BASIC FOURIER SERIES: CONVERGENCE ON AND OUTSIDE THE *q*-LINEAR GRID

J. L. CARDOSO

ABSTRACT: A q-type Hölder condition on a function f is given in order to establish (uniform) convergence of the corresponding basic Fourier series $S_q[f]$ to the function itself, on the set of points of the q-linear grid. Furthermore, by adding other conditions, one guarantees the (uniform) convergence of $S_q[f]$ to f on and "outside" the set points of the q-linear grid.

KEYWORDS: q-trigonometric functions, q-Fourier series, Basic Fourier expansions, uniform convergence, q-linear grid. AMS SUBJECT CLASSIFICATION (2000): 42C10, 33D15.

1. INTRODUCTION

Basic Fourier expansions on q-quadratic and on q-linear grids were first considered in [9] and in [8], respectively. Recently, in [10], sufficient conditions for (uniform) convergence of the q-Fourier series in terms of basic trigonometric functions S_q and C_q , on a q-linear grid, were given. In [24] it was established an "addition" theorem for the corresponding basic exponential function, being these functions equivalent to the ones introduced by H. Exton in [12]. Following the unified approach of M. Rahman in [20], these functions can be seen as analytic linearly independent solutions of the initial value problem

$$\frac{\delta f(x)}{\delta x} = \lambda f(x) , \quad f(0) = 1 ,$$

where δ is the symmetric q-difference operator acting on a function f by

$$\delta f(x) = f(q^{1/2}x) - f(q^{-1/2}x), \qquad (1.1)$$

with 0 < q < 1. Then, from 1.1,

$$\frac{\delta f(x)}{\delta x} = \frac{f(q^{1/2}x) - f(q^{-1/2}x)}{x(q^{1/2} - q^{-1/2})} \,. \tag{1.2}$$

Received June 5, 2006.

There exists an important relation between this difference operator and the q-integral. The q-integral is defined by

$$\int_{0}^{a} f(x)d_{q}x = a(1-q)\sum_{n=0}^{\infty} f(aq^{n})q^{n}$$

and

$$\int_{a}^{b} f(x)d_{q}x = \int_{0}^{b} f(x)d_{q}x - \int_{0}^{b} f(x)d_{q}x.$$
 (1.3)

From 1.2 and 1.3 it follows

$$\int_{-1}^{1} \frac{\delta f(x)}{\delta x} d_q x = q^{\frac{1}{2}} \left\{ \left[f(q^{-\frac{1}{2}}) - f(-q^{-\frac{1}{2}}) \right] - \left[f(0^+) - f(0^-) \right] \right\}, \quad (1.4)$$

hence, one have the following formula [10] for *q*-integration by parts:

$$\int_{-1}^{1} g(q^{\pm \frac{1}{2}}x) \frac{\delta_q f(x)}{\delta_q x} d_q x = -\int_{-1}^{1} f(q^{\pm \frac{1}{2}}x) \frac{\delta_q g(x)}{\delta_q x} d_q x + q^{\frac{1}{2}} \left\{ \left[(fg)(q^{-\frac{1}{2}}) - (fg)(-q^{-\frac{1}{2}}) \right] - \left[(fg)(0^+) - (fg)(0^-) \right] \right\}.$$
(1.5)

These functions satisfy an orthogonality relation [8, 12] where the corresponding inner product is defined in terms of the *q*-integral 1.4. In [8], it was proved that they form a complete system and analytic bounds on their roots were derived.

As we will refer in section 2, the above q-trigonometric functions can be written using the Third Jackson q-Bessel function (or the Hahn-Exton q-Bessel function). In [5], analytic bounds were derived for the zeros of this function – which includes, as particular cases, the corresponding results established in [8] – and recently, in [4], it was shown that they define a complete system. The above mentioned function was also studied with a different normalization in [13]

The publications [8, 10] contain the proofs of the results we are going to use. Many results concerning expansions with q-analogues have appear in the recent years: the publications [9, 25, 26] study expansions on q-quadratic grids and [7] considers basic properties of systems associated with q-Sturm-Liouville problems. This expansions have found to be very convenient for applications in sampling theory [1, 2, 3, 6, 17]. For related topics see [21, 22, 23, 27, 29].

Throughout this paper we will follow the notation used in [14] which is now standard. Section 2 collects the main properties of the set of the basic trigonometric functions and section 3 compiles some results which involve the Fourier coefficients and the known general convergence theorems. Then, as a consequence, sections 4 and 5 are devoted to the convergence issues: the former establishes a condition on the function f, to guaranty uniform convergence of the basic Fourier expansion to f on the set of points of the q-linear lattice and the latter settles conditions on f in order to have uniform convergence in a neighborhood of the origin in the complex plane. Finally, section 6 illustrates the application of the results of the two previous sections to some examples.

2. The q-Linear Sine and Cosine. Properties.

The initial value problem

$$\frac{\delta f(x)}{\delta x} = \lambda f(x) , \quad f(0) = 1 ,$$

has the analytic solution [8]

$$\exp_{q}[\lambda(1-q)z] = \sum_{n=0}^{\infty} \frac{[\lambda(1-q)z]^{n}q^{(n^{2}-n)/4}}{(q;q)_{n}}, \qquad (2.1)$$

which is a standard q-analog of the classical exponential function [14, 20]. The q-linear sine and cosine, $S_q(z)$ and $C_q(z)$, are then defined by

$$\exp_q iz := C_q(z) + iS_q(z) \,.$$

From 2.1 we get

$$C_q(z) = \sum_{n=0}^{\infty} \frac{(-1)^n q^{n[n-(1/2)]} z^{2n}}{(q;q^2;q^2)_n} = {}_1\phi_1 \begin{pmatrix} 0\\q;q^2,q^{1/2} z^2 \end{pmatrix}$$
$$S_q(z) = \frac{z}{1-q} \sum_{n=0}^{\infty} \frac{(-1)^n q^{n[n+(1/2)]} z^{2n}}{(q^2;q^3;q^2)_n} = \frac{z}{1-q} {}_1\phi_1 \begin{pmatrix} 0\\q^3;q^2,q^{3/2} z^2 \end{pmatrix},$$

which can be written in terms of the third Jackson q-Bessel function (or, Hahn-Exton q-Bessel function) [16, 19, 28]

$$J_{\nu}^{(3)}(z;q) := z^{\nu} \frac{\left(q^{\nu+1};q\right)_{\infty}}{(q;q)_{\infty}} {}_{1}\phi_{1} \left(\begin{array}{c} 0\\ q^{\nu+1} \end{array}; q, qz^{2} \right)$$

as

$$C_q(z) = q^{-3/8} \frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}} z^{1/2} J_{-1/2}^{(3)} \left(q^{-3/4} z; q^2 \right) ,$$

$$S_q(z) = q^{1/8} \frac{(q^2; q^2)_{\infty}}{(q; q^2)_{\infty}} z^{1/2} J_{1/2}^{(3)} \left(q^{-1/4} z; q^2 \right)$$

They satisfy [8]

$$\frac{\delta C_q(\omega z)}{\delta z} = -\frac{\omega}{1-q} S_q(\omega z), \qquad (2.2)$$

$$\frac{\delta S_q(\omega z)}{\delta z} = \frac{\omega}{1-q} C_q(\omega z) , \qquad (2.3)$$

and, when ω is such that $S_q(\omega) = 0$,

$$[C_q(\omega)]^{-1} = C_q(q^{-1/2}\omega) = C_q(q^{1/2}\omega).$$
(2.4)

