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1. Introduction

A periodic Jacobi matrix is a real symmetric matrix of the form

L =















a1 b1 bn

b1
. . . . . .
. . . . . . . . .

. . . . . . bn−1

bn bn−1 an















, (1.1)

where bi > 0, for i = 1, . . . , n, and all the non-mentioned entries are zero.
An extensive attention has been paid in the literature to the theory of

periodic Jacobi matrices (cf. [1, 2, 3, 8, 11]. Many problems on the spectra
of periodic Jacobi matrices arise in a remarkable variety of applications, in
pure and applied mathematics.

Ferguson [3] presented an algorithm for calculating L from some given
spectral data, based on the Lanczos algorithm as treated by Boley and Golub
[2], using a discrete version of Floquet theory. It is a typical inverse eigenvalue
problem, a problem concerned the reconstruction of a matrix from prescribed
spectral data. Recall that a Jacobi matrix is any real, symmetric tridiagonal
matrix whose next to diagonal entries are positive, [5, 6, 7]. Let J denote the
Jacobi matrix obtained by deleting from L the last row and column, with

ωJ(λ) = det(λI − J) = (λ− µ1) · · · (λ− µn−1).
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The numbers ρ1, . . . , ρn−1 defined by b1 · · · bn = −ρjb
2
ny

2
jω

′
J(µj) are called the

Floquet multipliers of L. Ferguson has shown that for given real numbers A,
B(> 0), µ1 > · · · > µn−1 and ρ1, . . . , ρn−1 such that

ρj ω
′
J(µj) < 0 , j = 1, · · · , n− 1

there exists an unique periodic Jacobi matrix L (1.1) such that

a1 + a2 + · · · + an = A and b1 · · · bn = B ,

where µi, for i = 1, · · · , n−1, are the eigenvalues of J and the ρj the Floquet
multipliers of L.

Ferguson also based his analysis on the partially characterization of periodic
Jacobi matrices by van Moerbeke. In [11], van Moerbeke had considered a
different periodic Jacobi matrix of order 2n:

Q =























a1 b1 bn

b1
. . . . . .
. . . an bn

bn a1 b1

b1
. . . . . .
. . . . . . bn−1

bn bn−1 an























,

where bk’s are real positive numbers and ak’s are any real numbers. The
spectrum of Q was given in terms of the spectrum of the difference equation

Ly(k, λ) ≡ (ak−1D
−1 + bkD

0 + akD
1)y(k, λ) = λy(k, λ) , k = 1, · · · , 2n ,

with the boundary condition y2n+i = yi, giving an analogue of Floquet theory
for the matrix Q.

Later, Andrea and Berry [1] presented some algorithms based on a con-
tinued fraction expansion for solving inverse eigenvalue problem for periodic
Jacobi matrices.

Since the spectrum of a periodic Jacobi matrix consists of a finite union of
closed intervals, so-called bands, recently E. Korotyaev and I.V. Krasovsky
[8] showed new bounds, in terms of the matrix coefficients, on the width of
the spectrum and on the total width of the gaps separating the bands. They
considered the so-called q-periodic Jacobi matrix

(Hψ)n = an−1ψn−1 + bnψn + an+1ψn+1
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on ℓ2(Z), where bn+q = bn ∈ R, an+q = an > 0, and q > 1 is the smallest
period, and they estimated the spectra based on the analysis of the quasi-
momentum. For that, they defined the Hermitian matrices

(

b1 a1 − ia2

a1 + ia2 b2

)

,

if q = 2, and










b1 a1 iaq

a1
. . . . . .
. . . . . . aq−1

−iaq aq−1 bq











,

if q > 2.
These periodic Jacobi matrices suggest a generalization. In this work we

will see a periodic Jacobi matrix as the adjacency matrix of weight cycle. We
consider some Hermitian matrices whose graph has only one cycle and we
will be concentrated on the multiplicities of the eigenvalues of such matrices.

