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Universidade de Coimbra
Preprint Number 06–28

PENALIZED SMOOTHING OF DISCRETE DISTRIBUTIONS
WITH SPARSE OBSERVATIONS

PIERRE JACOB AND PAULO EDUARDO OLIVEIRA

Abstract: It happens quite often that we are faced with a sparse number of ob-
servations over a finite number of cells and we are interested in the estimation of
the cell probabilities. The simple histogram produces approximations with the zero
value for too many cells. Some polynomial smoothers have been proposed to cir-
cumvent this problem which show good properties in the analysis of such sparse
situations but have the drawback of producing negative values. We propose a pe-
nalized polynomial smoothing for this problem. The estimators that are proposed
in this paper are always positive and a simulation study show a very good behaviour
with respect to the natural error criterias: mean squared sum of errors, sparse sup
and the sup-norm. Our estimator perform specially well for sparse observations.
Nevertheless, when the number of observations increases the proposed estimators
still show good performance.
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1. Introduction

For discrete distributions the idea of smoothing the frequency estimates
using information concerning the observations in adjacent points may seem
strange when we think on models for categorical data. However, it is not rare
that the categorizations used take into account some contiguity properties
on the underlying scales. In such models this use of adjacent information
becomes somewhat natural. This procedure seems even more advantageous
when we have large supports and a reduced number of observations, that a
sparse table, from which to construct the approximations. The use of the
classical frequency cell estimator would provide a zero approximation for
too many points of the support which is, in many models, quite unintuitive.
Smoothing conveniently over adjacent or contiguous points of the support
does contribute to improve the handicap on the histogram.
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Existing literature on smoothing over discrete distributions concentrate
mainly on asymptotic properties of the proposed estimators, even when con-
sidering sparse tables. Results on the asymptotic behaviour of the mean sum
of squares of the errors are studied, for example, in Simonof [8], Burman [3],
Hall and Titterington [6], Simonof [9], Dong and Simonof [4] or Aerts, Au-
gustyns and Janssen [1]. Another error criteria, trying to adapt to sparse
situations, was introduced by Simonof (see [10] for example) who proved the
first asymptotic results for kernel estimators. The asymptotics of the local
polynomials smoothers were studied by Aerts, Augustyns and Janssen [2],
establishing sufficient conditions this sparse consistency. The framework for
asymptotic results always supposed that the support increases with the num-
ber of observations in such a manner that their quotient is convergent to some
positive constant.

Our first interest in this kind of problems arose when analyzing data from
an anthropological study. The sample size was small, especially when com-
pared with the size of the support. Moreover, the inclusion of new units in
the sample was quite expensive, both in time and financially, so there was in-
creased interest on extracting as much information as possible from the (few)
available observations. The asymptotic properties were not very helpful in
this situation. Moreover, the methods that have been shown to have the
best asymptotic results (the polynomial smoothers) quite often produce neg-
ative estimations for the probabilities, and this is obviously unacceptable for
the practitioner. The correct treatment of our original problem takes place
in the domain of sparse tables. However, we found methods of estimation
that show interesting behaviour also in the case of one dimensional discrete
distributions.

Our estimates are obtained as a solution of a minimization problem and
have explicit formulations. As we were mainly interested in their finite sample
properties we undertook some simulation work. These show a general advan-
tage on the behaviour of the estimators we are defining. We considered the
usual error criteria, mean sum of squared errors and the sparse consistency
criteria introduced by Simonof, and also the sup-norm. For the underlying
distributions usually considered in the literature, the empirical behaviour of
the new estimators defined in this paper was almost always clearly better, for
sparse observations, than the polynomial smoothers or the Nadaraya-Watson
estimator. Besides, our estimators always produce nonnegative approxima-
tions for the probabilities. Our estimators tend to behave in a somewhat



SMOOTHING DISCRETE DISTRIBUTIONS WITH SPARSE OBSERVATIONS 3

less favorable way when the underlying distributions may be too close to
zero. But in such cases one can not expect reasonable approximations when
dealing with sparse observations.

