we get

h(n + m) ≤ 2lLM + h(n) + h(m)− log (Θ(l, n + m) ∨ 0) . (14)

Under (H), we have, for each κ < a and for each c ∈ IR,

lim
n→+∞

n u

(
n

log1+κ n

)
ecn = 0 . (15)

In fact, as in the proof of Lemma 2.1, part (c), we have u(n) ≤ a0v(n),
with v(n) defined there. Using the l’Hospital rule, it is easy to check that

limx→+∞ x v
(

x
log1+κ x

)
ecx = 0, which yields (15).
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Let 0 < δ < a, where a is given in (H). From (15) it is obvious that

Θ

(
n

log1+δ n
, n

)
= 1− L2nu

(
n

log1+δ n

)
enB n→+∞−→ 1.

Now, take l =
[

n+m
log1+δ(n+m)

]
, then, for every sufficiently large n + m,

− log (Θ(l, n + m) ∨ 0) ≤ l . (16)

Therefore, from (14),

h(n + m) ≤ h(n) + h(m) + (2LM + 1)
n + m

log1+δ(n + m)
.

Finally, using Lemma 6.4.10 in Dembo and Zeitouni [4], it follows that

lim
n→+∞

h(n)

n
= lim

n→+∞

− log E
(
eng(Xn)

)
n

exists.

In what follows we will use the notation Sδ
x =]x− δ, x + δ[.

Lemma 4.2. Suppose that (A1), (A3), (A4) and (H) are satisfied. If x1, x2 ∈
IR are such that, for each δ > 0,

lim inf
n→+∞

1

n
log P

(
Xn ∈ Sδ

xi

)
> −∞, i = 1, 2 ,

then

inf
δ>0

lim inf
n→+∞

1

n
log

P
(
X2n ∈ Sδ

x1+x2
2

)
P
(
Xn ∈ S

δ/2
x1

)
P
(
Xn ∈ S

δ/2
x2

) ≥ 0.

Proof: Fix δ > 0. From the hypothesis of the lemma, there exists c1 > 0
such that, for every sufficiently large n,

P
(
Xn ∈ Sδ/2

x1

)
P
(
Xn ∈ Sδ/2

x2

)
≥ exp(−nc1). (17)
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We have∣∣∣P(Xn ∈ Sδ/2
x1

, X
n+l
2n+l ∈ Sδ/2

x2

)
− P

(
Xn ∈ Sδ/2

x1

)
P
(
X

n+l
2n+l ∈ Sδ/2

x2

)∣∣∣
≤
∣∣∣P(Xn < x1 + δ

2 , X
n+l
2n+l < x2 + δ

2

)
− P

(
Xn < x1 + δ

2

)
P
(
X

n+l
2n+l < x2 + δ

2

)∣∣∣
+
∣∣∣P(Xn < x1 + δ

2 , X
n+l
2n+l ≤ x2 − δ

2

)
− P

(
Xn < x1 + δ

2

)
P
(
X

n+l
2n+l ≤ x2 − δ

2

)∣∣∣
+
∣∣∣P(Xn ≤ x1 − δ

2 , X
n+l
2n+l < x2 + δ

2

)
− P

(
Xn ≤ x1 − δ

2

)
P
(
X

n+l
2n+l < x2 + δ

2

)∣∣∣
+
∣∣∣P(Xn ≤ x1 − δ

2 , X
n+l
2n+l ≤ x2 − δ

2

)
− P

(
Xn ≤ x1 − δ

2

)
P
(
X

n+l
2n+l ≤ x2 − δ

2

)∣∣∣
By (A4), we may apply Lemma 2.3 to obtain∣∣∣P(Xn ∈ Sδ/2

x1
, X

n+l
2n+l ∈ Sδ/2

x2

)
− P

(
Xn ∈ Sδ/2

x1

)
P
(
X

n+l
2n+l ∈ Sδ/2

x2

)∣∣∣
≤ 4BnCov1/3

(
Xn, X

n+l
2n+l

)
,

where Bn = 2 max(2/π2, 45 a1 Bn
1 ). Therefore, by the stationarity assump-

tion (A1),∣∣∣P(Xn ∈ Sδ/2
x1

, X
n+l
2n+l ∈ Sδ/2

x2

)
− P

(
Xn ∈ Sδ/2

x1

)
P
(
Xn ∈ Sδ/2

x2

)∣∣∣
≤ 4Bn

(
1

n2 n

∞∑
i=l+1

Cov(X1, Xi)

