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Abstract: A q-type Hölder condition on a function f is given in order to estab-
lish (uniform) convergence of the corresponding basic Fourier series Sq[f ] to the
function itself, on the set of points of the q-linear grid. Furthermore, by adding
other conditions, one guarantees the (uniform) convergence of Sq[f ] to f on and
”outside” the set points of the q-linear grid.
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1. Introduction

Basic Fourier expansions on q-quadratic and on q-linear grids were first
considered in [9] and in [8], respectively. Recently, in [10], sufficient con-
ditions for (uniform) convergence of the q-Fourier series in terms of basic
trigonometric functions Sq and Cq , on a q-linear grid, were given. In [24] it
was established an ”addition” theorem for the corresponding basic exponen-
tial function, being these functions equivalent to the ones introduced by H.
Exton in [12]. Following the unified approach of M. Rahman in [20], these
functions can be seen as analytic linearly independent solutions of the initial
value problem

δf(x)

δx
= λf(x) , f(0) = 1 ,

where δ is the symmetric q-difference operator acting on a function f by

δf(x) = f(q1/2x) − f(q−1/2x) , (1.1)

with 0 < q < 1 . Then, from 1.1,

δf(x)

δx
=

f(q1/2x) − f(q−1/2x)

x(q1/2 − q−1/2)
. (1.2)
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There exists an important relation between this difference operator and the
q-integral. The q-integral is defined by

∫ a

0

f(x)dqx = a(1 − q)

∞
∑

n=0

f(aqn)qn

and
∫ b

a

f(x)dqx =

∫ b

0

f(x)dqx −
∫ b

0

f(x)dqx . (1.3)

From 1.2 and 1.3 it follows
∫ 1

−1

δf(x)

δx
dqx = q

1

2

{[

f(q−
1

2 ) − f(−q−
1

2 )
]

−
[

f(0+) − f(0−)
]

}

, (1.4)

hence, one have the following formula [10] for q-integration by parts:
∫ 1

−1

g
(

q±
1

2x
)δqf(x)

δqx
dqx = −

∫ 1

−1

f
(

q∓
1

2x
)δqg(x)

δqx
dqx +

q
1

2

{[

(

fg
)(

q−
1

2

)

−
(

fg
)(

− q−
1

2

)

]

−
[ (

fg
)(

0+
)

−
(

fg
)(

0−
) ]

}

.

(1.5)

These functions satisfy an orthogonality relation [8, 12] where the corre-
sponding inner product is defined in terms of the q-integral 1.4. In [8], it
was proved that they form a complete system and analytic bounds on their
roots were derived.

As we will refer in section 2, the above q-trigonometric functions can be
written using the Third Jackson q-Bessel funtion (or the Hahn-Exton q-
Bessel function). In [5], analytic bounds were derived for the zeros of this
function – which includes, as particular cases, the corresponding results es-
tablished in [8] – and recently, in [4], it was shown that they define a complete
system. The above mentioned function was also studied with a different nor-
malization in [13]

The publications [8, 10] contain the proofs of the results we are going to
use. Many results concerning expansions with q-analogues have appear in
the recent years: the publications [9, 25, 26] study expansions on q-quadratic
grids and [7] considers basic properties of systems associated with q-Sturm-
Liouville problems. This expansions have found to be very convenient for
applications in sampling theory [1, 2, 3, 6, 17]. For related topics see [21, 22,
23, 27, 29].

Throughout this paper we will follow the notation used in [14] which is
now standard.
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Section 2 collects the main properties of the set of the basic trigonomet-
ric functions and section 3 compiles some results which involve the Fourier
coefficients and the known general convergence theorems. Then, as a conse-
quence, sections 4 and 5 are devoted to the convergence issues: the former
establishes a condition on the function f , to guaranty uniform convergence
of the basic Fourier expansion to f on the set of points of the q-linear lattice
and the latter settles conditions on f in order to have uniform convergence
in a neighborhood of the origin in the complex plane. Finally, section 6 il-
lustrates the application of the results of the two previous sections to some
examples.

2. The q-Linear Sine and Cosine. Properties.

The initial value problem

δf(x)

δx
= λf(x) , f(0) = 1 ,

has the analytic solution [8]

expq[λ(1 − q)z] =

∞
∑

n=0

[λ(1 − q)z]nq(n2−n)/4

(q; q)n
, (2.1)

which is a standard q-analog of the classical exponential function [14, 20].
The q-linear sine and cosine, Sq(z) and Cq(z) , are then defined by

expq iz := Cq(z) + iSq(z) .