Let us now define in more detail our framework. Consider k cells C1, . . . , Ck

and the vector P = (P1, . . . , Pk)
t of the cell probabilities. The observation

counts over each cell are described by a multinomial vector N = (N1, . . . , Nk)
of size n. The straightforward estimator of P is the cell frequency vector

P = (P 1, . . . , P k) =

(
N1

n
, . . . ,

Nk

n

)
. (1)

Better estimates may be produced by smoothing. An extra justification for
smoothing, besides the arguments produced above, is that we can always
think of P as the result of a discretization of a continuous underlying proba-
bility distribution. If this underlying distribution has [0, 1] support and den-
sity function f , each cell Cl may be interpreted as an interval [(l− 1)/k, l/k]
and each Pl may be expressed as

Pl =

∫ l/k

(l−1)/k

f(t) dt.

The idea of smoothing such discretized distributions makes sense, as already
argued in the older references cited above: Simonof [8], Burman [3], Hall and
Titterington [6]. We refer the reader to Simonof [10] for a quite complete
account of these arguments and earlier achievements on the estimation of P.

Given an estimator P∗ = (P ∗1 , . . . , P ∗k )t the first error criteria studied was
the mean sum of squared errors:

MSSE(P∗) = E

(
k∑

i=1

(P ∗i − Pi)
2

)
. (2)

More recently the error criteria introduced by Simonof attracted some inter-
est:

SPSUP(P∗) = sup
1≤i≤k

∣∣∣∣
P ∗i
Pi
− 1

∣∣∣∣ . (3)

An estimator P∗ is said to be sparse consistent if this error criteria converges
almost surely to 0. It is well known that the frequency estimator is not sparse
consistent and the same holds for some Bayes estimators of the Pl (see Aerts,
Augustyns and Janssen [1] and Simonof [9] for counter-examples).
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We will also compare the performance of the estimators with respect to
the sup-norm:

NINF(P∗) = sup
1≤i≤k

|P ∗i − Pi| . (4)

We stress again that we are not seeking asymptotic results for the esti-
mators but are interested on their behaviour for finite samples with sparse
observations.

2. The estimators

We identify each cell Cl with the interval [(l − 1)/k, l/k], l = 1, . . . , k, so
the center of each cell Cl is the point xl = 2l−1

2k . Let p ≥ 0 be an integer
identifying the degree of the polynomial used for the smoothing. For each
l = 1, . . . , k, we define the k × (p + 1) matrix

Xl =




1 x1 − xl · · · (x1 − xl)
p

· · · · · · · · · · · · · · · · · ·
1 xi − xl · · · (xi − xl)

p

· · · · · · · · · · · · · · · · · ·
1 xk − xl · · · (xk − xl)

p




, (5)

and the k × k matrix

Kl = diag

(
1

h
K

(
x1 − xl

h

)
, . . . ,

1

h
K

(
xk − xl

h

))
, (6)

where K is a symmetrical density function with bounded support and h > 0.
Let βl = (β0,l, . . . , βp,l)

t and β̂l the minimizer of

(P−Xlβ)tKl(P−Xlβ) =

=
1

h

k∑

i=1

(
Ni

n
− β0,l − β1,l(xi − xl) + · · ·+ βp,l(xi − xl)

p

)2

K

(
xi − xl

h

)
.

(7)

The estimator for Pl is the constant term β̂0,l of β̂l. This is the polynomial
smoother of degree p used throughout the literature and we will denote it
by PS(p) = (PS1(p), . . . , PSk(p)). The estimator of the lth-coordinate PSl(p)

is representable in the form
∑k

j=1 sljP j, where the slj depend on the degree
p of the polynomial and the positions of the cells Cl, Cj. We refer to Aers,
Augustyns and Janssen [2] for an explicit expression. For a more general
framework, where the design points are random, explicit expressions may
be found in Fan and Gijbels [5] or Ruppert and Wand [7]. As polynomial
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smoothers, these estimators automatically correct border effects at the cost
of somewhat more intricate expression for the coefficients slj for the cells Cj

near the borders. The classification of a cell being near the border or on the
interior depends on the support of the kernel K. As we shall explain next,
the expression of the coefficients is quite simplified for interior cells, so we
will start by a precise definition of interior cell.

We say that a cell Cl is an interior cell if

K

(
x− xl

h

)
= 0, x 6∈ [0, 1],

and that Cl is a border cell if the support of K
(
•−xl

h

)
is not a subset of [0, 1].