2. The characteristic polynomial of a weighted graph

A graph G = (V , E) consists of a finite set V = V(G) whose members are
called vertices, and a set E = E(G) of 2-subset of V , whose members are
called edges. By a digraph D = (V ,A) we mean the same finite set V , and
a subset A = A(D) of V × V , whose members are called arcs. Note that an
arc is an ordered pair (i, j), whereas an edge of a graph is an unordered pair
{i, j}. We write in each context i ∼ j. A forest is a graph without cycles
and a tree is a connected forest.

Given an arc e = (i, j) of D, D\e is obtained by deleting e but not the
vertices i or j; the sub-digraph D\X, where X is a subset of vertices of D,
is obtained from D deleting the vertices X and all arcs incident in vertices
of X.

Let A = (aij) be an n×n matrix. The graph of A, G(A), is the pair (V , E),
where V = {1, . . . , n} and {i, j}, i 6= j, is an edge if and only if aij 6= 0
or aji 6= 0. Analogously the weighted digraph of A = (aij) is such (i, j) is
an arc if and only if aij 6= 0. The matrix A can be viewed as a weighted
adjacency matrix of digraph D(A) on n vertices, with loops (arcs of the type
(i, i)) allowed on the vertices.
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We denote by A(X), where X is a subset of vertices of the graph or digraph
of A, the submatrix obtained by deleting from A the rows and columns of
X.

A directed path from i1 to ir, Pi1,ir , in the digraphD is a sequence of distinct
vertices (i1, i2, . . . , ir−1, ir) such that each arc (i1, i2), . . . , (ir−1, ir) is in A(D).
We say that the length of Pi1,ir , ℓ(Pi1,ir), is r− 1. If to the path Pi1,ir we add
the arc (ir, i1), then we have a directed cycle (i1, i2, . . . , ir, i1) (of length r).
Analogously the path from i1 to ir in the graph G is a sequence of distinct
vertices (i1, i2, . . . , ir−1, ir) such that each arc {i1, i2}, . . . , {ir−1, ir} is in E(G).
If this path we add the arc {ir, i1}, then we have a cycle (i1, i2, . . . , ir, i1) of
length r.

We have a general formula for the determinant:

Theorem 2.1 ([10]). Given an n × n matrix A = (aij) and r ∈ {1, . . . , n},
let us assume that {c1, . . . , cm} is the set of all directed cycles in D(A) = D
containing the vertex r, with ℓj = ℓ(cj). Then

detA =
m

∑

k=1

(−1)ℓk+1 detA(V(ck))
∏

(i,j)∈A(ck)

aij (2.1)

where ck = (V(ck),A(ck)) and detA(V(ck)) = 1 if ck contain all vertices of
D.

The set of cycles includes the cycles of one arc (a loop), the cycles with
two arcs, (i, j, i), if aij 6= 0 and aji 6= 0, etc.

Suppose now A is Hermitian, with Theorem 2.1 we can give a general
formula for the characteristic polynomial of A,

det(λI − A) ,

which we denote by ϕA(λ):

Corollary 2.2. Given an n×n Hermitian matrix A = (aij) and i ∈ {1, . . . , n},
let us assume that {c1, . . . , cm} is the set of all cycles in G(A) = G containing
the vertex i, with ck = (k1, . . . , kℓk

, k1). Then

ϕA(λ) = (λ− aii)ϕA(i)(λ) −
∑

j∼i

|aij|2ϕA(i,j)(λ) (2.2)

−2
m

∑

k=1

Re
(

ak1k2
· · · akℓk−1kℓk

ākℓk
k1

)

ϕA(V(ck))(λ) ,
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If the graph of A has only one cycle, then we conclude the following:

Corollary 2.3. Given an n× n Hermitian matrix A = (aij) whose graph G
has only one cycle, say c = (1, . . . , ℓ, 1), if i ∈ {1, . . . , ℓ} is a vertex of c, then

ϕA(λ) = (λ−aii)ϕA(i)(λ)−
∑

j∼i

|aij|2ϕA(i,j)(λ)−2 Re (a12 · · · aℓ−1,ℓāℓ,1)ϕA(V(c))(λ) .

If G(A) has only one cycle, then we say the graph is unicycle.