From 2.1 we get

Cq(z) =
∞
∑

n=0

(−1)nqn[n−(1/2)]z2n

(q; q2; q2)n
= 1φ1

(

0
; q2, q1/2z2

q ,

)

Sq(z) =
z

1 − q

∞
∑

n=0

(−1)nqn[n+(1/2)]z2n

(q2; q3; q2)n
=

z

1 − q
1φ1

(

0
; q2, q3/2z2

q3

)

,

which can be written in terms of the third Jackson q-Bessel function (or,
Hahn-Exton q-Bessel function) [16, 19, 28]

J (3)
ν (z; q) := zν

(

qν+1; q
)

∞
(q; q)∞

1φ1

(

0
; q, qz2

qν+1

)
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as

Cq(z) = q−3/8(q
2; q2)∞

(q; q2)∞
z1/2J

(3)
−1/2

(

q−3/4z; q2
)

,

Sq(z) = q1/8(q
2; q2)∞

(q; q2)∞
z1/2J

(3)
1/2

(

q−1/4z; q2
)

They satisfy [8]
δCq(ωz)

δz
= − ω

1 − q
Sq(ωz) , (2.2)

δSq(ωz)

δz
=

ω

1 − q
Cq(ωz) , (2.3)

and, when ω is such that Sq(ω) = 0 ,
[

Cq(ω)
]−1

= Cq(q
−1/2ω) = Cq(q

1/2ω) . (2.4)

It is known [8] that the roots of Cq(z) and Sq(z) are real, simple and
countable. Further, because Cq(z) and Sq(z) are respectively even and
odd functions, the roots of Cq(z) and Sq(z) are symmetric and we will
denote the positive zeros of the function Sq(z) by ωk , k = 1, 2, . . ., with
ω1 < ω2 < ω3 < . . ..

As we mentioned before, the zeros of the function Sq(z) form a discrete
set of symmetric points in the real line. In [8, page 145], it was shown that
the set of positive zeros ωk , k = 1, 2, . . . of the function Sq(z) , verify the
following analytic bounds:

If 0 < q < β0 , where β0 is the root of (1 − q2)2 − q3 , 0 < q < 1 , then

q−k+αk+1/4 < ωk < q−k+1/4 , k = 1, 2, . . . ,

where

αk ≡ αk(q) =
log
[

1 − q2k+1

1−q2k

]

2 log q
, k = 1, 2, . . . .

According to Remark 1 in [8, page 145], the previous result can be restated
in the following form:

Theorem A For every q , 0 < q < 1 , K exists such that if k ≥ K then

ωk = q−k+ǫk+1/4 , 0 < ǫk < αk(q) .
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By using Taylor expansion one finds out that

αk(q) = O(q2k) as k → ∞ . (2.5)

Theorem 4.1 of [8, page 139] settle the orthogonality relations:

Theorem B Considering µk = (1 − q)Cq(q
1/2ωk)S

′
q(ωk) we have

∫ 1

−1

Cq(q
1/2ωkx)Cq(q

1/2ωmx)dqx =







0 if k 6= m
2 if k = 0 = m
µk if k = m 6= 0

∫ 1

−1

Sq(qωkx)Sq(qωmx)dqx =







0 if k 6= m ∨ k = 0 = m

q−1/2µk if k = m 6= 0
.

The Completeness Theorem [8, page 153], where a misprint is corrected,
states the following:

Theorem C Let f(ωkz) = Cq

(

q
1

2ωkz
)

+ iSq(qωkz) where the ωk , ω0 =0 <

ω1<ω2 <. . . are the non-negative roots of Sq(z) . Suppose that

∫ 1

−1

g(z)f(ωkz)dqz = 0 , k = 0, 1, 2, . . .

where g(z) is bounded on z = ±qj , j = 0, 1, 2, . . . . Then, g(z) ≡ 0 , i.e.,

g
(

±qj
)

= 0 for all j = 0, 1, 2, . . . .

To end this section we write down the Theorem 6.2 of [8, page 150]:

Theorem D If Sq(ωk) = 0 then, for n = 0, 1, 2, . . . ,

Sq(q
1+nωk) = Sq(qωk)

n
∑

j=0

(−1)jqj(j+ 1

2
)

(

q1+n−j; q
)

2j+1

(q; q)2j+1

(

ω2
k

)j
,

Cq(q
1

2
+nωk) = Cq(q

1

2ωk)

n
∑

j=0

(−1)jqj(j− 1

2
)

(

q1+n−j; q
)

2j

(q; q)2j

(

ω2
k

)j
.
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3. The Fourier Coefficients

As a consequence of the orthogonality relations of Theorem B, we may
consider formal Fourier expansions of the form

f(x) ∼ Sq[f ](x) =
a0

2
+

∞
∑

k=1

[

akCq

(

q
1

2ωkx
)

+ bkSq (qωkx)
]

, (3.1)

with a0 =
∫ 1

−1 f(t)dqt and, for k = 1, 2, 3, . . . ,

ak =
1

µk

∫ 1

−1

f(t)Cq

(

q
1

2ωkt
)

dqt (3.2)

bk =
q

1

2

µk

∫ 1

−1

f(t)Sq (qωkt) dqt , (3.3)

where

µk = (1 − q)Cq(q
1/2ωk)S

′
q(ωk) . (3.4)

In order to study the convergence of the series (3.1)-(3.4), it becomes clear
that we need to know the behavior of the factor µk of the denominator as
k → ∞ , which is equivalent to control the behavior of S ′

q(ωk) and Cq(q
1/2ωk)

as k → ∞ .

Theorem 3.2 from [10] asserts that

Theorem E At least for 0 < q ≤ (1/51)1/50 ,

S ′
q(ωk) =

2

1 − q
q−(k− 1

2
−ǫk)2Sk ,

where Sk satisfies lim inf
k→∞

|Sk| > 0 .