For an interior cell Cl, as the kernel K is supposed symmetrical, the dis-
tribution of the weights slj is symmetrical with respect to xl. This is the
source of the simplifications referred above. For polynomial smoothers of
degree, PS(0) and PS(1), and for interior cells, the symmetry implies that
the minimizer is the Nadaraya-Watson estimator, representable on the form

NWl = PSl(0) = PSl(1) =
u∑

j=−u

P l−jp(j), (8)

where

p(j) =
K
(

j
kh

)
∑u

i=−u K
(

i
kh

) , j = −u, . . . , u.

For the polynomial smoothers of degree p = 2, 3 and again for interior cells,
the representation of the estimator is of the same form, just changing the
weights. We have then

PSl(2) = PSl(3) =
u∑

j=−u

P l−jq(j), (9)

where

q(j) =
τ 4 − σ2j2

τ 4 − σ4
p(j), j = −u, . . . , u, (10)

and σ2, τ 4 are the second and fourth order moments of the weight distribution
p(j), j = −u, . . . , u:

σ2 =
u∑

j=−u

j2p(j) and τ 4 =
u∑

j=−u

j4p(j). (11)



6 P. JACOB AND P. E. OLIVEIRA

Thus, the polynomial smoothers of orders p = 2, 3 appear as kernel estimates
associated to a redefined weight function q(·). This new weight function is
still symmetric and it is easy to verify that

u∑

j=−u

j2q(j) = 0,

so this redefined weight function is a 4th order kernel. This means that this
weight function q(·) assumes negative values, so the estimator PPS(2) may
be negative for some cells Cl. As we are trying to estimate probabilities, this
is a quite inconvenient property.

We stress that the above expressions apply only to interior cells. In this
paper we tried to avoid boundary modifications in comparing the estimators
described above and the ones we will introduce later. So, instead of con-
sidering the expressions of the estimators as referred in Aerts, Augustyns
and Janssen [2], we used the well-known replication device of introducing
fictitious cells Cl, l = 1 − k, . . . , 0, to the left of the initial cells, and Cl,
l = k +1, . . . , 2k, to the right. The frequency in each of these new cells is the
one observed on the real cell which is symmetrically situated with respect to
the origin or to the last original cell, respectively.

C1−k . . . C0 C1 . . . Ck Ck+1 . . . C2k

P k . . . P 1 P 1 . . . P k P k . . . P 1

That is, for the new cells we define

P 1−j = P 2k+1−j = P j, j = 1, . . . , k.

For this enlarged support we must redefine the matrices Xl and Kl allowing
the indexes to range from 1 − k to 2k. That is, Xl is now (3k) × (p + 1)
matrix with entries

Xl =




1 x1−k − xl · · · (x1−k − xl)
p

· · · · · · · · · · · · · · · · · ·
1 x0 − xl · · · (x0 − xl)

p

1 x1 − xl · · · (x1 − xl)
p

· · · · · · · · · · · · · · · · · ·
1 xk − xl · · · (xk − xl)

p

1 xk+1 − xl · · · (xk+1 − xl)
p

· · · · · · · · · · · · · · · · · ·
1 x2k − xl · · · (x2k − xl)

p




, (12)
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and Kl becomes the (3k)× (3k) matrix

Kl = diag

(
1

h
K

(
x1−k − xl

h

)
, . . . ,

1

h
K

(
x2k − xl

h

))
. (13)

With this device, all the original cells become interior cells, so the formulas
(8) and (9) apply to each one of them. In order to introduce our estimators
it is convenient to define the (3k)× (3k) matrix

Wl = diag

(
K
(xj−xl

h

)
∑k

i=1 K
(

xi−xl

h

) , j = 1− k, . . . , 2k

)
.

Notice that the denominator in the entries of Wl depends only on l. This
matrix describes the symmetric weights p(·) recentered at the cell Cl. Note
further that the diagonal entries are zero whenever |j − l| > u.

Our goal is to achieve more precise approximations for small probabilities
and, at the same time, guarantee their positivity by minimizing expressions
such as

Hl =
1

β0,l
(P−Xlβ)tWl(P−Xlβ). (14)

This is a penalized error criteria, so we will call the estimator that we will
derive a penalized polynomial smoother of degree p, denoted by PPS(p) =
(PPS1(p), . . . , PPSk(p)). The idea of considering errors that are relative to
probability we are trying to estimate will contribute to keep the nonnegativity
and to some overestimation of very small probabilities. This error function
is, apart from the relativization of the error, the same as considered for
the polynomial smoothers (7). However, the minimization of (14), for each
l = 1, . . . , k, does not necessarily produce a probability distribution over the
initial cells. So we introduce this as a global condition and minimize the
sum of the errors Hl. Thus our estimator appears as the solution of the
optimization problem

minimize
k∑

l=1

Hl

subject to
∑k

l=1 β0,l = 1.