It is known [8] that the roots of $C_q(z)$ and $S_q(z)$ are real, simple and countable. Further, because $C_q(z)$ and $S_q(z)$ are respectively even and odd functions, the roots of $C_q(z)$ and $S_q(z)$ are symmetric and we will denote the positive zeros of the function $S_q(z)$ by ω_k , $k = 1, 2, \ldots$, with $\omega_1 < \omega_2 < \omega_3 < \ldots$

As we mentioned before, the zeros of the function $S_q(z)$ form a discrete set of symmetric points in the real line. In [8, page 145], it was shown that the set of positive zeros ω_k , $k = 1, 2, \ldots$ of the function $S_q(z)$, verify the following *analytic bounds*:

If $0 < q < \beta_0$, where β_0 is the root of $(1 - q^2)^2 - q^3$, 0 < q < 1, then

$$q^{-k+\alpha_k+1/4} < \omega_k < q^{-k+1/4}, \quad k = 1, 2, \dots,$$

where

$$\alpha_k \equiv \alpha_k(q) = \frac{\log\left[1 - \frac{q^{2k+1}}{1 - q^{2k}}\right]}{2\log q}, \quad k = 1, 2, \dots.$$

According to *Remark 1* in [8, page 145], the previous result can be restated in the following form:

Theorem A For every q, 0 < q < 1, K exists such that if $k \ge K$ then

$$\omega_k = q^{-k+\epsilon_k+1/4}, \quad 0 < \epsilon_k < \alpha_k(q).$$

By using Taylor expansion one finds out that

$$\alpha_k(q) = \mathcal{O}(q^{2k}) \quad \text{as} \quad k \to \infty.$$
 (2.5)

Theorem 4.1 of [8, page 139] settle the orthogonality relations:

Theorem B Considering $\mu_k = (1-q)C_q(q^{1/2}\omega_k)S'_q(\omega_k)$ we have

$$\int_{-1}^{1} C_q(q^{1/2}\omega_k x) C_q(q^{1/2}\omega_m x) d_q x = \begin{cases} 0 & \text{if } k \neq m \\ 2 & \text{if } k = 0 = m \\ \mu_k & \text{if } k = m \neq 0 \end{cases}$$
$$\int_{-1}^{1} S_q(q\omega_k x) S_q(q\omega_m x) d_q x = \begin{cases} 0 & \text{if } k \neq m \lor k = 0 = m \\ q^{-1/2}\mu_k & \text{if } k = m \neq 0 \end{cases}$$

The *Completeness Theorem* [8, page 153], where a misprint is corrected, states the following:

Theorem C Let $f(\omega_k z) = C_q(q^{\frac{1}{2}}\omega_k z) + iS_q(q\omega_k z)$ where the ω_k , $\omega_0 = 0 < \omega_1 < \omega_2 < \ldots$ are the non-negative roots of $S_q(z)$. Suppose that

$$\int_{-1}^{1} g(z) f(\omega_k z) d_q z = 0 \quad , \qquad k = 0, 1, 2, \dots$$

where g(z) is bounded on $z = \pm q^j$, $j = 0, 1, 2, \dots$. Then, $g(z) \equiv 0$, i.e., $g(\pm q^j) = 0$ for all $j = 0, 1, 2, \dots$.

To end this section we write down the Theorem 6.2 of [8, page 150]: **Theorem D** If $S_q(\omega_k) = 0$ then, for n = 0, 1, 2, ...,

$$S_q(q^{1+n}\omega_k) = S_q(q\omega_k) \sum_{j=0}^n (-1)^j q^{j(j+\frac{1}{2})} \frac{(q^{1+n-j};q)_{2j+1}}{(q;q)_{2j+1}} (\omega_k^2)^j ,$$
$$C_q(q^{\frac{1}{2}+n}\omega_k) = C_q(q^{\frac{1}{2}}\omega_k) \sum_{j=0}^n (-1)^j q^{j(j-\frac{1}{2})} \frac{(q^{1+n-j};q)_{2j}}{(q;q)_{2j}} (\omega_k^2)^j .$$

3. The Fourier Coefficients

As a consequence of the orthogonality relations of Theorem B, we may consider formal Fourier expansions of the form

$$f(x) \sim S_q[f](x) = \frac{a_0}{2} + \sum_{k=1}^{\infty} \left[a_k C_q \left(q^{\frac{1}{2}} \omega_k x \right) + b_k S_q \left(q \omega_k x \right) \right] , \qquad (3.1)$$

with $a_0 = \int_{-1}^{1} f(t) d_q t$ and, for k = 1, 2, 3, ...,

$$a_{k} = \frac{1}{\mu_{k}} \int_{-1}^{1} f(t) C_{q} \left(q^{\frac{1}{2}} \omega_{k} t \right) d_{q} t$$
(3.2)

$$b_k = \frac{q^{\frac{1}{2}}}{\mu_k} \int_{-1}^{1} f(t) S_q(q\omega_k t) \, d_q t \,, \qquad (3.3)$$

where

$$\mu_k = (1-q)C_q(q^{1/2}\omega_k)S'_q(\omega_k).$$
(3.4)

In order to study the convergence of the series (3.1)-(3.4), it becomes clear that we need to know the behavior of the factor μ_k of the denominator as $k \to \infty$, which is equivalent to control the behavior of $S'_q(\omega_k)$ and $C_q(q^{1/2}\omega_k)$ as $k \to \infty$.

Theorem 3.2 from [10] asserts that

Theorem E At least for $0 < q \le (1/51)^{1/50}$,

$$S'_q(\omega_k) = \frac{2}{1-q} q^{-(k-\frac{1}{2}-\epsilon_k)^2} S_k ,$$

where S_k satisfies $\liminf_{k\to\infty} |S_k| > 0$.

With respect to S_k from the previous theorem we have the following lemma:

Lemma 1. There exists a constant B, independent of k, such that

$$|S_k| \le B$$
, $k = 1, 2, 3, \dots$

Proof: The expression of S_k is given [8, page 147] by

$$S_k = \sum_{n=0}^{\infty} \frac{(-1)^n n q^{(n-k+1/2+\varepsilon_k)^2}}{(q^2, q^3; q^2)_n} = (-1)^k \sum_{m=-k}^{\infty} \frac{(-1)^m m q^{(m+1/2+\varepsilon_k)^2}}{(q^2, q^3; q^2)_{m+k}}.$$

For k large enough, by Theorem A and (2.5), $1/2 + \varepsilon_k > 0$ hence

$$|S_k| \le \sum_{m=-k}^{\infty} \frac{|m|q^{(m+1/2+\varepsilon_k)^2}}{(q^2, q^3; q^2)_{m+k}} \le \frac{2}{(q^2; q)_{\infty}} \sum_{m=1}^{\infty} mq^{(m-1)^2} = B$$

which completes the proof since the infinite series on the right member is convergent.

We observe that the constant B, as well as S_k , depend on the parameter q.

The behavior of $C_q(q^{1/2}\omega_k)$ as $k \to \infty$ will be known by the corresponding behavior of $C_q(\omega_k)$ and by (2.4). Theorem 3.3 of [10] establishes

Theorem F At least for $0 < q \le (1/50)^{1/49}$,

$$C_q(\omega_k) = q^{-(k-\epsilon_k)^2} R_k \,,$$

where
$$|R_k| < \frac{2}{(1-q)(q;q)_{\infty}}$$
 and $\liminf_{k \to \infty} |R_k| > 0$.