With respect to Sk from the previous theorem we have the following
lemma:

Lemma 1. There exists a constant B , independent of k , such that

|Sk| ≤ B , k = 1, 2, 3, . . . .

Proof : The expression of Sk is given [8, page 147] by

Sk =

∞
∑

n=0

(−1)nnq(n−k+1/2+εk)
2

(q2, q3; q2)n
= (−1)k

∞
∑

m=−k

(−1)mmq(m+1/2+εk)
2

(q2, q3; q2)m+k
.
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For k large enough, by Theorem A and (2.5), 1/2 + εk > 0 hence

|Sk| ≤
∞
∑

m=−k

|m|q(m+1/2+εk)2

(q2, q3; q2)m+k
≤ 2

(q2; q)∞

∞
∑

m=1

mq(m−1)2 = B

which completes the proof since the infinite series on the right member is
convergent.

We observe that the constant B, as well as Sk, depend on the parameter q .

The behavior of Cq(q
1/2ωk) as k → ∞ will be known by the corresponding

behavior of Cq(ωk) and by (2.4). Theorem 3.3 of [10] establishes

Theorem F At least for 0 < q ≤ (1/50)1/49 ,

Cq(ωk) = q−(k−ǫk)2Rk ,

where |Rk| <
2

(1 − q)(q; q)∞
and lim inf

k→∞
|Rk| > 0 .

To end this section, we collect the Theorems 4.1, 4.2 and 4.3 of [10]:

Theorem G If c ∈ R exists such that, as k → ∞ ,

∫ 1

−1

f(t)Cq

(

q
1

2ωkt
)

dqt = O
(

qck
)

and

∫ 1

−1

f(t)Sq (qωkt) dqt = O
(

qck
)

then, at least for 0 < q ≤ (1/51)1/50 , the q-Fourier series 3.1 is pointwise

convergent at each fixed point x ∈ Vq =
{

±qn−1 : n ∈ N
}

.

Theorem H If c > 1 exists such that, as k → ∞ ,
∫ 1

−1

f(t)Cq

(

q
1

2ωkt
)

dqt = O
(

qck
)

and

∫ 1

−1

f(t)Sq (qωkt) dqt = O
(

qck
)

then, the q-Fourier series 3.1, at least for 0 < q ≤ (1/51)1/50 , converges

uniformly on Vq =
{

±qn−1 : n ∈ N
}

.

Theorem I If f is a bounded function on the set Vq =
{

±qn−1 : n ∈ N
}

,
and the q-Fourier series Sq[f ](x) converges uniformly on Vq then its sum is

f(x) whenever x ∈ Vq .
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4. Convergence condition on the function

Denoting the q-Fourier coefficients of a function f by ak

(

f(x)
)

and bk

(

f(x)
)

,
k = 1, 2, 3, . . . , using (3.2)-(3.4) and (2.2)-(2.3) one have, by (1.5),

ak

(

f(x)
)

− 1 − q

q1/2ωkµk

∫ 1

−1

Sq (qωkt)
δf
(

q
1

2 t
)

δt
dqt −

1 − q

qωk
bk

(

δf(q
1

2x)

δx

)

(4.1)

and

bk(f(x)) =
q − 1

q
1

2ωkµk

{

q
1

2

[

f
(

q−1
)

− f
(

− q−1
)

]

Cq

(

q
1

2ωk

)

−

q
1

2

[

f
(

0+
)

− f
(

0−
)

]

−
∫ 1

−1

Cq

(

q
1

2ωkt
) δf

(

q−
1

2 t
)

δt
dqt
}

=
1 − q

q
1

2ωk

{

ak

(

δf(q−
1

2x)

δx

)

+ q
1

2

[

f
(

0+
)

−f
(

0−
)

µk
− f

(

q−1
)

−f
(

− q−1
)

(1 − q)S ′
q(ωk)

]}

.

(4.2)
The conjugation of this last two identities with Theorem H enables us to de-
duce conditions on the function f in order to guarantee uniform convergence
of the corresponding Fourier series Sq[f ] . In its statement, we will consider
the notation

L∞
q [−1, 1] =

{

f : sup
{ ∣

∣f
(

± qn−1
)∣

∣ : n ∈ N
}

< ∞
}

and the following definition:

Definition 4.1 If two constants M and λ exist such that
∣

∣

∣
f
(

± qn−1
)

− f
(

± qn
)

∣

∣

∣
≤ Mqλn , n = 0, 1, 2, . . . , (4.3)

then the function f is said to be q-linear Hölder of order λ .

Theorem 1. If f ∈ L∞
q [−1, 1] is a q-linear Hölder function of order λ > 1

2

and satisfies f(0+) = f(0−) then, at least for 0 < q ≤ (1/50)1/49 , the

corresponding q-Fourier series Sq[f ] converges uniformly to f on the set of

points Vq =
{

±qn−1 : n ∈ N
}

.

Proof : From (3.2) and (4.1) one have
∫ 1

−1

f(t)Cq

(

q
1

2ωkt
)

dqt = µk ak

(

f
)

= − 1 − q

q1/2ωk

∫ 1

−1

Sq (qωkt)
δf
(

q
1

2 t
)

δt
dqt .