Introducing the Lagrange multiplier, we need to minimize

H =
k∑

l=1

Hl + λ

(
k∑

l=1

htβl − 1

)
, (15)
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where h = (1, 0, . . . , 0)t is a (p+1)-dimensional vector. We defer the compu-
tational details Appendix A. The estimator is, as before, the first coordinate
of the minimizer of (15) and may expressed as

PPSl(p) =

(
P

t
(Wl −Al)P

)1/2

∑k
j=1

(
P

t
(Wl −Al)P

)1/2
, l = 1, . . . , k, (16)

where Al is a matrix to be described in the next section. In order to give
explicit expression we need, besides the second and fourth moments of the
weight function introduced before (11), the sixth moment

γ6 =
u∑

j=−u

j6p(j),

and

mt =
u∑

j=−u

P l−jj
tp(j), t = 0, 1, 2, . . . . (17)

Now we are able to produce explicit formulas for each value of the polynomial
degree p.

• p = 0: Al = 0, thus P
t
(Wl −Al)P = P

t
WlP =

u∑

j=−u

P
2
j−lp(j);

• p = 1: P
t
AlP =

1

σ2
m2

1;

• p = 2: P
t
AlP =

1

σ2
m2

1 +
1

τ 4
m2

2;

• p = 3:

P
t
AlP =

γ6

σ2γ6 − τ 8
m2

1 −
2τ 4

σ2γ6 − τ 8
m1m3 +

γ6

σ2γ6 − τ 8
m2

3 +
1

τ 4
m2

2.

As it will be evident when analyzing simulation results these penalized
smoothers perform well when the probabilities to be estimated are not to
close to zero. When the discrete distribution has cells with probabilities of the
order of 10−4 the sparse error criteria SPSUP and NINF start showing a worse
empirical behaviour than the polynomial smoothers NW or PS(2). This
seems to be due to an overestimation of these probabilities. Having in mind
distributions with cell probabilities of reasonable magnitude we considered a
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quadratic penalized polynomial smoother obtained by optimizing

H∗l =
1

β2
0,l

(P−Xlβ)tWl(P−Xlβ). (18)

The estimator, that will be denoted P2PS(p) = (P2PS1(p), . . . , P2PSk(p)),
should thus be the minimizer of

H∗ =
k∑

l=1

H∗l . (19)

As before, the solution of this minimization problem need not to be a proba-
bility distribution. Considering the constraint

∑k
l=1 β0,l = 1 leads to a com-

plex solution, so we propose another method to make the estimator explicit.
Regarding the expressions for PPS(p) we notice that the penalized smoother
is just the unconstrained solution of the minimization problem normalized
by the sum of the values corresponding to each cell. So we propose the esti-
mator obtained by the same normalizing procedure applied to the minimizer
of (19). This leads to a simple explicit expression:

P2PSl(p) =

P
t
(Wl−Al)P

P
t
(Wl−Al)e

∑k
l=1

P
t
(Wl−Al)P

P
t
(Wl−Al)e

, (20)

where e = (1, . . . , 1)t.

3. Simulation results

In this section we compare the performance of the polynomial smoothers,
penalized and not penalized, under different error criteria. We consider dis-
tributions that have been used in the literature for simulation purposes,
say discretizations over k equally spaced points based on Beta distribu-
tions with parameters (3,3) and (.6,.6). We decided to include another
family of distributions based on the discretization of the density function
g1(t) = .4×2g(2(t + .5)) + .4×g(t) + .2×2g(2(t− .5)), where g(t) = cos2( tπ

2 ),
if t ∈ [−1, 1] and g(t) = 0 elsewhere, which is smoother on the boundary.
We simulated the behaviour of each estimator for discrete distributions with
k = 50, 100, 500 cells in their support and considering n = k/2 observations,
that is a sparse situation, or n = 2k observations, a not so sparse situation, to
judge of the performance when the size of the sample increases (with a fixed
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support for the distribution). We considered a weight function p(·) with a
five point support, that is, with u = 2, referring to the notation used above.