Corollary 2.4. Given an n× n Hermitian matrix A = (aij) whose graph G
is a cycle, say (1, . . . , n, 1), and i ∈ {1, . . . , n}, the characteristic polynomial
of A is

ϕA(λ) = (λ− aii)ϕA(i)(λ) − |ai−1,i|2ϕA(i−1,i)(λ) (2.3)

−|ai,i+1|2ϕA(i,i+1)(λ) − 2 Re (a12 · · · an−1,nān,1) .

Corollary 2.5. Given an n× n Hermitian matrix A = (aij) whose graph G
is a path, say (1, . . . , n), and i ∈ {1, . . . , n}, the characteristic polynomial of
A is

ϕA(λ) = (λ− aii)ϕA(i)(λ) −
∑

j∼i

|aij|2ϕA(i,j)(λ) .

Let A = (aij) be a Hermitian matrix. We denote by A+ = (bij) the
symmetric matrix such that bij = |aij|.

Corollary 2.6. Given an n× n Hermitian matrix A = (aij) whose graph G
is a path, say (1, . . . , n), and i ∈ {1, . . . , n}, then

ϕA(λ) = ϕA+(λ) .

Actually, the above result is still true for any Hermitian matrix whose
graph is a tree.

3. Prior Results

The main aim of an inverse eigenvalue problem is to construct a matrix
that maintains a certain specific structure as well as some given spectral
property. For example, given distinct real numbers µ1, . . . , µn−1 and nonzero
real numbers, u1, . . . , un−1, whose squares sum to one, Ferguson [3] used
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Lanzcos algorithm to get a Jacobi matrix

J =











a1 b1

b1
. . . . . .
. . . . . . bn−2

bn−2 an−1











, (3.1)

such that u1, . . . , un−1 are the first components of a set Y1, . . . , Yn−1 of real
orthonormal eigenvectors of J associated with eigenvalues µ1, . . . , µn−1:

1: Set:
1.1: b0 = 1;
1.2: u0,j = 0, for j = 1, 2, . . . , n− 1;
1.3: u1,j = uj, for j = 1, 2, . . . , n− 1.

2: Iteration i = 1, 2, . . . , n− 2:
2.1: ai =

∑n−1
ℓ=1 µℓu

2
i,ℓ;

2.2: bi =
√

∑n−1
ℓ=1 ((µℓ − ai)ui,ℓ − bi−1ui−1,ℓ)2;

2.3: ui+1,j = ((µj − ai)ui,j − bi−1ui−1,j)/bi, for j = 1, 2, . . . , n− 1.

3: an−1 =
∑n−1

ℓ=1 µℓu
2
n−1,ℓ,

where ui,j, for j = 1, 2, . . . , n− 1, is the i-th component of Yj.
Leal Duarte [9] generalized this result to any Hermitian matrix whose graph

is a tree.
To prove this algorithm, Ferguson consider important relationships between

the eigenvalues and eigenvectors of J .
Since J is a real, symmetric matrix, J has a set of real distinct eigenvalues

µ1, . . . , µn−1 with associated orthonormal eigenvectors Y1, . . . , Yn−1. If Y is a
matrix whose j column is Yj, then

JY = Y D , where D = diag (µ1, . . . , µn−1) .

It is also known

(µI − J)−1 = Y (µI −D)−1Y T . (3.2)

Since the characteristic polynomial of J is

ωJ(λ) = det(λI − J) = (λ− µ1) · · · (λ− µn−1)

then

ω′
J(µ) =

n−1
∑

ℓ=1

n−1
∏

i(6=ℓ)=1

(µ− µℓ) =
n−1
∑

ℓ=1

ωJ(µ)

µ− µℓ

,
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and we have

ω′
J(µj) =

n−1
∏

i(6=j)=1

(µj − µi) .

Comparing the entries in row 1, column n-1 of (3.2) we obtain the identity

b1 · · · bn−2 = ω′
J(µj)u1,jun−1,j , j = 1, . . . , n− 1 . (3.3)

Ferguson also treated an inverse eigenvalue problem for periodic Jacobi
matrices. Let L be the periodic matrix as in (1.1) and J be the Jacobi matrix
obtained by deleting from L the last row and column. Let µ1, . . . , µn−1 be the
eigenvalues of J , u1, . . . , un−1 be the first components of a set Y1, . . . , Yn−1 of
real orthonormal eigenvectors of J associated with eigenvalues µ1, . . . , µn−1

and ωJ(µ) be the characteristic polynomial of J .