(4.4)
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Similarly, from (3.3) and (4.2),

∫ 1

−1

f(t)Sq (qωkt) dqt = q−1/2µk bk

(

f
)

=

q−1

qωk

{

q
1

2

[

f
(

q−1
)

−f
(

− q−1
)

]

Cq

(

q
1

2ωk

)

−
∫ 1

−1

Cq

(

q
1

2ωkt
) δf

(

q−
1

2 t
)

δt
dqt
}

.

(4.5)
By Cauchy-Schwarz inequality we have

∣

∣

∣

∣

∣

∫ 1

−1

Sq (qωkt)
δf
(

q
1

2 t
)

δt
dqt

∣

∣

∣

∣

∣

≤
(
∫ 1

−1

S2
q (qωkt) dqt

)

1

2





∫ 1

−1

(

δf
(

q
1

2 t
)

δt

)2

dqt





1

2

(4.6)
and

∣

∣

∣

∣

∣

∫ 1

−1

Cq

(

q
1

2ωkt
) δf

(

q−
1

2 t
)

δt
dqt

∣

∣

∣

∣

∣

≤
(
∫ 1

−1

C2
q

(

q
1

2ωkt
)

dqt

)

1

2





∫ 1

−1

(

δf
(

q−
1

2 t
)

δt

)2

dqt





1

2

(4.7)
Using the orthogonality relations of Theorem B we may write

q
1

2

∫ 1

−1

S2
q (qωkt) dqt =

∫ 1

−1

C2
q

(

q
1

2ωkt
)

dqt = µk = (1 − q)Cq

(

q
1

2ωk

)

S ′
q(ωk) ,

thus (4.6) and (4.7) become, respectively,

∣

∣

∣

∣

∣

∫ 1

−1

Sq (qωkt)
δf
(

q
1

2 t
)

δt
dqt

∣

∣

∣

∣

∣

≤

q−
1

4 (1 − q)
1

2

(

Cq

(

q
1

2ωk

)

S ′
q(ωk)

)
1

2





∫ 1

−1

(

δf
(

q
1

2 t
)

δt

)2

dqt





1/2

(4.8)
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and
∣

∣

∣

∣

∣

∫ 1

−1

Cq

(

q
1

2ωkt
) δf

(

q−
1

2 t
)

δt
dqt

∣

∣

∣

∣

∣

≤

(1 − q)
1

2

(

Cq

(

q
1

2ωk

)

S ′
q(ωk)

)1

2





∫ 1

−1

(

δf
(

q−
1

2 t
)

δt

)2

dqt





1

2

.

(4.9)

Now, using the corresponding definitions of the q-integral and of the operator
δ one finds that

∫ 1

−1

(

δf
(

q
1

2 t
)

δt

)2

dqt =

(1 − q)
∞
∑

n=0

{

[

f
(

qn
)

− f
(

qn+1
)

]2

+
[

f
(

− qn
)

− f
(

− qn+1
)

]2
}

q−n

hence, since f is q-linear Hölder of order λ > 1
2
, by (4.3),

∫ 1

−1

(

δf
(

q
1

2 t
)

δt

)2

dqt ≤ 2M2(1 − q)

∞
∑

n=0

q(2λ−1)n =
2(1 − q)M2

1 − q2λ−1
. (4.10)

In a similar way we obtain

∫ 1

−1

(

δf
(

q−
1

2 t
)

δt

)2

dqt ≤
2(1 − q)M2

1 − q2λ−1
. (4.11)

Thus, (4.8) and (4.9) become, respectively,
∣

∣

∣

∣

∣

∫ 1

−1

Sq (qωkt)
δf
(

q
1

2 t
)

δt
dqt

∣

∣

∣

∣

∣

≤
√

2q−
1

4 (1 − q)M
√

1 − q2λ−1

(

Cq

(

q
1

2ωk

)

S ′
q(ωk)

)1

2

(4.12)

and
∣

∣

∣

∣

∣

∫ 1

−1

Cq

(

q
1

2ωkt
) δf

(

q−
1

2 t
)

δt
dqt

∣

∣

∣

∣

∣

≤
√

2(1 − q)M
√

1 − q2λ−1

(

Cq

(

q
1

2ωk

)

S ′
q(ωk)

)1

2

.

(4.13)
Finally, using (4.12) and (4.13) in (4.4) and (4.5), respectively, by Theorems
A, E, F and identity (2.4), as well as Lemma 1, one concludes that the
conditions of Theorem H are fulfilled with, for instance, c = 3/2 , thus the
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q-Fourier series (3.1), at least for 0 < q ≤ (1/50)1/49 , converges uniformly
on the set Vq =

{

±qn−1 : n ∈ N
}

, hence, by Theorem I, under the same
restriction on q ,

Sq[f ](x) = f(x) , ∀x ∈ Vq =
{

±qn−1 : n ∈ N
}

.

A simple analysis of the previous theorem shows immediately that the
behavior of the function f at the origin is crucial to study the convergence
of the q-Fourier series Sq[f ] . Consider, then, the following concept:

Definition 4.2 A function f is said to be almost q-linear Hölder of order

λ if two constants M , λ and a positive integer n0 exist such that
∣

∣

∣
f
(

± qn−1
)

− f
(

± qn
)

∣

∣

∣
≤ Mqλn (4.14)

holds for every n ≥ n0 .