We stress that in the literature, authors were mainly concerned with the
asymptotic behaviour when both the number of cells of the distribution and
the number of observations were converging to infinity, maintaining some
sort of relation implying that the number of cells in the support would not
become to small with respect to the size of the sample. In this paper we
are mainly interested in the behaviour when the discrete distribution is fixed
and trying to find estimators that have good performance when there are few
observations. We have no objective quantification of what few means, so we
found instructive to collect data about the possibilities described above. All
the numerical results included were obtained from the result of 500 simulated
samples in each of the considered situations.

In Table 1 we find the simulated values for the MSSE of the estimators
considered. We may verify that the penalized polynomial smoothers and the
quadratic penalized smoother perform better than the polynomial smoothers
in every situation. The quadratic penalized smoother P2PS(0) performs
specially well in sparse situations (n = k/2), regardless of the size or type of
distribution. Among the penalized polynomial smoothers the one of degree
p = 0, that we might think of as penalized Nadaraya-Watson estimator,
is always the best of the penalized smoothers, as what the MSSE regards.
Because of this behaviour we decided not to include simulations results for
quadratic penalized smoothers of degree geater than 0. The performance of
the penalized or quadratic penalized polynomial smoothers P2PS(0), PPS(0)
or PPS(1) are specially better for really sparse observations: their MSSE’s
are clearly smaller for every support size of the distribution when n = k/2.
When the sample size increases the performance of P2PS(0), PPS(0) and
PPS(1), although remaining better, is similar to the one of the Nadaraya-
Watson estimator. This seems to indicate that the penalized or quadratic
penalized smoothing are particularly well suited for sparse situations. In
fact, the penalized or quadratic penalized smoothers show a better MSSE in
every simulation. The MSSE for nonsparse situations is of same order for
the Nadaraya-Watson estimator and for the penalized or quadratic penalized
smoothers of degrees p = 0, 1, although with some advantage for these last
estimators. For this error criteria the polynomial smoother of degree 2, PS(2),
is consistently the worse of the considered estimators.
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β(3, 3) β(.6, .6) g1(t)
n = k/2 n = 2k n = k/2 n = 2k n = k/2 n = 2k

k = 50
NW 0.010395 0.002601 0.012165 0.003292 0.010357 0.002646
PS(2) 0.020110 0.005051 0.021735 0.005418 0.020154 0.005062
PPS(0) 0.006987 0.002228 0.008564 0.002985 0.006913 0.002245
PPS(1) 0.007455 0.002286 0.008921 0.002968 0.007407 0.002308
PPS(2) 0.010280 0.003879 0.011093 0.004109 0.010072 0.003821
P2PS(0) 0.006226 0.002579 0.007590 0.003252 0.005939 0.002597

k = 100
NW 0.005484 0.001377 0.006119 0.001645 0.005481 0.001365
PS(2) 0.010381 0.002598 0.010935 0.002714 0.010328 0.002598
PPS(0) 0.003702 0.001187 0.004349 0.001473 0.003650 0.001158
PPS(1) 0.003952 0.001218 0.004524 0.001473 0.003905 0.001194
PPS(2) 0.005412 0.002014 0.005643 0.002068 0.005265 0.001976
P2PS(0) 0.003214 0.001334 0.003966 0.001601 0.003066 0.001267

k = 500
NW 0.001133 0.000285 0.001184 0.000316 0.001145 0.000284
PS(2) 0.002106 0.000529 0.002144 0.000542 0.002123 0.000528
PPS(0) 0.000763 0.000244 0.000845 0.000279 0.000763 0.000240
PPS(1) 0.000814 0.000251 0.000881 0.000282 0.000814 0.000248
PPS(2) 0.001102 0.000411 0.001121 0.000412 0.001085 0.000403
P2PS(0) 0.000661 0.000267 0.000808 0.000306 0.000638 0.000258

Table 1. MSSE for the polynomial, penalized polynomial and
quadratic penalized smoothers.