To end this section, we collect the Theorems 4.1, 4.2 and 4.3 of [10]:

Theorem G If $c \in \mathbb{R}$ exists such that, as $k \to \infty$,

$$\int_{-1}^{1} f(t)C_q\left(q^{\frac{1}{2}}\omega_k t\right)d_q t = \mathcal{O}\left(q^{ck}\right) \quad \text{and} \quad \int_{-1}^{1} f(t)S_q\left(q\omega_k t\right)d_q t = \mathcal{O}\left(q^{ck}\right)$$

then, at least for $0 < q \leq (1/51)^{1/50}$, the q-Fourier series 3.1 is pointwise convergent at each fixed point $x \in V_q = \{\pm q^{n-1} : n \in \mathbb{N}\}$.

Theorem H If c > 1 exists such that, as $k \to \infty$,

$$\int_{-1}^{1} f(t)C_q\left(q^{\frac{1}{2}}\omega_k t\right) d_q t = \mathcal{O}\left(q^{ck}\right) \quad \text{and} \quad \int_{-1}^{1} f(t)S_q\left(q\omega_k t\right) d_q t = \mathcal{O}\left(q^{ck}\right)$$

then, the q-Fourier series 3.1, at least for $0 < q \leq (1/51)^{1/50}$, converges uniformly on $V_q = \{\pm q^{n-1} : n \in \mathbb{N}\}$.

Theorem I If f is a bounded function on the set $V_q = \{\pm q^{n-1} : n \in \mathbb{N}\}$, and the *q*-Fourier series $S_q[f](x)$ converges uniformly on V_q then its sum is f(x) whenever $x \in V_q$.

4. Convergence condition on the function

Denoting the q-Fourier coefficients of a function f by $a_k(f(x))$ and $b_k(f(x))$, $k = 1, 2, 3, \ldots$, using (3.2)-(3.4) and (2.2)-(2.3) one have, by (1.5),

$$a_k(f(x)) - \frac{1-q}{q^{1/2}\omega_k\mu_k} \int_{-1}^1 S_q(q\omega_k t) \frac{\delta f(q^{\frac{1}{2}}t)}{\delta t} d_q t - \frac{1-q}{q\omega_k} b_k\left(\frac{\delta f(q^{\frac{1}{2}}x)}{\delta x}\right) \quad (4.1)$$

and

$$b_{k}(f(x)) = \frac{q-1}{q^{\frac{1}{2}}\omega_{k}\mu_{k}} \left\{ q^{\frac{1}{2}} \left[f\left(q^{-1}\right) - f\left(-q^{-1}\right) \right] C_{q}\left(q^{\frac{1}{2}}\omega_{k}\right) - q^{\frac{1}{2}} \left[f\left(0^{+}\right) - f\left(0^{-}\right) \right] - \int_{-1}^{1} C_{q}\left(q^{\frac{1}{2}}\omega_{k}t\right) \frac{\delta f\left(q^{-\frac{1}{2}}t\right)}{\delta t} d_{q}t \right\} \\ = \frac{1-q}{q^{\frac{1}{2}}\omega_{k}} \left\{ a_{k}\left(\frac{\delta f\left(q^{-\frac{1}{2}}x\right)}{\delta x}\right) + q^{\frac{1}{2}} \left[\frac{f\left(0^{+}\right) - f\left(0^{-}\right)}{\mu_{k}} - \frac{f\left(q^{-1}\right) - f\left(-q^{-1}\right)}{(1-q)S_{q}'(\omega_{k})} \right] \right\}.$$

$$(4.2)$$

The conjugation of this last two identities with Theorem II enables us to deduce conditions on the function f in order to guarantee uniform convergence of the corresponding Fourier series $S_q[f]$. In its statement, we will consider the notation

$$L_q^{\infty}[-1,1] = \left\{ f : \sup\left\{ \left| f\left(\pm q^{n-1}\right) \right| : n \in \mathbb{N} \right\} < \infty \right\}$$

and the following definition:

Definition 4.1 If two constants M and λ exist such that

$$\left| f(\pm q^{n-1}) - f(\pm q^n) \right| \le M q^{\lambda n}, \quad n = 0, 1, 2, \dots,$$
 (4.3)

then the function f is said to be q-linear Hölder of order λ .

Theorem 1. If $f \in L_q^{\infty}[-1,1]$ is a q-linear Hölder function of order $\lambda > \frac{1}{2}$ and satisfies $f(0^+) = f(0^-)$ then, at least for $0 < q \leq (1/50)^{1/49}$, the corresponding q-Fourier series $S_q[f]$ converges uniformly to f on the set of points $V_q = \{\pm q^{n-1} : n \in \mathbb{N}\}$.

Proof: From (3.2) and (4.1) one have

$$\int_{-1}^{1} f(t) C_q\left(q^{\frac{1}{2}}\omega_k t\right) d_q t = \mu_k a_k(f) = -\frac{1-q}{q^{1/2}\omega_k} \int_{-1}^{1} S_q\left(q\omega_k t\right) \frac{\delta f\left(q^{\frac{1}{2}}t\right)}{\delta t} d_q t \,.$$
(4.4)

Similarly, from (3.3) and (4.2),

$$\int_{-1}^{1} f(t) S_q(q\omega_k t) d_q t = q^{-1/2} \mu_k b_k(f) = \frac{q^{-1}}{q\omega_k} \left\{ q^{\frac{1}{2}} \left[f(q^{-1}) - f(-q^{-1}) \right] C_q(q^{\frac{1}{2}} \omega_k) - \int_{-1}^{1} C_q(q^{\frac{1}{2}} \omega_k t) \frac{\delta f(q^{-\frac{1}{2}} t)}{\delta t} d_q t \right\}.$$
(4.5)

By Cauchy-Schwarz inequality we have

$$\left| \int_{-1}^{1} S_q\left(q\omega_k t\right) \frac{\delta f\left(q^{\frac{1}{2}}t\right)}{\delta t} d_q t \right| \leq \left(\int_{-1}^{1} S_q^2\left(q\omega_k t\right) d_q t \right)^{\frac{1}{2}} \left(\int_{-1}^{1} \left(\frac{\delta f\left(q^{\frac{1}{2}}t\right)}{\delta t} \right)^2 d_q t \right)^{\frac{1}{2}}$$

$$\tag{4.6}$$

and

$$\left| \int_{-1}^{1} C_{q} \left(q^{\frac{1}{2}} \omega_{k} t \right) \frac{\delta f\left(q^{-\frac{1}{2}} t \right)}{\delta t} d_{q} t \right| \leq \left(\int_{-1}^{1} C_{q}^{2} \left(q^{\frac{1}{2}} \omega_{k} t \right) d_{q} t \right)^{\frac{1}{2}} \left(\int_{-1}^{1} \left(\frac{\delta f\left(q^{-\frac{1}{2}} t \right)}{\delta t} \right)^{2} d_{q} t \right)^{\frac{1}{2}}$$