Obviously that every q-linear Hölder function of order λ is almost q-linear

Hölder function of order λ .

Corollary 1. If a function f ∈ L∞
q [−1, 1] is almost q-linear Hölder of order

λ > 1
2 and satisfies f(0+) = f(0−) then, at least for 0 < q ≤ (1/50)1/49 , the

corresponding q-Fourier series Sq[f ] converges uniformly to f on the set of

points Vq =
{

±qn−1 : n ∈ N
}

.

Proof : By hypothesis, f is almost q-linear Hölder of order λ > 1/2 , i.e., it
satisfies (4.14). Then the relations (4.10) and (4.11)) now become

∫ 1

−1

(

δf
(

q
1

2 t
)

δt

)2

dqt ≤
2(1 − q)M2

1 qn0

1 − q2λ−1

and
∫ 1

−1

(

δf
(

q−
1

2 t
)

δt

)2

dqt ≤
2(1 − q)M2

2 qn0

1 − q2λ−1
,

respectively, where M1 and M2 are constants. Therefore, using the above
inequalities in formulas (4.8) and (4.9) we get two new inequalities that differ
from (4.12) and (4.13) only by a constant in the corresponding right hand
side. Hence, the conclusion on the uniform convergence follows.
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Corollary 2. If f ∈ L∞
q [−1, 1] satisfies f(0+) = f(0−) and there ex-

ists a neighborhood of the origin where the function f is continuous and

piecewise smooth then, at least for 0 < q ≤ (1/50)1/49 , the correspond-

ing q-Fourier series Sq[f ] converges uniformly to f on the set of points

Vq =
{

±qn−1 : n ∈ N
}

.

Proof : It’s just a consequence of the fact that a function f that is continuous
and piecewise smooth at any neighborhood of the origin satisfies a Lipschitz
condition [18, page 204]. Thus, it satisfies a Hölder condition of order 1 on
that neighborhood and so, by Corollary 1, the uniform convergence follows.

5. Convergence on and outside the q-linear grid

The convergence of the basic Fourier series (3.1)-(3.4) always refer to the
discrete set of the points of the q-linear grid Vq =

{

±qn−1 : n ∈ N
}

.
Two important questions arise at this moment:

• The above mentioned q-Fourier series also converges outside the points

of the q-linear grid?

• In that case, to what function it converges?

Next theorem will give a positive answer to both questions.

Theorem 2. Let f ∈ L∞
q [−1, 1] and suppose that c ∈ R+ exists such that,

as k → ∞ ,
∫ 1

−1

f(t)Cq

(

q
1

2ωkt
)

dqt = O
(

q(k+c)2
)

,

∫ 1

−1

f(t)Sq(qωkt) dqt = O
(

q(k+c− 1

2
)2
)

.

(5.1)
If f is analytic inside Cδ = {z ∈ C : |z| < δ} , where δ is a positive quan-

tity such that 0 < δ ≤ q−σ with 0 < σ < c , then, at least for 0 < q ≤
50
√

1/51 ,
f(z) = Sq[f ](z) in Cδ = { z ∈ C : |z| < δ } . (5.2)

Proof : We first notice that

Cq

(

q
1

2ωkz
)

=
∞
∑

n=0

(−1)nqn(n−1)

(q2, q; q2)n

q
3

2
nω2n

k z2n

and

Sq (qωkz) =
qωkz

1 − q

∞
∑

n=0

(−1)nqn(n−1)

(q2, q3; q2)n

q
7

2
nω2n

k z2n
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hence, for sufficiently large values of k , by Theorem A, whenever |z| ≤ q−σ ,

∣

∣

∣
Cq

(

q
1

2ωkz
)∣

∣

∣
≤

∞
∑

n=0

qn(n−1)

(q2, q; q2)n

q2n(1−k+ǫk)
(

q−σ
)2n

≤ q−(k− 1

2
+σ−ǫk)

2

(q; q)∞

∞
∑

n=0

q(n−k+ 1

2
−σ+ǫk)

2

(5.3)

and

|Sq (qωkz)| ≤ qωkz

1 − q

∞
∑

n=0

qn(n−1)

(q2, q3; q2)n

q2n(2−k+ǫk)
(

q−σ
)2n

≤ q
5

4
−k+ǫk−(k− 3

2
+σ−ǫk)

2

(q; q)∞

∞
∑

n=0

q(n−k+ 3

2
−σ+ǫk)

2

.

(5.4)

An easy calculation shows that

∞
∑

n=0

q(n−k+ 1

2
+ǫk−σ)

2

=
k−1
∑

n=0

q(n−k+ 1

2
−σ+ǫk)

2

+
∞
∑

n=k

q(n−k+ 1

2
−σ+ǫk)

2

=

k−1
∑

m=0

q(m+ 1

2
+σ−ǫk)

2

+

∞
∑

m=0

q(m+ 1

2
−σ+ǫk)

2

.

thus, if

|σ | <
1

2
,

for sufficiently large values of k ,

∞
∑

n=0

q(n−k+ 1

2
+ǫk−σ)

2

<

k−1
∑

m=0

qm2

+

∞
∑

m=0

qm2

< 2

∞
∑

m=0

qm =
2

1 − q
.