)1/3

= 4Bn

(
u(l)

n

)1/3

,

which yields

P
(
Xn ∈ S

δ/2
x1 , X

n+l
2n+l ∈ S

δ/2
x2

)
P
(
Xn ∈ S

δ/2
x1

)
P
(
Xn ∈ S

δ/2
x2

) ≥ 1− 4Bn

(
u(l)

n

)1/3

exp(c1 n), (18)

for each l ∈ IN and n large enough, attending to (17).
Following the arguments used in the proof of Lemma 6.4.7 in Dembo and

Zeitouni [4], we get, for l = δ n
2M

P
(
X2n ∈ Sδ

x1+x2
2

)
≥ P

(
Xn ∈ Sδ/2

x1
, X

n+l
2n+l ∈ Sδ/2

x2

)
,
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so that, from (18), for every sufficiently large n,

P
(
X2n ∈ Sδ

x1+x2
2

)
P
(
Xn ∈ S

δ/2
x1

)
P
(
Xn ∈ S

δ/2
x2

) ≥ 1− 4Bn

(
u( δ n

2M )

n

)1/3

exp(c1 n).

We then have

lim inf
n→+∞

1

n
log

P
(
X2n ∈ Sδ

x1+x2
2

)
P
(
Xn ∈ S

δ/2
x1

)
P
(
Xn ∈ S

δ/2
x2

)
≥ lim inf

n→+∞

1

n
log

1− 4Bn

(
u
(

δ n
2M

)
n

)1/3

exp(c1 n)

 ∨ 0

 .

By (15), which is valid under (H), the right-hand side above is equal to zero,
from which the desired result follows.

We may now formulate the main result of this section.

Theorem 4.3. Under (A1), (A3), (A4) and (H), the sequence {Xn, n ≥ 1}
satisfies the large deviation principle with rate function given by

Λ∗(x) = sup
t∈IR

{tx− Λ(t)}, x ∈ IR ,

which is the Fenchel-Legendre transform of

Λ(t) = lim
n→+∞

1

n
log E

(
en t Xn

)
.

Proof: The proof goes along the same lines as that of Theorem 6.4.4 of Dembo
and Zeitouni [4], using our Lemma 4.1, in conjunction with Lemma 4.4.8
and Theorem 4.4.10 of [4], to ensure that {Xn, n ≥ 1} satisfies the large
deviation principle with good rate function I. The convexity of I follows in
the same way as in Dembo and Zeitouni [4], applying Lemma 4.2 to obtain,
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for x1, x2 ∈ IR such that I(x1) < +∞ and I(x2) < +∞,

−I

(
x1 + x2

2

)
= inf

δ>0

{
lim sup
n→+∞

1

n
log P(Xn ∈ Sδ

x1+x2
2

)

}
≥ inf

δ>0

{
lim inf
n→+∞

1

2n
log P(X2n ∈ Sδ

x1+x2
2

)

}

≥ inf
δ>0

lim inf
n→+∞

1

2n
log

 P
(
X2n ∈ Sδ

x1+x2
2

)
P
(
Xn ∈ S

δ/2
x1

)
P
(
Xn ∈ S

δ/2
x2

)



+ inf
δ>0

{
lim inf
n→+∞

1

2n
log
(
P
(
Xn ∈ Sδ/2

x1

))}
+ inf

δ>0

{
lim inf
n→+∞

1

2n
log
(
P
(
Xn ∈ Sδ/2

x2

))}
≥ −1

2
I(x1)−

1

2
I(x2) .

The rest of the proof proceeds exactly as in Theorem 6.4.4 of Dembo and
Zeitouni [4].

It is worth noticing that the assumptions of the previous theorem are met,
for example, when we consider a sequence of independent and identically
distributed random variables, say Y1, Y2, . . ., and then take Xn = c (Yn +
. . . + Yn+m), for some fixed m ∈ IN and c ∈ IR. Actually, this is a commonly
used method to generate associated sequences. If the distribution of the
variables Yi is taken to be concentrated in a compact set of IR and admits a
bounded density function, then, as is easily verified, the sequence X1, X2, . . .
satisfies the assumptions of the last theorem.
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