$$(4.7)$$

Using the orthogonality relations of Theorem B we may write

$$q^{\frac{1}{2}} \int_{-1}^{1} S_q^2 \left(q \omega_k t \right) d_q t = \int_{-1}^{1} C_q^2 \left(q^{\frac{1}{2}} \omega_k t \right) d_q t = \mu_k = (1 - q) C_q \left(q^{\frac{1}{2}} \omega_k \right) S_q'(\omega_k) \,,$$

thus (4.6) and (4.7) become, respectively,

$$\left| \int_{-1}^{1} S_{q} \left(q \omega_{k} t \right) \frac{\delta f \left(q^{\frac{1}{2}} t \right)}{\delta t} d_{q} t \right| \leq q^{-\frac{1}{4}} (1-q)^{\frac{1}{2}} \left(C_{q} \left(q^{\frac{1}{2}} \omega_{k} \right) S_{q}'(\omega_{k}) \right)^{\frac{1}{2}} \left(\int_{-1}^{1} \left(\frac{\delta f \left(q^{\frac{1}{2}} t \right)}{\delta t} \right)^{2} d_{q} t \right)^{1/2}$$

$$(4.8)$$

and

$$\left| \int_{-1}^{1} C_q \left(q^{\frac{1}{2}} \omega_k t \right) \frac{\delta f \left(q^{-\frac{1}{2}} t \right)}{\delta t} d_q t \right| \leq (1-q)^{\frac{1}{2}} \left(C_q \left(q^{\frac{1}{2}} \omega_k \right) S_q'(\omega_k) \right)^{\frac{1}{2}} \left(\int_{-1}^{1} \left(\frac{\delta f \left(q^{-\frac{1}{2}} t \right)}{\delta t} \right)^2 d_q t \right)^{\frac{1}{2}} .$$

$$(4.9)$$

Now, using the corresponding definitions of the q-integral and of the operator δ one finds that

$$\int_{-1}^{1} \left(\frac{\delta f(q^{\frac{1}{2}}t)}{\delta t} \right)^{2} d_{q}t = (1-q) \sum_{n=0}^{\infty} \left\{ \left[f(q^{n}) - f(q^{n+1}) \right]^{2} + \left[f(-q^{n}) - f(-q^{n+1}) \right]^{2} \right\} q^{-n}$$

hence, since f is q-linear Hölder of order $\lambda > \frac{1}{2}$, by (4.3),

$$\int_{-1}^{1} \left(\frac{\delta f(q^{\frac{1}{2}}t)}{\delta t} \right)^2 d_q t \le 2M^2 (1-q) \sum_{n=0}^{\infty} q^{(2\lambda-1)n} = \frac{2(1-q)M^2}{1-q^{2\lambda-1}}.$$
 (4.10)

In a similar way we obtain

$$\int_{-1}^{1} \left(\frac{\delta f(q^{-\frac{1}{2}}t)}{\delta t} \right)^2 d_q t \le \frac{2(1-q)M^2}{1-q^{2\lambda-1}}.$$
(4.11)

Thus, (4.8) and (4.9) become, respectively,

$$\left| \int_{-1}^{1} S_q(q\omega_k t) \frac{\delta f(q^{\frac{1}{2}}t)}{\delta t} d_q t \right| \leq \frac{\sqrt{2}q^{-\frac{1}{4}}(1-q)M}{\sqrt{1-q^{2\lambda-1}}} \left(C_q\left(q^{\frac{1}{2}}\omega_k\right) S_q'(\omega_k) \right)^{\frac{1}{2}}$$
(4.12)

and

$$\left| \int_{-1}^{1} C_q\left(q^{\frac{1}{2}}\omega_k t\right) \frac{\delta f\left(q^{-\frac{1}{2}}t\right)}{\delta t} d_q t \right| \leq \frac{\sqrt{2}(1-q)M}{\sqrt{1-q^{2\lambda-1}}} \left(C_q\left(q^{\frac{1}{2}}\omega_k\right) S_q'(\omega_k) \right)^{\frac{1}{2}}.$$

$$(4.13)$$

Finally, using (4.12) and (4.13) in (4.4) and (4.5), respectively, by Theorems A, E, F and identity (2.4), as well as Lemma 1, one concludes that the conditions of Theorem H are fulfilled with, for instance, c = 3/2, thus the

q-Fourier series (3.1), at least for $0 < q \leq (1/50)^{1/49}$, converges uniformly on the set $V_q = \{\pm q^{n-1} : n \in \mathbb{N}\}$, hence, by Theorem I, under the same restriction on q,

$$S_q[f](x) = f(x) , \quad \forall x \in V_q = \left\{ \pm q^{n-1} : n \in \mathbb{N} \right\} .$$

A simple analysis of the previous theorem shows immediately that the behavior of the function f at the origin is crucial to study the convergence of the q-Fourier series $S_q[f]$. Consider, then, the following concept:

Definition 4.2 A function f is said to be almost q-linear Hölder of order λ if two constants M, λ and a positive integer n_0 exist such that

$$\left| f\left(\pm q^{n-1} \right) - f\left(\pm q^n \right) \right| \le M q^{\lambda n} \tag{4.14}$$

holds for every $n \ge n_0$.

Obviously that every *q*-linear Hölder function of order λ is almost *q*-linear Hölder function of order λ .

Corollary 1. If a function $f \in L_q^{\infty}[-1,1]$ is almost q-linear Hölder of order $\lambda > \frac{1}{2}$ and satisfies $f(0^+) = f(0^-)$ then, at least for $0 < q \le (1/50)^{1/49}$, the corresponding q-Fourier series $S_q[f]$ converges uniformly to f on the set of points $V_q = \{\pm q^{n-1} : n \in \mathbb{N}\}$.

Proof: By hypothesis, f is almost q-linear Hölder of order $\lambda > 1/2$, i.e., it satisfies (4.14). Then the relations (4.10) and (4.11)) now become

$$\int_{-1}^{1} \left(\frac{\delta f\left(q^{\frac{1}{2}}t\right)}{\delta t} \right)^2 d_q t \le \frac{2(1-q)M_1^2 q^{n_0}}{1-q^{2\lambda-1}}$$

and

$$\int_{-1}^{1} \left(\frac{\delta f(q^{-\frac{1}{2}}t)}{\delta t} \right)^2 d_q t \le \frac{2(1-q)M_2^2 q^{n_0}}{1-q^{2\lambda-1}},$$

respectively, where M_1 and M_2 are constants. Therefore, using the above inequalities in formulas (4.8) and (4.9) we get two new inequalities that differ from (4.12) and (4.13) only by a constant in the corresponding right hand side. Hence, the conclusion on the uniform convergence follows.

Corollary 2. If $f \in L_q^{\infty}[-1,1]$ satisfies $f(0^+) = f(0^-)$ and there exists a neighborhood of the origin where the function f is continuous and piecewise smooth then, at least for $0 < q \leq (1/50)^{1/49}$, the corresponding q-Fourier series $S_q[f]$ converges uniformly to f on the set of points $V_q = \{\pm q^{n-1} : n \in \mathbb{N}\}$.

Proof: It's just a consequence of the fact that a function f that is continuous and piecewise smooth at any neighborhood of the origin satisfies a Lipschitz condition [18, page 204]. Thus, it satisfies a Hölder condition of order 1 on that neighborhood and so, by Corollary 1, the uniform convergence follows.