In a similar way, for a given p ∈ N0 , if

| σ | <
1

2
+ p (5.5)

then, for sufficiently large values of k ,

∞
∑

n=0

q(n−k+ 1

2
+ǫk−σ)

2

< 2p +
2

1 − q
. (5.6)
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With the same reasoning we get, again for sufficiently large values of k ,

∞
∑

n=0

q(n−k+ 3

2
+ǫk−σ)

2

< 2p +
2

1 − q
. (5.7)

Hence, by (5.3), (5.6) and (5.4), (5.7), we may write, respectively, for k large
enough,

∣

∣

∣
Cq

(

q
1

2ωkz
)∣

∣

∣
≤ 2p(1 − q) + 2

(q; q)∞
q−(k− 1

2
+σ−ǫk)

2

(5.8)

and

|Sq (qωkz)| ≤ 2p(1 − q) + 2

(q; q)∞
q

5

4
−k+ǫk−(k− 3

2
+σ−ǫk)

2

. (5.9)

This way, for k large enough, using (3.2) and (3.4), Theorems E and F,

relation (2.4) and inequality (5.8), at least for 0 < q ≤ 50
√

1/51 ,

∣

∣

∣
akCq

(

q
1

2ωkz
)∣

∣

∣
≤ 2p(1−q)+2

(1−q)2(q; q)2
∞

∣

∣

∣

∣

∫ 1

−1

f(t)Cq

(

q
1

2ωkt
)

dqt

∣

∣

∣

∣

q−(k− 1

2
+σ−ǫk)

2−k+ 1

4
+ǫk

|Sk|
.

By hypothesis (5.1), we may suppose that c1 ∈ R+ and M1 > 0 exist such
that, for k large enough,

∣

∣

∣

∣

∫ 1

−1

f(t)Cq

(

q
1

2ωkt
)

dqt

∣

∣

∣

∣

≤ M1q
(k+c1)

2

. (5.10)

In that case we have
∣

∣

∣
akCq

(

q
1

2ωkz
)∣

∣

∣
≤ 2M1

p(1−q) + 1

(1−q)2(q; q)2
∞

q(k+
c1+σ

2
− 1

4
− ǫk

2
)(1+2(c1−σ)+2ǫk)−k+ 1

4
+ǫk

|Sk|
hence, if 1+2(c1−σ) > 1 , i.e., if σ < c1 then, taking into account Theorem

A and (2.5), and the Theorems E and F, at least for 0 < q ≤ 50
√

1/51 ,
∣

∣

∣
akCq

(

q
1

2ωkz
)∣

∣

∣
≤ A1q

θ1k , (5.11)

where A1 and θ1 are positive constants.
Analogously, for k large enough, (3.3) and (3.4), Theorems E and F, rela-

tion (2.4) and inequality (5.9),

|bkSq (qωkz)| ≤ 2p(1 − q) + 2

(1 − q)2(q; q)2
∞

∣

∣

∣

∣

∫ 1

−1

f(t)Sq (qωkt) dqt

∣

∣

∣

∣

q−(k− 3

2
+σ−ǫk)

2−2k+2+2ǫk

|Sk|
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so, again by hypothesis (5.1), if we admit that c2 ∈ R
+ and M2 > 0 exist

such that
∣

∣

∣

∣

∫ 1

−1

f(t)Sq (qωkt) dqt

∣

∣

∣

∣

≤ M2q
(k+c2− 1

2
)2 , (5.12)

then,

|bkSq (qωkz)| ≤ 2M2
p(1−q) + 1

(1−q)2(q; q)2
∞

q(k+
c2+σ

2
− 3

4
− ǫk

2
)(2+2(c2−σ)+2ǫk)−2k+2+2ǫk

|Sk|
.

Similarly, if 2 + 2(c2 − σ) > 2 , i.e., if σ < c2 then, at least for q such that

0 < q ≤ 50
√

1/51 ,

|bksq (qωkz)| ≤ A2q
θ2k , (5.13)

being A2 and θ2 positive constants.
We remark that in (5.5) we may choose p sufficiently large in order that

one haves

−1

2
− p < 0 < σ < min {c1, c2} ≤ 1

2
+ p , (5.14)

thus, replacing c1 and c2 from (5.10) and (5.12) by c = min {c1, c2} , re-
spectively, we conclude, through (5.11) and (5.13), that the conditions (5.1)
guaranty the uniform convergence of the q-Fourier series (3.1) in Cq−σ =
{ z ∈ C : |z| < q−σ } if σ satisfies (5.14). This way, under this condition
on σ , we have, by Theorem H,

f(x) = Sq[f ](x) whenever x ∈ Vq ,

since Vq ⊂ Cq−σ , where Vq =
{

qn−1 : n ∈ N
}

is the corresponding set of
Theorem I and Cq−σ is the interior of the circle of the complex plane with
center at the origin and radius q−σ .

