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A PHENOMENOLOGICAL MODEL FOR DESORPTION IN
POLYMERS

D. M. G. COMISSIONG, J.A. FERREIRA AND P. DE OLIVEIRA

Abstract: A phenomenological formulation is adopted to investigate desorption
in polymers. The speed of the front is studied and the well-posedeness of the
general model is analyzed. Numerical simulations illustrating the dynamics of the
desorption process described by the proposed model are included.

1. Introduction

Over the past decades the study of polymers behavior has received the
attention of many theoretical and experimental researchers. The reasons for
this large interest lies on the very challenging mathematical models underly-
ing the phenomena but mainly on the fact that due to its designer properties
polymers are used in a large number of industries as pharmaceutical, equip-
ment, clothing and sealants.

The problems reported in the literature are essentially of two different but
related kinds: sorption of penetrants by dry polymeric matrices and desorp-
tion of penetrants from polymeric saturated matrices. When a penetrant
diffuses into a dry polymer, its molecules take up new configurations to ac-
commodate incoming penetrant molecules. Consequently a swelling process
is initiated which transforms the polymer to its saturated rubbery state. The
behavior of the mass uptake experimentally observed, presents a great va-
riety ([24]). We mention without being exhaustive the following properties:
(i)initially mass uptake is linear in time with sharp fronts which move at
constant velocity and separating glassy and the rubbery states, (ii) the ve-
locity of the front slow down at later times;(iii) initially uptake increases like
tα with α between 0.5 and 1 (even a short times);(iv) initially increases as√

t eventually presenting sharp fronts which moves at velocity s′ ≃ 1/
√

t.
Those behaviors can not be explained only by the Fick law and are usually
described as anomalous or non-Fickian.
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In recent years, several attempts have been made to model mathematically
such behaviors. For sorption phenomena we found in the literature two main
approaches. In the first one the mathematical models are based on Fick’s
law and the kinetics of the glass-rubber polymer transition is taken properly
into account. We mention for instance the models presented in [1], [2], [18],
[21], [22], [23], [28], [29], [30]. In the second approach Fick’s law is modified
by introducing in the flux a viscoelastic stress as for instance in [6], [7], [8],
[9], [11], [12], [15], [19].

In the case that a polymer, in a saturated rubbery state, undergoes the
process of desorption there is an overall outward solvent flux. As expected
this loss of solvent triggers a change of state in the polymer which subse-
quently assumes a glassy crystalline configuration. The exposed surface is
the first to lose solvent to the surroundings and a dry glassy skin is formed
which encapsulates the rubbery saturated polymer and the desorption is sig-
nificantly slowed. In what concerns the mass loss in desorption phenomena,
it has been experimentally observed that the behavior tends to be less varied,
less easily detectable and presenting in many cases a certain similarity with
the Fick’s behavior. Much less attention has been placed on the mathemat-
ical modeling of polymer desorption process. It should be pointed out that
desorption is not a simple reversal of the related sorption process. In the
literature we found mainly mathematical models where a viscoelastic stress
has been introduced in the flux ( [3], [4], [5], [13], [14], [16]). Nevertheless,
the numerical simulations presented in the last papers exhibit sharp fronts
which in some cases do not agree with the experimental data presented for
instance in [24], [25], [26].

In the present paper we propose a mathematical model for desorption that
uses Fick’s law and a rate controlled motion of the moving front separating
the glass and rubber regions. This motion rate is analogous to the one pro-
posed by Qian and Taylor in [22] for sorption phenomena and depends on
glass-rubber transition concentrations and their fluxes. The idea underlying
our model lies on the observation of experimentalists that if one considers a
system where a front separates two different states the only obvious violation
of Fick’s law takes place at the front ([23], [24], [22]). As a consequence, if a
particular kinetics is taken into account by imposing an upper limit on the
flux or on the speed of the front, there may be no need to invoke the violation
of Fick’s law. In [22] the definition of the velocity of the front separating the
two phases is completed by introducing an analytical expression depending
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on the osmotic pressure. This expression generalizes the one proposed by
Thomas and Windle in [28]-[30]. At the best of our knowledge there is no
agreement among experimentalists concerning an analytical expression for
the speed of the front in the case of desorption. In desorption a crystal-
lization occurs requiring some organization while in sorption characterized
by melting such organization doesn’t occurs. Then in the two phenomena
the movement of the separating front is different and more information com-
ing from experimental data is needed to establish an accurate formula for
the speed. In our approach the expression for the rubber and glassy con-
centrations depends on a certain parameter, which can be specified onece a
particular expression for the speed is taken into account. Otherwise future
improvements on such matter can be easily introduced in our model.

The paper is organized as follows. In Section 2 the model is presented. The
speed of the glass-rubber front is studied in Section 3. In Section 4 the the
well-posedeness of the model is analyzed. In Section 5, numerical simulations
illustrating the behavior of our model are included.