In Tables 2, 3 and 4 we describe the empirical distribution function of the
simulated values for SPSUP. These graphs give a better impression of the
overall behaviour of this error criteria. Generally speaking, the faster the
curve grows the better the associated estimator is: this means that larger
values for the SPSUP criteria appear with less frequency. The penalized
and quadratic penalized smoothers always show their better performance for
sparse situations (n = k/2). For the distributions obtained by discretizing
β(3, 3) or g1(·) densities the cell probabilities may be to close to zero. As al-
ready mentioned, this is responsible for a poorer performance of the penalized
estimators as these tend to overestimate probabilities that are to small. Then
the presence of the very small true probability pl in the denominator produces
the results described. Looking at the results obtained for the discretization
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β(3, 3) β(.6, .6) g1(t)
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Table 2. Empirical distribution of SPSUP (k=50, first line n=
25, second line n=100). Smoothers: NW (solid), PS(2) (dotted),
PPS(0) (dashed), P2PS(0) (dotdash).

of the β(.6, .6) density we observe that the penalized smoothers P2PS(0) and
PPS(0) improve significantly on the polynomial smoothers NW and PS(2),
particularly in sparse situations. The polynomial smoother PS(2) shows its
best performance with respect to the SPSUP criteria for distributions with
very small cell probabilities and not so sparse observations (n = 2k).

To confirm the fact that the penalized smoothers seem not very well suited
for the estimation of very small probability values it is instructive to look at
the same kind of information as before but taking the sup in (3) avoiding the
boundaries where the too small probabilities appear. In this way we try to
identify where the bad behaviour of the SPSUP happens. As expected the
better behaviour with respect to the discretization of β(.6, .6) is confirmed.
The penalized and quadratic penalized smoothers improve significantly for
the estimation of the discretized g1(·) density, which has a smoother bound-
ary behaviour. These estimators are of equivalent quality as the Nadaraya-
Watson estimator and tend, for sparse observations (n = k/2), to behaviour
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β(3, 3) β(.6, .6) g1(t)

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 2 4 6
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 100 200 300 400

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0 10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Table 3. Empirical distribution of SPSUP (k = 100, first line
n= 50, second line n= 200). Smoothers: NW (solid), PS(2) (dot-
ted), PPS(0) (dashed), P2PS(0) (dotdash).

better as what the right tail of the SPSUP distribution is regarded. So the pe-
nalized estimators are less likely to produce large values of this error criteria.
Among the penalized smoothers it is PPS(0) that seems to perform better in
the presence of very small probabilities. This confirms again the impression
that the more one penalizes the error functions the more one overestimates
small probabilities. This could be useful if we have some prior knowledge
concerning the underlying distribution. For nonsparse observations (n = 2k)
the penalized smoothers do not perform so well. The empirical results for
sparse observations are described in Table 5.

We now comment on the behaviour of the estimators with respect to the
NINF error criteria. As this is not a relative error this criteria is not af-
fected by the existence of very small probabilities. For sparse observations
(n = k/2) the penalized smoothers PPS(0) and P2PS(0) show the better
performance, being for the discretized β(.6, .6) approached by the Nadaraya-
Watson estimator in some cases. When the degree of sparseness decreases
(n = 2k) the behaviour of the Nadaraya-Watson becomes similar to the one
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Table 4. Empirical distribution of SPSUP (k = 500, first line
n = 250, second line n = 1000). Smoothers: NW (solid),
PS(2) (dotted), PPS(0) (dashed), P2PS(0) (dotdash).

of PPS(0) and P2PS(0), althought the classical Nadaraya-Watson tends to
produce larger values for NINF than the penalized smoothers, as is visible
on the right tail of the empirical distribution. In each case the polynomial
smoother of degree p = 2, PS(2) tends to show the worse behaviour in what
this error criteria is concerned. The simulation results are shown in Tables 6
and 7.

Appendix

Appendix A.Derivation of the PPS estimators

We start by computing the derivative of H, given by (15), with respect
to the polynomial parameters in each cell, that is, with respect to βl, l =
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Table 5. Empirical distribution of SPSUP ignoring small prob-
abilities (first line k = 50, second line k = 100, third line
k = 500, n = k/2). Smoothers: NW (solid), PS(2) (dotted),
PPS(0) (dashed), P2PS(0) (dotdash).