On the other side, again by the uniform convergence of the q-Fourier series
Sq[f ](x) on Cq−σ , since the terms of the mentioned q-Fourier series are entire
functions we then have that the q-series is analytic inside Cq−σ . From the
continuity of both members of the above equality it results f(0) = Sq[f ](0) .
Thus, if f is analytic inside Cδ = { z ∈ C : |z| < δ } , where 0 < δ ≤ q−σ ,
then f(z) and Sq[f ](z) are analytic inside Cδ and coincide in a set with a
limit point in the interior of such circle; by the principle of analytic contin-

uation [11, Corollary 4.4.1], the above mentioned functions must coincide in
the whole set Cδ , which proves (5.2).
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6. Examples

In this section we will present four examples of q-Fourier series and study
the corresponding questions about convergence.

Example 1: g(x) = |x|
The basic Fourier series of the absolute value function is given [10] by

Sq[g](x) =
1

1 + q
− 2q−

1

2 (1 − q)

∞
∑

k=1

1 − Cq

(

q
1

2ωk

)

ω2
kCq

(

q
1

2ωk

)

S ′
q(ωk)

Cq

(

q
1

2ωkx
)

.

Conditions of Theorem H are fulfilled [10] with, for instance, c = 2 . Thus, at
least for 0 < q ≤ (1/50)1/49 , the q-Fourier series of the function f(x) = |x|
converges uniformly on the set Vq =

{

±qn−1 : n ∈ N
}

so, under the same
restrictions on q , by Theorem I,

|x| =
1

1 + q
− 2q−

1

2 (1 − q)
∞
∑

k=1

1 − Cq

(

q
1

2ωk

)

ω2
kCq

(

q
1

2ωk

)

S ′
q(ωk)

Cq

(

q
1

2ωkx
)

for all x ∈ Vq =
{

±qn−1 : n ∈ N
}

.

Now, we may obtain the same conclusion in a easier way through Theorem
1, by simple arguing that the absolute value function

• is bounded on Vq =
{

±qn−1 : n ∈ N
}

,
• is continuous at the origin,
• and satisfies the q-linear Hölder condition of order 1 since

∣

∣

∣

∣

∣± qn−1
∣

∣−
∣

∣± qn
∣

∣

∣

∣

∣
≤ (1 − q)qn−1 .

Thus, by Theorem 1, the same conclusion over the uniform convergence fol-
lows. Notice that Corollaries 1 or 2 also apply.

Given a function f , it is important to point out that Theorem 1 or its
Corollaries 1 and 2, enable one to decide over the uniform convergence of
the q-Fourier series Sq[f ] without the need to compute the corresponding
coefficients: only requires a short study of the function itself.
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Example 2: h(x) =







−1 if x ≤ 0

1 if x > 0

In this example, the conditions of Theorem H were not satisfied [10, Remark
3]. It was shown, using Theorem G, that the q-Fourier series

Sq[h](x) = 2
∞
∑

k=1

1 − Cq

(

q
1

2ωk

)

ωkCq

(

q
1

2ωk

)

S ′
q(ωk)

Sq(qωkx)

is (pointwise) convergent at each (fixed) point x ∈ Vq . Theorem 1 doesn’t
apply too (neither its corollaries) since h

(

0+
)

6= h
(

0−
)

.

Example 3: H(a)(x) =







−1 se x ≤ a
; (a > 0)

1 se x > a

Once 0 < q < 1 is fixed, denote by na the least positive integer j such that
qj < a , i.e., na =

[

logq a
]

+ 1 . Then

a0 = −2qna (6.1)

and, for k = 1, 2, 3, . . . ,

ak =
2(1 − q)

q−
1

2
+naω2

kµk

[

Cq

(

q
1

2
+naωk

)

− Cq

(

q−
1

2
+naωk

)]

.

By Theorem D,

Cq

(

q
1

2
+naωk

)

− Cq

(

q−
1

2
+naωk

)

= q−
1

2
+naωkSq (qnaωk) ,

thus

ak = −2(1 − q)Sq (qnaωk)

ωkµk
= − 2

ωk

Sq (qnaωk)

Cq

(

q
1

2ωk

)

S ′
q(ωk)

. (6.2)

For k = 1, 2, 3, . . . we have

bk = −2(1 − q)

ω2
kµk

[

Sq

(

q1+naωk

)

− Sq (qnaωk)

qna
− Sq(qωk)

]

.

By Theorem D,

Sq

(

q1+naωk

)

− Sq (qnaωk) = −qna ωk Cq

(

q
1

2
+naωk

)

,
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so, by (2.4),

bk =
2(1−q)

ωkµk

[

Cq

(

q
1

2
+naωk

)

− Cq

(

q
1

2ωk

)]

=
2

ωk

Cq

(

q
1

2
+naωk

)

− Cq

(

q
1

2ωk

)

Cq

(

q
1

2ωk

)

S ′
q(ωk)

.

(6.3)
hence, substituting (6.1), (6.2) and (6.3) into (3.1) it becomes

Sq[H
(a)](x) = −qna−

2
∞
∑

k=1

Sq (qnaωk) Cq

(

q
1

2ωkx
)

+
[

Cq

(

q
1

2ωk

)

− Cq

(

q
1

2
+naωk

)]

Sq(qωkx)

ωk Cq

(

q
1

2ωk

)

S ′
q(ωk)

.