5. Convergence on and outside the q-linear grid

The convergence of the basic Fourier series (3.1)-(3.4) always refer to the discrete set of the points of the *q*-linear grid $V_q = \{\pm q^{n-1} : n \in \mathbb{N}\}$. Two important questions arise at this moment:

- The above mentioned q-Fourier series also converges outside the points of the q-linear grid?
- In that case, to what function it converges?

Next theorem will give a positive answer to both questions.

Theorem 2. Let $f \in L_q^{\infty}[-1,1]$ and suppose that $c \in \mathbb{R}^+$ exists such that, as $k \to \infty$,

$$\int_{-1}^{1} f(t) C_q \left(q^{\frac{1}{2}} \omega_k t \right) d_q t = \mathcal{O} \left(q^{(k+c)^2} \right) , \quad \int_{-1}^{1} f(t) S_q(q \omega_k t) d_q t = \mathcal{O} \left(q^{(k+c-\frac{1}{2})^2} \right).$$
(5.1)

If f is analytic inside $C_{\delta} = \{z \in \mathbb{C} : |z| < \delta\}$, where δ is a positive quantity such that $0 < \delta \leq q^{-\sigma}$ with $0 < \sigma < c$, then, at least for $0 < q \leq \sqrt[50]{1/51}$,

$$f(z) = S_q[f](z) \quad in \quad C_\delta = \{ z \in \mathbb{C} : |z| < \delta \} .$$

$$(5.2)$$

Proof: We first notice that

$$C_q\left(q^{\frac{1}{2}}\omega_k z\right) = \sum_{n=0}^{\infty} \frac{(-1)^n q^{n(n-1)}}{(q^2, q; q^2)_n} q^{\frac{3}{2}n} \omega_k^{2n} z^{2n}$$

and

$$S_q(q\omega_k z) = \frac{q\omega_k z}{1-q} \sum_{n=0}^{\infty} \frac{(-1)^n q^{n(n-1)}}{(q^2, q^3; q^2)_n} q^{\frac{7}{2}n} \omega_k^{2n} z^{2n}$$

hence, for sufficiently large values of $\,k\,,$ by Theorem A, whenever $\,|z|\,\leq\,q^{-\sigma}\,,$

$$\left| C_{q} \left(q^{\frac{1}{2}} \omega_{k} z \right) \right| \leq \sum_{n=0}^{\infty} \frac{q^{n(n-1)}}{(q^{2}, q; q^{2})_{n}} q^{2n(1-k+\epsilon_{k})} \left(q^{-\sigma} \right)^{2n} \\ \leq \frac{q^{-\left(k-\frac{1}{2}+\sigma-\epsilon_{k}\right)^{2}}}{(q; q)_{\infty}} \sum_{n=0}^{\infty} q^{\left(n-k+\frac{1}{2}-\sigma+\epsilon_{k}\right)^{2}}$$
(5.3)

and

$$|S_{q}(q\omega_{k}z)| \leq \frac{q\omega_{k}z}{1-q} \sum_{n=0}^{\infty} \frac{q^{n(n-1)}}{(q^{2},q^{3};q^{2})_{n}} q^{2n(2-k+\epsilon_{k})} (q^{-\sigma})^{2n} \\ \leq \frac{q^{\frac{5}{4}-k+\epsilon_{k}-(k-\frac{3}{2}+\sigma-\epsilon_{k})^{2}}}{(q;q)_{\infty}} \sum_{n=0}^{\infty} q^{(n-k+\frac{3}{2}-\sigma+\epsilon_{k})^{2}}.$$
(5.4)

An easy calculation shows that

$$\sum_{n=0}^{\infty} q^{\left(n-k+\frac{1}{2}+\epsilon_{k}-\sigma\right)^{2}} = \sum_{n=0}^{k-1} q^{\left(n-k+\frac{1}{2}-\sigma+\epsilon_{k}\right)^{2}} + \sum_{n=k}^{\infty} q^{\left(n-k+\frac{1}{2}-\sigma+\epsilon_{k}\right)^{2}} \\ = \sum_{m=0}^{k-1} q^{\left(m+\frac{1}{2}+\sigma-\epsilon_{k}\right)^{2}} + \sum_{m=0}^{\infty} q^{\left(m+\frac{1}{2}-\sigma+\epsilon_{k}\right)^{2}}.$$

thus, if

$$|\sigma| < \frac{1}{2},$$

for sufficiently large values of $\,k\,,$

$$\sum_{n=0}^{\infty} q^{\left(n-k+\frac{1}{2}+\epsilon_k-\sigma\right)^2} < \sum_{m=0}^{k-1} q^{m^2} + \sum_{m=0}^{\infty} q^{m^2} < 2\sum_{m=0}^{\infty} q^m = \frac{2}{1-q}.$$

In a similar way, for a given $p \in \mathbb{N}_0$, if

$$|\sigma| < \frac{1}{2} + p \tag{5.5}$$

then, for sufficiently large values of $\,k\,,$

$$\sum_{n=0}^{\infty} q^{\left(n-k+\frac{1}{2}+\epsilon_k-\sigma\right)^2} < 2p + \frac{2}{1-q}.$$
 (5.6)

With the same reasoning we get, again for sufficiently large values of k,

$$\sum_{n=0}^{\infty} q^{\left(n-k+\frac{3}{2}+\epsilon_k-\sigma\right)^2} < 2p + \frac{2}{1-q}.$$
(5.7)

Hence, by (5.3), (5.6) and (5.4), (5.7), we may write, respectively, for k large enough,

$$\left| C_q \left(q^{\frac{1}{2}} \omega_k z \right) \right| \le \frac{2p(1-q)+2}{(q;q)_{\infty}} q^{-\left(k-\frac{1}{2}+\sigma-\epsilon_k\right)^2}$$
(5.8)

and

$$|S_q(q\omega_k z)| \le \frac{2p(1-q)+2}{(q;q)_{\infty}} q^{\frac{5}{4}-k+\epsilon_k - (k-\frac{3}{2}+\sigma-\epsilon_k)^2}.$$
 (5.9)

This way, for k large enough, using (3.2) and (3.4), Theorems E and F, relation (2.4) and inequality (5.8), at least for $0 < q \leq \sqrt[50]{1/51}$,

$$\left|a_k C_q\left(q^{\frac{1}{2}}\omega_k z\right)\right| \le \frac{2p(1-q)+2}{(1-q)^2(q;q)_{\infty}^2} \left|\int_{-1}^{1} f(t) C_q\left(q^{\frac{1}{2}}\omega_k t\right) d_q t\right| \frac{q^{-\left(k-\frac{1}{2}+\sigma-\epsilon_k\right)^2-k+\frac{1}{4}+\epsilon_k}}{|S_k|}$$

By hypothesis (5.1), we may suppose that $c_1 \in \mathbb{R}^+$ and $M_1 > 0$ exist such that, for k large enough,

$$\left| \int_{-1}^{1} f(t) C_q \left(q^{\frac{1}{2}} \omega_k t \right) d_q t \right| \le M_1 q^{(k+c_1)^2} \,. \tag{5.10}$$

In that case we have

$$\left|a_{k}C_{q}\left(q^{\frac{1}{2}}\omega_{k}z\right)\right| \leq 2M_{1}\frac{p(1-q)+1}{(1-q)^{2}(q;q)_{\infty}^{2}}\frac{q^{(k+\frac{c_{1}+\sigma}{2}-\frac{1}{4}-\frac{\epsilon_{k}}{2})(1+2(c_{1}-\sigma)+2\epsilon_{k})-k+\frac{1}{4}+\epsilon_{k}}}{|S_{k}|}$$

hence, if $1+2(c_1-\sigma) > 1$, i.e., if $\sigma < c_1$ then, taking into account Theorem A and (2.5), and the Theorems E and F, at least for $0 < q \leq \sqrt[50]{1/51}$,

$$\left|a_k C_q\left(q^{\frac{1}{2}}\omega_k z\right)\right| \le A_1 q^{\theta_1 k} \quad , \tag{5.11}$$

where A_1 and θ_1 are positive constants.