Definition 3.1. The Floquet multipliers ρ1, . . . , ρn−1 of L corresponding
to µ1, . . . , µn−1 are the numbers defined by the relation

b1 · · · bn = −ρjω
′
J(µj)b

2
nu

2
j , j = 1, . . . , n− 1 .

With this facts in mind, Ferguson introduced the following matrices:

Lρ =















a1 b1
1
ρ
bn

b1
. . . . . .
. . . . . . . . .

. . . . . . bn−1

ρbn bn−1 an















,

where ρ 6= 0, and he proved some interesting spectral properties of Lρ.

Theorem 3.1 ([3]). The characteristic polynomial of Lρ admits the repre-
sentation

det(λI − Lρ) = b1 · · · bn
{

∆(λ) − (ρ+
1

ρ
)

}

,

where ∆(λ), called the discriminant of Lρ, is independent of ρ. The Floquet
multipliers ρ1, · · · , ρn−1 of L corresponding to the eigenvalues µ1, . . . , µn−1 of
J satisfy the relation

(−1)j∆(µj) = (−1)j(ρj +
1

ρj

) ≥ 2 , j = 1, . . . , n− 1 .
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Furthermore, the eigenvalues λ1, . . . , λn of L, which are the roots of ∆(λ) = 2,
are real and can be ordered so that

λ1 > λ2 ≥ λ3 > λ4 ≥ λ5 > · · · .

The main important result of [3] is the following:

Theorem 3.2 ([3]). There exists a periodic Jacobi matrix (1.1) with eigen-
values λ1, . . . , λn if and only if the real numbers λ1, . . . , λn can be rearranged
such that

λ1 > λ2 ≥ λ3 > λ4 ≥ · · · .

To construct a Periodic Jacobi matrix with eigenvalues λ1, . . . , λn such that

λ1 > λ2 ≥ λ3 > λ4 ≥ · · ·

Ferguson used the following procedure: let A = λ1+ · · ·+λn, µ1 > · · · > µn−1

be real numbers and B be a positive real number such that

(−1)j∆(µj) ≥ 2 , j = 1, . . . , n− 1,

and

λ1 ≥ µ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ µn−1 ≥ λn

where ∆(λ) = 2 + 1
B
(λ− λ1) · · · (λ− λn). Consider ρ1, . . . , ρn−1 such that

∆(µj) = ρj +
1

ρj

, j = 1, . . . , n− 1.

With ωJ(µ) = (µ− µ1) · · · (µ− µn−1),

1: Set:
1.1: bn =

√

−∑n−1
k=1

B
ρkω′

J(µk)

1.2: uj = 1
bn

√

− B
ρjω

′

J (µj)
, for j = 1, . . . , n− 1.

2: Recover the Jacobi matrix J (3.1) from µi’s and ui’s.
3: Set:

3.1: bn−1 = B
b1···bn−2bn

;

3.2: an = A− (a1 + · · · + an−1).
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4. Inverse eigenvalue problem

Suppose now that A is a Hermitian matrix whose graph is exactly the cycle
C = (1, . . . , n, 1), i.e.,

A =











a1 b1 bn

b̄1
. . . . . .
. . . . . . bn−1

b̄n b̄n−1 an











, (4.1)

where aℓ’s are real numbers and bℓ’s are nonzero complex numbers.

Proposition 4.1. The eigenvalues of A defined in (4.1), λ1, . . . , λn, can be
ordered as

λ1 ≥ λ2 > λ3 ≥ λ4 > · · · , if Re(b1 · · · bn−1b̄n) < 0

or

λ1 > λ2 ≥ λ3 > λ4 ≥ · · · , if Re(b1 · · · bn−1b̄n) > 0 .

Proof : By Corollary 2.4, the characteristic polynomial of A is

ϕA(λ) = (λ−a1)ϕA(1)(λ)−|b1|2ϕA(1,2)(λ)−|bn|2ϕA(1,n)(λ)−2 Re
(

b1 · · · bn−1b̄n
)

.