1, . . . , k. This gives rise to the following system of (p + 1) equations:

−2Xt
lWl(P−Xlβl)−

h

β0,l
(P−Xlβl)

tWl(P−Xlβl) = −λβ0,lh. (21)

We remark that only the first of these equations is nonlinear. Let us start by
solving the linear part of this system of equations. For this purpose define
β̃l = βl−β0,lh, and X̃l the (p+1)-column matrix obtain from Xl by replacing
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β(3, 3) β(.6, .6) g1(t)
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Table 6. Empirical distribution of the NINF for sparse ob-
servations (first line k = 50, second line k = 100, third line
k = 500, n = k/2). Smoothers: NW (solid), PS(2) (dotted),
PPS(0) (dashed), P2PS(0) (dotdash).

its first column entries by zero’s, that is

Xl =




0 x1−k − xl · · · (x1−k − xl)
p

· · · · · · · · · · · · · · · · · ·
0 x0 − xl · · · (x0 − xl)

p

0 x1 − xl · · · (x1 − xl)
p

· · · · · · · · · · · · · · · · · ·
0 xk − xl · · · (xk − xl)

p

0 xk+1 − xl · · · (xk+1 − xl)
p

· · · · · · · · · · · · · · · · · ·
0 x2k − xl · · · (x2k − xl)

p




.
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β(3, 3) β(.6, .6) g1(t)
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Table 7. Empirical distribution of the NINF for nonsparse ob-
servations (first line k = 50, second line k = 100, third line
k = 500, n = 2k). Smoothers: NW (solid), PS(2) (dotted),
PPS(0) (dashed), P2PS(0) (dotdash).

Then, we have that

Xlβl = X̃lβ̃l + β0,le, (22)

where e = (1, . . . , 1)t, and the linear part of the system (21) may be rewritten
as

X̃t
lWl(P− β0,le) = X̃t

lWlX̃lβ̃l.
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Now the matrix X̃t
lWlX̃l is of the form




0 · · · 0
...
0

A


 .

Whenever the block A is nonsingular we shall say the matrix has a generalized
inverse and write

(
X̃t

lWlX̃l

)←
=




0 · · · 0
...
0

A−1


 .

With this remark, we have that

β̃l =
(
X̃t

lWlX̃l

)←
X̃t

lWl(P− β0,le). (23)

Now we go back to the first equation of (21). To isolate this equation we
multiply (21) by β0,lh

t. Using (22), it follows that
(
P− X̃lβ̃l + β0,le

)t

Wl

(
P− X̃lβ̃l − β0,le

)
= λβ2

0,l.

Expanding and noting that etWle = 1, the previous equation is equivalent
to (

P− X̃lβ̃l

)t

Wl

(
P− X̃lβ̃l

)
− β2

0,l = λβ2
0,l. (24)

Now we replace β̃l using (23) to find, after some simplification,

P
t
(Wl −Al)P− β2

0,le
t (Wl −Al) e = λβ2

0,l, (25)

where
Al = Wt

lX̃l

(
X̃t

lWlX̃l

)←
X̃t

lWl.

Now the replication device we described in the previous section comes into
action: etAle does not depend on l, due to the fact that we always deal with
interior cells.

Before continuing the analysis we note a useful fact: of we remove the
constraint

∑k
l=1 β0,l = 1, which is equivalent to setting λ = 0, we find that

P
t
(Wl −Al)P = β2

0,le
t (Wl −Al) e,

thus the random variable P
t
(Wl −Al)P has, for each l = 1, . . . , k, the same

sign as et (Wl −Al) e = 1− etAle, which not only has always the same sign
but, as noted before, is even constant for the cells Cl, l = 1, . . . , k. We
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prove, in Appendix C, that for p = 0, 1, 2, 3, et (Wl −Al) e > 0. Thus, for
p = 0, 1, 2, 3, it follows from (25), that

β2
0,l

(
λ + et (Wl −Al) e

)
> 0.

Finally, taking into account that β0,l, being an estimator for a probability,
should positive, we derive

β0,l =

(
P

t
(Wl −Al)P

)1/2

(λ + et (Wl −Al) e)1/2
. (26)

Using the constraint to optimization problem, we find that

(
λ + et (Wl −Al) e

)1/2
=

k∑

l=1

(
P

t
(Wl −Al)P

)1/2

.

From this equation and (26) the expression (16) for the penalized polynomial
smoother of degree p, PPS(p) follows.