Analogously, for k large enough, (3.3) and (3.4), Theorems E and F, relation (2.4) and inequality (5.9),

$$|b_k S_q(q\omega_k z)| \le \frac{2p(1-q)+2}{(1-q)^2(q;q)_\infty^2} \left| \int_{-1}^1 f(t) S_q(q\omega_k t) \, d_q t \right| \frac{q^{-\left(k-\frac{3}{2}+\sigma-\epsilon_k\right)^2 - 2k+2+2\epsilon_k}}{|S_k|}$$

so, again by hypothesis (5.1), if we admit that $c_2 \in \mathbb{R}^+$ and $M_2 > 0$ exist such that

$$\left| \int_{-1}^{1} f(t) S_q(q\omega_k t) \, d_q t \right| \le M_2 q^{(k+c_2-\frac{1}{2})^2}, \tag{5.12}$$

then,

$$|b_k S_q(q\omega_k z)| \le 2M_2 \frac{p(1-q)+1}{(1-q)^2(q;q)_\infty^2} \frac{q^{(k+\frac{c_2+\sigma}{2}-\frac{3}{4}-\frac{\epsilon_k}{2})(2+2(c_2-\sigma)+2\epsilon_k)-2k+2+2\epsilon_k}}{|S_k|}$$

Similarly, if $2+2(c_2-\sigma) > 2$, i.e., if $\sigma < c_2$ then, at least for q such that $0 < q \leq \sqrt[50]{1/51}$,

$$|b_k s_q \left(q \omega_k z \right)| \le A_2 q^{\theta_2 k}, \qquad (5.13)$$

being A_2 and θ_2 positive constants.

We remark that in (5.5) we may choose p sufficiently large in order that one haves

$$-\frac{1}{2} - p < 0 < \sigma < \min\{c_1, c_2\} \le \frac{1}{2} + p, \qquad (5.14)$$

thus, replacing c_1 and c_2 from (5.10) and (5.12) by $c = \min\{c_1, c_2\}$, respectively, we conclude, through (5.11) and (5.13), that the conditions (5.1) guaranty the uniform convergence of the *q*-Fourier series (3.1) in $C_{q^{-\sigma}} = \{z \in \mathbb{C} : |z| < q^{-\sigma}\}$ if σ satisfies (5.14). This way, under this condition on σ , we have, by Theorem H,

$$f(x) = S_q[f](x)$$
 whenever $x \in V_q$,

since $V_q \subset C_{q^{-\sigma}}$, where $V_q = \{q^{n-1} : n \in \mathbb{N}\}$ is the corresponding set of Theorem I and $C_{q^{-\sigma}}$ is the interior of the circle of the complex plane with center at the origin and radius $q^{-\sigma}$.

On the other side, again by the uniform convergence of the q-Fourier series $S_q[f](x)$ on $C_{q^{-\sigma}}$, since the terms of the mentioned q-Fourier series are entire functions we then have that the q-series is analytic inside $C_{q^{-\sigma}}$. From the continuity of both members of the above equality it results $f(0) = S_q[f](0)$. Thus, if f is analytic inside $C_{\delta} = \{z \in \mathbb{C} : |z| < \delta\}$, where $0 < \delta \leq q^{-\sigma}$, then f(z) and $S_q[f](z)$ are analytic inside C_{δ} and coincide in a set with a limit point in the interior of such circle; by the principle of analytic continuation [11, Corollary 4.4.1], the above mentioned functions must coincide in the whole set C_{δ} , which proves (5.2).

6. Examples

In this section we will present four examples of q-Fourier series and study the corresponding questions about convergence.

Example 1: g(x) = |x|

The basic Fourier series of the absolute value function is given [10] by

$$S_q[g](x) = \frac{1}{1+q} - 2q^{-\frac{1}{2}}(1-q)\sum_{k=1}^{\infty} \frac{1 - C_q\left(q^{\frac{1}{2}}\omega_k\right)}{\omega_k^2 C_q\left(q^{\frac{1}{2}}\omega_k\right)S'_q(\omega_k)}C_q\left(q^{\frac{1}{2}}\omega_kx\right) \ .$$

Conditions of Theorem II are fulfilled [10] with, for instance, c = 2. Thus, at least for $0 < q \leq (1/50)^{1/49}$, the *q*-Fourier series of the function f(x) = |x| converges uniformly on the set $V_q = \{ \pm q^{n-1} : n \in \mathbb{N} \}$ so, under the same restrictions on q, by Theorem I,

$$|x| = \frac{1}{1+q} - 2q^{-\frac{1}{2}}(1-q)\sum_{k=1}^{\infty} \frac{1 - C_q\left(q^{\frac{1}{2}}\omega_k\right)}{\omega_k^2 C_q\left(q^{\frac{1}{2}}\omega_k\right)S_q'(\omega_k)}C_q\left(q^{\frac{1}{2}}\omega_kx\right)$$

for all $x \in V_q = \left\{ \pm q^{n-1} : n \in \mathbb{N} \right\}$.

Now, we may obtain the same conclusion in a easier way through Theorem 1, by simple arguing that the absolute value function

- is bounded on $V_q = \left\{ \pm q^{n-1} : n \in \mathbb{N} \right\}$,
- is continuous at the origin,
- \bullet and satisfies the *q*-linear Hölder condition of order 1 since

$$\left| \left| \pm q^{n-1} \right| - \left| \pm q^n \right| \right| \le (1-q)q^{n-1}$$

Thus, by Theorem 1, the same conclusion over the uniform convergence follows. Notice that Corollaries 1 or 2 also apply.

Given a function f, it is important to point out that Theorem 1 or its Corollaries 1 and 2, enable one to decide over the uniform convergence of the q-Fourier series $S_q[f]$ without the need to compute the corresponding coefficients: only requires a short study of the function itself.

Example 2:
$$h(x) = \begin{cases} -1 & \text{if } x \le 0\\ 1 & \text{if } x > 0 \end{cases}$$

In this example, the conditions of Theorem H were not satisfied [10, Remark 3]. It was shown, using Theorem G, that the q-Fourier series

$$S_q[h](x) = 2\sum_{k=1}^{\infty} \frac{1 - C_q\left(q^{\frac{1}{2}}\omega_k\right)}{\omega_k C_q\left(q^{\frac{1}{2}}\omega_k\right)S'_q(\omega_k)} S_q(q\omega_k x)$$

is (pointwise) convergent at each (fixed) point $x \in V_q$. Theorem 1 doesn't apply too (neither its corollaries) since $h(0^+) \neq h(0^-)$.