(6.4)
We notice that Example 2 follows from Example 4 by computing the limit
na → ∞ , i.e., when a → 0 . Again by Theorem D,

Sq(q
naωk) = Sq(qωk)

na−1
∑

j=0

(−1)jqj(j+ 1

2
)

(

qna−j; q
)

2j+1

(q; q)2j+1
ω2j

k

and

Cq(q
1

2
+naωk) = Cq(q

1

2ωk)

na
∑

j=0

(−1)jqj(j− 1

2
)

(

q1+na−j; q
)

2j

(q; q)2j
ω2j

k ,

thus, since Sq(qωk) = −ωkCq

(

q1/2ωk

)

, for k = 1, 2, 3, . . . ,

∫ 1

−1

H(a)(x)Cq(q
1

2ωkx)dqt = 2(1−q)Cq

(

q
1

2ωk

)

na−1
∑

j=0

(−1)jqj(j+ 1

2
)

(

qna−j; q
)

2j+1

(q; q)2j+1
ω2j

k

and

∫ 1

−1

H(a)(x)Sq(qωkx)dqt = 2q−
1

2 (1 − q)
cq

(

q
1

2ωk

)

ωk
×

[

na
∑

j=0

(−1)jqj(j− 1

2
)

(

q1+na−j; q
)

2j

(q; q)2j
ω2j

k − 1

]

.

For each fixed a > 0 , at least for 0 < q ≤ (1/50)1/49 , the q-Fourier series
(6.4) converges uniformly on the set Vq =

{

±qn−1 : n ∈ N
}

: in fact, after
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some computations, one verifies that the conditions of Theorem H are satis-
fied with, for instance, c = 2 , hence, whenever x ∈ Vq and under the above
restriction on q , we may write by Theorem I,

H(a)(x) ≡ −qna−

2

∞
∑

k=1

Sq (qnaωk)Cq

(

q
1

2ωkx
)

+
[

Cq

(

q
1

2ωk

)

− Cq

(

q
1

2
+naωk

)]

Sq(qωkx)

ωkCq

(

q
1

2ωk

)

S ′
q(ωk)

.

(6.5)
Another approach is the following: one easily check that H(a) ∈ L∞

q [−1, 1] ,

H(a)
(

0+
)

= 0 = H(a)
(

0−
)

and H(a) is almost q-linear Hölder of order bigger

then 1
2 since
∣

∣

∣
H(a)

(

± qn−1
)

− H(a)
(

± qn
)

∣

∣

∣
= 0 , n ≥ na + 1 =

[

logq a
]

+ 2 .

By Corollary 1, the q-Fourier series Sq

[

H(a)
]

converges uniformly on the set
Vq , thus (6.5) follows.

Example 4: f(x) = xm

In [10, Proposition 6.1] it was presented the Fourier expansion of the function
f(x) = xm , m = 0, 1, 2, . . . , in terms of the functions Cq and Sq :

Sq[x
m](x) =

1 + (−1)m

2

1 − q

1 − qm+1
+

(q; q)m

∞
∑

k=1











1+(−1)m

S′

q(ωk)

[m−2

2 ]
∑

i=0

(−1)iq(i+1)(i−m+ 1

2
)

ω2i+2
k (q; q)m−1−2i

Cq(q
1

2ωkx) +

q
1

2

(−1)+(−1)m

S ′
q(ωk)

[m−1

2 ]
∑

i=0

(−1)iq(i+1)(i−m− 1

2
)

ω2i+1
k (q; q)m−2i

Sq(qωkx)











,

where [x] denotes the greatest integer which does not exceed x and we will
take as zero a sum where the superior index is less than the inferior one.
Furthermore, it was proved that the conditions of Theorem H are fulfilled
with , for instance, c = 2 . Thus, at least for 0 < q ≤ (1/50)1/49 , the q-
Fourier series of the function f(x) = xm converges uniformly on the set



20 J. L. CARDOSO

Vq =
{

±qn−1 : n ∈ N
}

, so, by Theorem I,

xm = Sq[x
m](x) whenever x ∈ Vq =

{

±qn−1 : n ∈ N
}

.

We notice that the conditions of Theorem 1 are trivial checked when f(x) =
xm .

Now, since f satisfies the conditions of Theorem 2 with, for instance,
c = 1 and f is an entire function then, by Theorem 2,

Sq[x
m](x) = xm , ∀x ∈ Cδ = { z ∈ C : |z| < δ }

where 0 < δ < q−σ and 0 < σ < 1 .

For some of the functions considered in the examples, fixing, for instance,
q = 0.7 and considering a finite number of terms of the corresponding q-
Fourier series, we obtain the graphics of Figure 1 . The corresponding right
graphic illustrates the attainment of Theorem 2. Notice that in this case the
function and the q-Fourier series coincides not only at the points

(

0.7
)n

,
n = 0, 1, 2, . . . , but also in a neighborhood of the origin.
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Figure 1

Concluding remarks. We notice that Theorem 1 or Corollaries 1 and 2 are
q -analogs of the corresponding classical theorems on uniform convergence for
trigonometric Fourier series. See, for instance, Theorem 1 of [18, page 204]
or Theorem 55 of [15, page 41].

Mathematica c© suggests that Theorems (4.1) and (5.1) remain valid for
0 < q < 1 . It’s an open question and to prove it a different technic is
required.
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