Appendix B.Derivation of the P2PS estimators

We now give some details on the computation of the P2PS(p) estimators
given by (20). Putting the derivative of H∗ with respect to β = (β1, . . . , βp)
equal to 0 produces the following (p + 1) equations:

−2Xt
lWl

(
P−Xlβl

)

β2
0,l

−
2h

β3
0,l

(P−Xlβl)
tWl(P−Xlβl) = 0. (27)

Just as for the previous case, this system of equations is linear except for
the first equation. Moreover, assuming that the β0,l are nonzero, the linear
part of this system of equations coincides with the linear part of (21). Thus,

setting as before β̃l = βl − β0,lh, the representation (23) still holds. Going
back to (27) we isolate the first equation by left-multiplying the equation by
β3

0,lh
t. After using (22), this first equation rewrites as

(
P− X̃lβ̃l

)t

Wl

(
P− X̃lβ̃l

)
− β0,l

(
P− X̃lβ̃l

)t

Wle = 0. (28)

Now we need some simplification of this expression to recover (20). Using
the matrix algebra of the derivation of the previous family of estimators we
know that

(
P− X̃lβ̃l

)t

Wl

(
P− X̃lβ̃l

)
= P

t
(Wl −Al)P + β2

0,le
tAlP.
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Expanding the other term in (28), and using (23), it now easily follows that

β0,l =
P

t
(Wl −Al)P

P
t
(Wl −Al)e

.

Finally, recall that this is the solution to optimization problem without the
constraint so, to obtain as solution a probability distribution, we normalize
by the sum of the β0,l, l = 1, . . . , k.

Appendix C.Explicit computation of Al

We give brief indications about the explicit computation of Al for the cases
p = 1, 2, 3 and verify that, for these values of p, et (Wl −Al) e > 0. Given
α ∈ N, define

Sα =
u∑

j=−u

(xl − xl+j)
αp(j) =

u∑

j=−u

jα

kα
p(j).

It follows by symmetry that S1 = S3 = S5 = 0. As for the even values of α,

S2 =
σ2

k2
, S4 =

τ 4

k4
, S6 =

γ6

k6
.

For p = 3, it follows immediately that

X̃t
lWlX̃l =




0 0 0 0
0 S2 0 S4

0 0 S4 0
0 S4 0 S6


 .

For the cases p = 1, 2, the matrix is just the submatrix of the previous one
corresponding to the square block of order 2 or 3, respectively, situated on the

north-east corner. The generalized inverse
(
X̃t

lWlX̃l

)←
is easily identified:

p = 1 p = 2 p = 3

[
0 0
0 1

S2

] 


0 0 0
0 1

S2

0

0 0 1
S4







0 0 0 0
0 S6

∆ 0 −S4

∆
0 0 1

S4

0

0 −S4

∆ 0 S6

∆




where ∆ = S2S6− S2
4 . Explicit expressions may now be given for the entries

Al(i, j) of the matrix:
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p = 1: Al(i, j) = 1
σ2p(i− l)p(j − l)(i− l)(j − l);

p = 2: Al(i, j) = p(i− l)p(j − l)

[
(i− l)(j − l)

σ2
+

(i− l)2(j − l)2

τ 4

]
;

p = 3: Al(i, j) = p(i− l)p(j − l)

[
(i− l)(j − l)γ6

σ2γ6 − τ 8
−

(i− l)3(j − l)τ 4

σ2γ6 − τ 8

+
(i− l)2(j − l)2

τ 4
−

(i− l)(j − l)3τ 4

σ2γ6 − τ 8
+

(i− l)3(j − l)3γ6

σ2γ6 − τ 8

]
.

It is now easy to verify that

et (Wl −Al) e = 1− etAle = 1−
∑

i,j

Al(i, j) > 0.

In fact, up to the multiplication by a constant, the sum reduces to terms of
the form

∑

i,j

p(i− l)p(j − l)(i− l)α(j − l)α′

=

(
∑

i

p(i− l)(i− l)α

)(
∑

j

p(j − l)(j − l)α′

)
.

Thus, whenever α or α′ are odd this sum is equal to 0. So, for p = 1, we have
et (Wl −Al) e = 1, while for p = 2, 3, we have et (Wl −Al) e = 1− σ4

τ4 > 0,
using the Cauchy-Schwarz inequality.
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Dep. Matemática, Univ. Coimbra, Apartado 3008, 3001 - 454 Coimbra, Portugal

E-mail address: paulo@mat.uc.pt
URL: http://www.mat.uc.pt