If one considers the symmetric matrix

A+ =















a1 |b1| |bn|
|b1| . . . . . .

. . . . . . . . .
. . . . . . |bn−1|

|bn| |bn−1| an















,

then, again by Corollary 2.4, the characteristic polynomial of A+ is

ϕA+(λ) = (λ− a1)ϕA+(1)(λ)− |b1|2ϕA+(1,2)(λ)− |bn|2ϕA+(1,n)(λ)− 2 |b1 · · · bn| .
Hence by Corollary 2.6, ϕA+(1)(λ) = ϕA(1)(λ), ϕA+(1,2)(λ) = ϕA(1,2)(λ), ϕA+(1,n)(λ) =
ϕA(1,n)(λ), then

ϕA(λ) = ϕA+(λ) + 2|b1 · · · bn| − 2 Re(b1 · · · bn−1b̄n) .

If

∆A+(λ) = |b1 · · · bn|−1ϕA+(λ) + 2
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(the so-called discriminant of A+), then

ϕA(λ) = |b1 · · · bn|
(

∆A+(λ) − 2
Re(b1 · · · bn−1b̄n)

|b1 · · · bn|

)

.

Since |Re(b1 · · · bn−1| ≤ |b1 · · · bn−1|, then the eigenvalues of A, which are

the roots of ∆A+(λ) = 2 Re(b1···bn−1b̄n)
|b1···bn| , verify

−2 ≤ 2
Re(b1 · · · bn−1b̄n)

|b1 · · · bn|
≤ 2 .

If µ1 > · · · > µn−1 are the eigenvalues of the Jacobi matrix obtained by
deleting from A+ the last row and column, using Theorem 3.1,

(−1)j∆A+(µj) ≥ 2, j = 1, . . . , n− 1.

Consequently, the eigenvalues of A are real and can be ordered so that

λ1 ≥ λ2 > λ3 ≥ λ4 > · · · , if Re(b1 · · · bn−1b̄n) < 0

or
λ1 > λ2 ≥ λ3 > λ4 ≥ · · · , if Re(b1 · · · bn−1b̄n) > 0 ,

because the coefficient |b1 · · · bn|−1 of λn in ∆A+(λ) is positive.

We state now the main result of this section:

Theorem 4.2. There exists a Hermitian matrix A as in (4.1), with eigenval-
ues λ1, . . . , λn if and only if the (real) numbers λ1, . . . , λn can be rearranged
such that

λ1 > λ2 ≥ λ3 > λ4 ≥ · · · (4.2)

or
λ1 ≥ λ2 > λ3 ≥ λ4 > · · · . (4.3)

Proof : The necessity follows from Proposition 4.1.
¿From Theorem 3.2, if the real numbers λ1, . . . , λn verify (4.2), then we can

find such matrix. Suppose that the real numbers are under the conditions
(4.3). Set

A = λ1 + λ2 + · · · + λn.

Let us consider the real numbers µ1 > µ2 > · · · > µn−1 and B(> 0) such that

(−1)j∆(µj) ≥ 2, for j = 1, 2, . . . , n− 1,

and
λ1 ≥ µ1 ≥ λ2 ≥ µ2 ≥ · · · ,
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where

∆(λ) = −2 +
1

B
(λ− λ1) · · · (λ− λn).

Consider ρ1, . . . , ρn−1 such that

∆(µj) = −ρj −
1

ρj

, for j = 1, 2, . . . , n− 1.

With ωJ(λ) = (µ− µ1) · · · (µ− µn−1) setting

1: bn =
√

∑n−1
ℓ=1

B
ρℓω

′

J(µℓ)
;

2: uℓ = 1
bn

√

B
ρℓω

′

J(ℓ) , for ℓ = 1, 2, . . . , n− 1,

and using the Lanzcos algorithm already described, with µℓ’s and uℓ’s we can
get the Jacobi matrix (3.1) J . Finally, setting

bn−1 =
B

b1b2 . . . bn−2bn

and

an = A− (a1 + a2 + · · · + an−1),

then

T1 =



















a1 b1 bn

b1
. . . . . .
. . . . . . . . .