Example 3:
$$H^{(a)}(x) = \begin{cases} -1 & \text{se } x \le a \\ 1 & \text{se } x > a \end{cases}$$
; $(a > 0)$

Once 0 < q < 1 is fixed, denote by n_a the least positive integer j such that $q^j < a$, i.e., $n_a = \lfloor \log_q a \rfloor + 1$. Then

$$a_0 = -2q^{n_a} \tag{6.1}$$

and, for k = 1, 2, 3, ...,

$$a_{k} = \frac{2(1-q)}{q^{-\frac{1}{2}+n_{a}}\omega_{k}^{2}\mu_{k}} \left[C_{q} \left(q^{\frac{1}{2}+n_{a}}\omega_{k} \right) - C_{q} \left(q^{-\frac{1}{2}+n_{a}}\omega_{k} \right) \right]$$

By Theorem D,

$$C_q\left(q^{\frac{1}{2}+n_a}\omega_k\right) - C_q\left(q^{-\frac{1}{2}+n_a}\omega_k\right) = q^{-\frac{1}{2}+n_a}\omega_k S_q\left(q^{n_a}\omega_k\right)$$

thus

$$a_k = -\frac{2(1-q)S_q\left(q^{n_a}\omega_k\right)}{\omega_k\mu_k} = -\frac{2}{\omega_k}\frac{S_q\left(q^{n_a}\omega_k\right)}{C_q\left(q^{\frac{1}{2}}\omega_k\right)S'_q(\omega_k)}.$$
(6.2)

For k = 1, 2, 3, ... we have

$$b_k = -\frac{2(1-q)}{\omega_k^2 \mu_k} \left[\frac{S_q \left(q^{1+n_a} \omega_k \right) - S_q \left(q^{n_a} \omega_k \right)}{q^{n_a}} - S_q (q \omega_k) \right] \,.$$

By Theorem D,

$$S_q\left(q^{1+n_a}\omega_k\right) - S_q\left(q^{n_a}\omega_k\right) = -q^{n_a}\,\omega_k\,C_q\left(q^{\frac{1}{2}+n_a}\omega_k\right)\,,$$

so, by (2.4),

$$b_{k} = \frac{2(1-q)}{\omega_{k}\mu_{k}} \left[C_{q} \left(q^{\frac{1}{2}+n_{a}} \omega_{k} \right) - C_{q} \left(q^{\frac{1}{2}} \omega_{k} \right) \right] = \frac{2}{\omega_{k}} \frac{C_{q} \left(q^{\frac{1}{2}+n_{a}} \omega_{k} \right) - C_{q} \left(q^{\frac{1}{2}} \omega_{k} \right)}{C_{q} \left(q^{\frac{1}{2}} \omega_{k} \right) S_{q}'(\omega_{k})}.$$
(6.3)

hence, substituting (6.1), (6.2) and (6.3) into (3.1) it becomes

$$S_{q}[H^{(a)}](x) = -q^{n_{a}} - 2\sum_{k=1}^{\infty} \frac{S_{q}\left(q^{n_{a}}\omega_{k}\right)C_{q}\left(q^{\frac{1}{2}}\omega_{k}x\right) + \left[C_{q}\left(q^{\frac{1}{2}}\omega_{k}\right) - C_{q}\left(q^{\frac{1}{2}+n_{a}}\omega_{k}\right)\right]S_{q}(q\omega_{k}x)}{\omega_{k}C_{q}\left(q^{\frac{1}{2}}\omega_{k}\right)S_{q}'(\omega_{k})}.$$

$$(6.4)$$

We notice that *Example 2* follows from *Example 4* by computing the limit $n_a \to \infty$, i.e., when $a \to 0$. Again by Theorem D,

$$S_q(q^{n_a}\omega_k) = S_q(q\omega_k) \sum_{j=0}^{n_a-1} (-1)^j q^{j(j+\frac{1}{2})} \frac{\left(q^{n_a-j};q\right)_{2j+1}}{(q;q)_{2j+1}} \omega_k^{2j}$$

and

$$C_q(q^{\frac{1}{2}+n_a}\omega_k) = C_q(q^{\frac{1}{2}}\omega_k) \sum_{j=0}^{n_a} (-1)^j q^{j(j-\frac{1}{2})} \frac{\left(q^{1+n_a-j}; q\right)_{2j}}{(q;q)_{2j}} \omega_k^{2j}$$

thus, since $S_q(q\omega_k) = -\omega_k C_q(q^{1/2}\omega_k)$, for $k = 1, 2, 3, \dots$,

$$\int_{-1}^{1} H^{(a)}(x) C_q(q^{\frac{1}{2}}\omega_k x) d_q t = 2(1-q) C_q\left(q^{\frac{1}{2}}\omega_k\right) \sum_{j=0}^{n_a-1} (-1)^j q^{j(j+\frac{1}{2})} \frac{\left(q^{n_a-j};q\right)_{2j+1}}{(q;q)_{2j+1}} \omega_k^{2j}$$

and

$$\int_{-1}^{1} H^{(a)}(x) S_q(q\omega_k x) d_q t = 2q^{-\frac{1}{2}} (1-q) \frac{c_q\left(q^{\frac{1}{2}}\omega_k\right)}{\omega_k} \times \left[\sum_{j=0}^{n_a} (-1)^j q^{j(j-\frac{1}{2})} \frac{\left(q^{1+n_a-j}; q\right)_{2j}}{(q;q)_{2j}} \omega_k^{2j} - 1\right].$$

For each fixed a > 0, at least for $0 < q \leq (1/50)^{1/49}$, the *q*-Fourier series (6.4) converges uniformly on the set $V_q = \{ \pm q^{n-1} : n \in \mathbb{N} \}$: in fact, after

some computations, one verifies that the conditions of Theorem II are satisfied with, for instance, c = 2, hence, whenever $x \in V_q$ and under the above restriction on q, we may write by Theorem I,

$$H^{(a)}(x) \equiv -q^{n_a} - 2\sum_{k=1}^{\infty} \frac{S_q\left(q^{n_a}\omega_k\right)C_q\left(q^{\frac{1}{2}}\omega_kx\right) + \left[C_q\left(q^{\frac{1}{2}}\omega_k\right) - C_q\left(q^{\frac{1}{2}+n_a}\omega_k\right)\right]S_q(q\omega_kx)}{\omega_k C_q\left(q^{\frac{1}{2}}\omega_k\right)S'_q(\omega_k)}.$$
(6.5)

Another approach is the following: one easily check that $H^{(a)} \in L_q^{\infty}[-1, 1]$, $H^{(a)}(0^+) = 0 = H^{(a)}(0^-)$ and $H^{(a)}$ is almost q-linear Hölder of order bigger then $\frac{1}{2}$ since

$$\left| H^{(a)}(\pm q^{n-1}) - H^{(a)}(\pm q^n) \right| = 0, \quad n \ge n_a + 1 = \left[\log_q a \right] + 2$$

By Corollary 1, the *q*-Fourier series $S_q[H^{(a)}]$ converges uniformly on the set V_q , thus (6.5) follows.