. . . . . . bn−2

bn−2 an−1 −bn−1

bn −bn−1 an



















is the desired matrix. In fact, let

Tρ =



















a1 b1
1
ρ
bn

b1
. . . . . .
. . . . . . . . .

. . . . . . bn−2

bn−2 an−1 −bn−1

ρbn −bn−1 an



















Since uℓ = 1
bn

√

B
ρℓω

′

J(ℓ) and B = b1 · · · bn, then

b1 · · · bn = ρℓω
′
J(µℓ)b

2
nu

2
ℓ ,
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for ℓ = 1, 2, . . . , n− 1. If Y1, . . . , Yn−1 are the set of orthonormal eigenvectors
of J , corresponding to its eigenvalues µ1, . . . , µn−1, obtained using the Lanz-
cos algorithm already described, then ui,ℓ denote the i-th component of Yℓ.
From the last equality and (3.3) we obtain

ρℓbnu1,ℓ − bn−1un−1,ℓ = 0 , ℓ = 1, . . . , n− 1.

So,

Tρℓ

(

Yℓ

0

)

= µℓ

(

Yℓ

0

)

, for ℓ = 1, . . . , n− 1.

Therefore µℓ is an eigenvalue of Tρℓ
, for ℓ = 1, 2, . . . , n− 1. Using elementary

properties of determinants, it is easy to see that d
dρ

det(λI−tρ) = b1 · · · bn(1−
1
ρ2 ). When both sides are integrated with respect to ρ, we obtain

det(λI − Tρ) = b1 · · · bn
{

∆T (λ) + (ρ+
1

ρ
)

}

.

Then

∆T (µℓ) = −ρℓ −
1

ρℓ

, for ℓ = 1, 2, . . . , n− 1.

Notice that

∆T (λ) =
1

b1 · · · bn
(

λn − Aλn−1 + · · ·
)

.

and thus the coefficients of λn and λn−1 in ∆T (λ) and ∆(λ), respectively,
are the same. Henceforth, ∆T (λ) − ∆(λ) is a polynomial of degree less than
or equal to n − 2. But ∆T (µℓ) − ∆(µℓ) = 0, for ℓ = 1, 2, . . . , n − 1, which
means that ∆T (λ) − ∆(λ) has n− 1 distinct roots. Therefore, ∆T = ∆ and
λ1, . . . , λn are the eigenvalues of T1.

Example 4.1. Given the numbers 6, 3, 1, we want to find a Hermitian matrix
(4.1) whose eigenvalues are

λ1 = 6 = λ2 > λ3 = 3 = λ4 > λ5 = 1.
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We can get with A = 19, B = 1, µ1 = 6 > µ2 = 5 > µ3 = 3, µ4 = 2 and the
above procedure described in Theorem 4.2, the matrix

















4
√

2 0 0
√

2 −
√

3√
2 4 +

√
3

2
1
2 0 0

0 1
2 4 −

√
3

2

√
2 0

0 0
√

2 4 −
√

2 +
√

3
√

2 −
√

3 0 0 −
√

2 +
√

3 3

















which eigenvalues are

λ1 = λ2 = 6 > λ3 = λ4 = 3 > λ5 = 1.

Corollary 4.3. Any eigenvalue of a Hermitian matrix of the form (4.1) has
at most multiplicity 2.

5. An unicycle case

Let us go back to real matrices and let us consider now the symmetric
matrix

P =



















a1 b1 bn

b1
. . . . . .
. . . . . . . . .

. . . an−2 bn−2 bn−1

bn−2 an−1 0
bn bn−1 0 an



















,

where bi > 0, for i = 1, . . . , n, whose graph is a cycle to which we add an
edge to no one of its vertices.

If λ1, . . . , λn are the eigenvalues of L, then we know that they are all real
and the maximum multiplicity of each is two (cf. [4]). With bi > 0, for
i = 1, . . . , n − 2, in J defined in (3.1), as a set of real distinct eigenvalues
µ1, . . . , µn−1 with associated orthonormal eigenvectors Y1, . . . , Yn−1, if Y is a
matrix whose j column is Yj, then

JY = Y D where D = diag (µ1, . . . , µn−1) .

It is also known
(µI − J)−1 = Y (µI −D)−1Y T .

By comparing the entries in row 1 column n− 2 we obtain the identity

b1 · · · bn−3(µj − an−1) = ω′
J(µj)u1,jun−2,j , (5.1)
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for j = 1, . . . , n− 1.
Set now

Pρ =



















a1 b1
1
ρ
bn

b1
. . . . . .
. . . . . . . . .

. . . an−2 bn−2 bn−1

bn−2 an−1 0
ρbn bn−1 0 an



















,

where ρ 6= 0.

Definition 5.1. Let J be a matrix characterized by the eigenvalues µ1, . . . , µn−1

and by the set Y1, · · · , Yn−1 of real orthonormal eigenvectors associated with
µ1, . . . , µn−1, whose first components are u1, · · · , un−1. Let ωJ(µ) be the char-
acteristic polynomial of J . We define ρ1, . . . , ρn−1, the unicycle Floquet

multipliers of P , corresponding to µ1, . . . , µn−1 as

b1b2 · · · bn−3(µj − an−1)bn−1bn = −ρjω
′
J(µj)b

2
nu

2
j , (5.2)

for j = 1, . . . , n− 1.

Remark 5.1. Notice that if µj 6= an−1, since ω′
J(µj) 6= 0 and uj 6= 0, then

ρj = −b1b2 · · · bn−3(µj − an−1)bn−1

ω′
J(µj)bnu2

j

.

Otherwise, ρj = 0.

Proposition 5.1. If λ1 ≥ λ2 ≥ · · · ≥ λn are the eigenvalues of P , then

λ1 > an−1 > λn .

Proof : We know that J = P (n) has eigenvalues µ1 > · · · > µn−1 which verify
the interlacing relation

λ1 ≥ µ1 > · · · > µn−1 ≥ λn .

It is also known that J(1) (whose graph is a tree obtained from another
tree deleting and end vertex) has eigenvalues θ1 > · · · > θn−2 which verify

λ1 ≥ µ1 > θ1 > · · · > θn−2 > µn−1 ≥ λn .

Repeating this procedure and since n ≥ 4, then J(1, . . . , n− 2) = (an−1) is
itself an eigenvalue, which verifies the relation

λ1 ≥ µ1 > θ1 > · · · > an−1 > · · · > θn−2 > µn−1 ≥ λn .
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Therefore

λ1 > an−1 > λn .

Proposition 5.2. If an−1 is an eigenvalue of P , then its (algebraic) multi-
plicity is 1.

Proof : Let us calculate the characteristic of the matrix an−1I − P . From

an−1I − P =



















an−1 − a1 −b1 −bn
−b1 . . . . . .

. . . . . . . . .
. . . an−1 − an−2 −bn−2 −bn−1

−bn−2 0 0
−bn −bn−1 0 an−1 − an



















,

using elementary transformations we get


























an−1 − a1 −b1 −bn
−b1 . . . . . .

. . . . . . . . .
. . . . . . −bn−4

−bn−4 an−1 − an−3 0
0 0 −bn−2 −bn−1

−bn−2 0 0
−bn −bn−1 0 an−1 − an



























= Q .

If R is the submatrix of Q resulting from deleting row n and column n− 3,
since bi > 0, i = 1, . . . , n, then

rank(R) = n− 1.

Thus rank(an−1I−P ) ≥ n−1. But the multiplicity of an−1 is greater or equal
than 1, and therefore rank(an−1I − P ) = n − 1 and (algebraic) multiplicity
of an−1 is equal to 1.

The main result of this section states:

Theorem 5.3. The characteristic polynomial of Pρ may be represented by

det(λI − Pρ) = b1b2 · · · bn−3(λ− an−1)bn−1bn

{

ξ(λ) −
(

ρ+
1

ρ

)}

, (5.3)
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where ξ(λ) is independent of ρ. The numbers ρ1, . . . , ρn−1 of P corresponding
to the eigenvalues µ1, . . . , µn−1 of J satisfy the relation

ξ(µj) = ρj +
1

ρj

, if µj 6= an−1 . (5.4)

Moreover, if λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of P and k is the
integer satisfying λk ≥ an−1 > λk+1, then the eigenvalues of P can be ordered
as

λ1 > λ2 ≥ λ3 > · · · ≥ λk−1 > λk > λk+1 ≥ λk+2 > · · · if k is even
λ1 > λ2 ≥ λ3 > · · · > λk−1 ≥ λk > λk+1 > λk+2 ≥ · · · if k is odd.