Example 4: $f(x) = x^m$

In [10, Proposition 6.1] it was presented the Fourier expansion of the function $f(x) = x^m$, m = 0, 1, 2, ..., in terms of the functions C_q and S_q :

$$S_{q}[x^{m}](x) = \frac{1 + (-1)^{m}}{2} \frac{1 - q}{1 - q^{m+1}} +$$

$$(q;q)_{m} \sum_{k=1}^{\infty} \left\{ \frac{\frac{1 + (-1)^{m}}{S_{q}'(\omega_{k})}}{\sum_{i=0}^{m-2}} \frac{(-1)^{i}q^{(i+1)(i-m+\frac{1}{2})}}{\omega_{k}^{2i+2}(q;q)_{m-1-2i}} C_{q}(q^{\frac{1}{2}}\omega_{k}x) +$$

$$q^{\frac{1}{2}} \frac{(-1) + (-1)^{m}}{S_{q}'(\omega_{k})} \sum_{i=0}^{m-1} \frac{(-1)^{i}q^{(i+1)(i-m-\frac{1}{2})}}{\omega_{k}^{2i+1}(q;q)_{m-2i}} S_{q}(q\omega_{k}x) \right\},$$

where [x] denotes the greatest integer which does not exceed x and we will take as zero a sum where the superior index is less than the inferior one. Furthermore, it was proved that the conditions of Theorem H are fulfilled with , for instance, c = 2. Thus, at least for $0 < q \leq (1/50)^{1/49}$, the q-Fourier series of the function $f(x) = x^m$ converges uniformly on the set $V_q = \left\{ \pm q^{n-1} : n \in \mathbb{N} \right\}, \text{ so, by Theorem I,}$ $x^m = S_q[x^m](x) \text{ whenever } x \in V_q = \left\{ \pm q^{n-1} : n \in \mathbb{N} \right\}.$

We notice that the conditions of Theorem 1 are trivial checked when $f(x) = x^m$.

Now, since f satisfies the conditions of Theorem 2 with, for instance, c = 1 and f is an entire function then, by Theorem 2,

$$S_q[x^m](x) = x^m , \quad \forall x \in C_\delta = \{ z \in \mathbb{C} : |z| < \delta \}$$

where $0 < \delta < q^{-\sigma}$ and $0 < \sigma < 1$.

For some of the functions considered in the examples, fixing, for instance, q = 0.7 and considering a finite number of terms of the corresponding q-Fourier series, we obtain the graphics of Figure 1. The corresponding right graphic illustrates the attainment of Theorem 2. Notice that in this case the function and the q-Fourier series coincides not only at the points $(0.7)^n$, $n = 0, 1, 2, \ldots$, but also in a neighborhood of the origin.

FIGURE 1

Concluding remarks. We notice that Theorem 1 or Corollaries 1 and 2 are q-analogs of the corresponding classical theorems on uniform convergence for trigonometric Fourier series. See, for instance, Theorem 1 of [18, page 204] or Theorem 55 of [15, page 41].

Mathematica[©] suggests that Theorems (4.1) and (5.1) remain valid for 0 < q < 1. It's an open question and to prove it a different technic is required.

Acknowledgements. Discussions with Prof. R. Álvarez-Nodarse, J. Petronilho and L. D. Abreu are kindly acknowledged. This research was partially supported by CMUC from the University of Coimbra.

References

- Abreu L.D., A q-Sampling theorem related to the q-Hankel transform, Proc. Amer. Math. Soc., 133, (4), (2005), 1197-1203
- [2] Abreu L.D., Sampling theory associated with q-difference equations of the Sturm-Liouville type, J. Phys. A: Math Gen., 38, (2005), 10311-10319
- [3] Abreu L.D., Functions q-orthogonal with respect to their own zeros, Proc. Amer. Math. Soc. 134, (2006), 2695-2701
- [4] Abreu L.D., Bustoz J., On the completeness of sets of q-Bessel functions $J_{\nu}^{(3)}(x;q)$, in Theory and Applications of Special Functions, volume dedicated to Mizan Rahman, Dev. Math., 13, Springer, New York, (2005), 29-38
- [5] Abreu L.D., Bustoz J., Cardoso J.L., The roots of The Third Jackson q-Bessel Function, Internat. J. Math. Math. Sci., Volume 2003, No. 67, (2003), 4241-4248
- [6] Annaby M.H., q-type sampling theorems, Result. Math. 44 (2003) 214-225
- [7] Annaby M.H., Mansour Z.S., Basic Sturm-Liouville problems, J. Phys. A: Math Gen., 38, (2005), 3775-3797
- [8] Bustoz J., Cardoso J.L., Basic Analog of Fourier Series on a q-Linear Grid, J. Approx. Theory, 112, (2001), 134-157
- [9] Bustoz J., Suslov S.K., Basic Analog of Fourier Series on a q-Quadratic Grid, Methods Appl. Anal., 5, (1998), 1-38
- [10] Cardoso J.L., Basic Fourier series on a q-linear grid: convergence theorems, J. Math. Anal. Appl., (2005). (On press)
- [11] Dettman J.W., Applied Complex Variables, Dover Publications Inc., New York, 1984.
- [12] Exton H., q-Hypergeometric Functions and Applications, John Wiley & Sons, 1983.
- [13] A. Fitouhi, M. M. Hamza, F. Bouzeffour, The q- j_{α} Bessel function. J. Approx. Theory 115(1), (2002), 144-166
- [14] Gasper G. and Rahman M., Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge, UK, 1990.
- [15] Hardy G.H. and Rogosinski W.W., Fourier Series, Dover Publications, Mineola, New York, 1999.
- [16] Ismail M.E.H., The zeros of basic Bessel functions, the functions $J_{\nu+ax}$ and associated orthogonal polynomials, J. Math. Anal. Appl., 86, (1982), 11-19
- [17] Ismail M.E.H., Zayed A.I., A q-analogue of the Whittaker-Shannon-Kotel'nikov sampling theorem, Proc. Amer. Math. Soc., 183, (2003), 3711-3719
- [18] Nikolsky S.M., A Course of Mathematical Analysis, MIR Publishers, Moscow, Volume 2, 1977.
- [19] Koelink H.T. and Swarttouw R.F., On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials, J. Math. Anal. Appl., 186, (1994), 690-710
- [20] Rahman M., The q-exponential functions, old and new, preprint.
- [21] Reyna J. A., Pointwise Convergence of Fourier Series, Springer. Lect. Notes Math. 1785, (2000).
- [22] Rubin R. L., A q²-Analogue for q²-Analogue Fourier Analysis, J. Math. Anal. Appl., 212, (1997) 571-582
- [23] Rubin R. L., Toeplitz matrices and classical and q-Bessel functions, J. Math. Anal. Appl., 274, (2002) 564-576
- [24] Suslov S.K., "Addition" therems for some q-exponential and q-trigonometric functions, Methods Appl. Anal., 4 (1), (1997), 11-32

J. L. CARDOSO

- [25] Suslov S.K., Some Expansions in Basic Fourier Series and Related Topics, J. Approx. Theory, 115, (2002), 289-353
- [26] Suslov S.K., An introduction to basic Fourier series. With a foreword by Mizan Rahman. Developments in Mathematics, 9, Kluwer Academic Publishers, Dordrecht, 2003.
- [27] Suslov S.K., Asymptotics of zeros of basic sine and cosine functions, J. Approx. Theory, 121, (2003), 292-335
- [28] Swarttouw R.F., The Hahn-Exton q-Bessel Function, Phd thesis, Technische Universiteit Delft, 1992.
- [29] Tuan V.K., Nashed M.Z., Stable Recovery of Analytic Functions using Basic Hypergeometric Functions, J. Comput. Anal. Appl., 3 (1), (2001), 33-51

J. L. CARDOSO

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE TRÁS-OS-MONTES E ALTO DOURO, APDO. 1013, 5001-801 VILA REAL, PORTUGAL

E-mail address: jluis@utad.pt