Proof : It is straightforward to show that

d

dρ
det(λI − Pρ) = −b1b2 · · · bn−3(λ− an−1)bn−1bn

(

1 − 1

ρ2

)

,

and integrating both sides this equality in order to ρ we get (5.3) where
b1b2 · · · bn−3(λ− an−1)bn−1bn and ξ(λ) do not depend on ρ.

Let J be the matrix obtained by deleting from P the last row and column
and let u1, . . . , un−1 be the first entries of the unitary orthogonal eigenvectors
Y1, . . . , Yn−1 of J corresponding to the eigenvalues µ1, . . . , µn−1. From (5.1)
and (5.2) we get

ρj = −bn−1un−2,j

bnu1,j

, for j = 1, . . . , n− 1,

and therefore

Pρj

(

Yj

0

)

= µj

(

Yj

0

)

, for j = 1, . . . , n− 1.

Consequently, µj is eigenvalue of Pρj
, j = 1, . . . , n − 1, and from (5.3) we

get (5.4) provided µj 6= an−1.
¿From the definition of ρj, (5.2), since ω′

J(µj) 6= 0, for j = 1, . . . , n− 1, we
have

ω′
J(µj)ρj < 0 if µj > an−1,
ω′

J(µj)ρj > 0 if µj < an−1,
ω′

J(µj)ρj = 0 if µj = an−1.

¿From (5.4), since (−1)jω′
J(µj) < 0, we obtain

(−1)jξ(µj) ≥ 2 if µj > an−1,
(−1)j+1ξ(µj) ≥ 2 if µj < an−1,
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provided
∣

∣

∣
ρj + 1

ρj

∣

∣

∣
≥ 2.

Proposition 5.1 gives the inequalities

λ1 > an−1 > λn ;

let k be the integer such that

λk ≥ an−1 > λk+1.

By Proposition 5.2 (algebraic) multiplicity of an−1 is least or equal to 1. Let
us split now the proof on two cases:

1st case: an−1 is not an eigenvalue of P .
In this case, let us assume λk > an−1 > λk+1.
If k is even, then since the eigenvalues of P are the roots of ξ(λ) = 2

and (b1b2 · · · bn−3(λ − an−1)bn−1bn)
−1 > 0 (< 0), if λ > an−1 (< an−1,

resp.), then λ1, . . . , λn can be ordered as

λ1 > λ2 ≥ λ3 > · · · ≥ λk−1 > λk > λk+1 ≥ λk+2 > · · · .
If k is odd, then λ1, . . . , λn can be ordered as

λ1 > λ2 ≥ λ3 > · · · > λk−1 ≥ λk > λk+1 > λk+2 ≥ · · · .
2nd case: an−1 = λk is an eigenvalue of P .

In this case,

det(λI − Pρ) = b1b2 · · · bn−3(λ− an−1)bn−1bn

{

ξ(λ) −
(

ρ+
1

ρ

)}

where ξ(λ) is an polynomial of degree n − 1, such that the roots
of ξ(λ) = 2 are the eigenvalues of P different from an−1. Also, the
coefficient (b1b2 · · · bn−3bn−1bn)

−1 of λn−1 in ξ(λ) is always positive, and

ξ(λ) = (b1 · · · bn−3bn−1bn)
−1((λ−λ1) · · · (λ−λk−1)(λ−λk+1) · · · (λ−λn)+2) .

If k is even, then ξ(an−1) < 2, and therefore λ1, . . . , λn can be or-
dered as

λ1 > λ2 ≥ λ3 > · · · ≥ λk−1 > λk > λk+1 ≥ λk+2 > · · · .
If k is odd, then ξ(an−1) > 2, and therefore λ1, . . . , λn can be ordered

as

λ1 > λ2 ≥ λ3 > · · · > λk−1 > λk > λk+1 > λk+2 ≥ · · · .
Therefore, we have the result.
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