2. Mathematical model

We begin by introducing C⋆, the characteristic solute concentration that
distinguishes the glassy from the swollen state. In the swollen saturated re-
gion, the concentration C of the penetrant within the polymer is above C⋆,
and in the glassy drier region, C < C⋆. We consider a one-dimensional sat-
urated polymer which has the far end insulated, while the exposed surface
through which flux is lost to the surroundings is located at x = 0. As a con-
sequence of the flux lost at the exposed surface, a phase change takes place
there first. As with all phenomenological models, we take as given the exis-
tence of a moving front that separates the drier glassy state of the desorbed
polymer from its nearly saturated region (still in its rubbery state). The
diffusion equations in the glassy core and the swollen gel have the standard
Fickian form that is the flux J is defined by

J = −D(C)Cx , (1)

where D(C) is the molecular diffusion coefficient. There is a significant
change in D(C) as the polymer loses its solute and is transformed from
the rubbery to the glassy state ([20]). The variations in magnitude of D(C)
within the same phase are of less consequence, so we model D(C) by taking
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an average over each phase

D(C) =







Dg, 0 ≤ C ≤ C⋆(glassy)

Dr, C⋆ < C(rubbery) .
(2)

Combining (1) with the standard conservation law

Ct = −Jx , (3)

where the time is represented by t, we obtain the partial differential equation
for the concentration C

Ct = (D(C)Cx)x . (4)

Let us represent the position of the moving front separating the glassy and
rubbery regions by s(t). Then (4) is equivalent to







Cg
t = DgC

g
xx , x < s(t)

Cr
t = DrC

r
xx , x ≥ s(t)

.

Here Cg and Cr represent the concentrations respectively for x < s(t) and
x > s(t).

The model is completed with a boundary condition at the front which is
written as

Cr(s(t), t) = C⋆, t > 0. (5)

We note that a discontinuity in the concentration is admissible because we
do not impose the glassy concentration, Cg(s(t), t) to be equal to C⋆. As the
flux J and the solute concentration C are discontinuous across the front, we
define the front speed by

s′(t)[C]s(t) = [J ]s(t), (6)

where [h]s(t) = h(s(t)+, t) − h(s(t)−, t) represents the jump of h at s(t). We
postpone to a later section a mathematical justification for equation (6). In
several models for non-Fickian polymer diffusion (see e.g. [11], [14] and [16]),
the concentration is considered continuous across the front and the speed is
defined by

s′(t)a = [J ]s(t)

where a is a constant that satisfies a certain restriction.
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As our goal is the study of desorption of an initially saturated polymer, we
write the initial concentration in the form

C(x, 0) = Cinit, x > 0. (7)

At x = 0 we consider

C(0, t) = Cext, t ≥ 0, (8)

where Cext stands for the external concentration. The far end is insulated
which translates to

J(∞, t) = 0, t ≥ 0. (9)

We note that condition (8) corresponds to a model with infinite permeabil-
ity at the outflow end. In fact the value of the concentration at x = 0 is
instantaneously assigned the same value as that of the external environment.

Our model consists of the classical diffusion equation (4) with D(C) de-
fined in (2), the frontal speed s′(t) given by (6), the initial concentration
(7), the boundary conditions stated in (8-9), and the concentration at the
front s(t) defined by (5). We note that we are looking at the problem as
two coupled boundary value problems defined in time depending domains,
(0, s(t)) and (s(t),∞). As we do not impose a value on the concentration Cg

at the front, a condition is missing to define completely the speed. However
as in desorption phenomena there is no agrement between experimentalists
concerning the form of the front speed, we didn’t consider any specification
for such speed. We overcome this difficulty by introducing a parameter, vary-
ing in a certain interval, that can be used to control the front speed. Once
specified a definition for the speed the parameter is selected.

The model we have outlined is based on the conviction of experimental-
ists. We remark that in the case of sorption an analogous phenomenological
formulation by Qian and Taylor [22] has been proposed.

3. On the speed of the front

In this section the speed s′(t) of the front is studied. We begin by estab-
lishing expressions for the concentrations Cg and Cr. To compute s(t) these
expressions will be then replaced in equation (6). An integral method devel-
oped by Boyle for standard diffusion problems, and adopted by Edwards in
the analysis of polymer desorption models (see e.g. [14]) is employed in this
section.
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3.1. The glassy and rubbery concentrations.

We assume that diffusion equation Cg
t = DgC

g
xx , x < s(t) holds in the en-

tire domain for some fictitious unknown initial condition f i(x). Requiring
then that the solution of such equation satisfies condition (6), (7) and (9) we
establish a condition that f i must satisfy.

Let

Cg(x, t) = Cext + T g(x, t), 0 < x < s(t), (10)

where T g is defined by



































T g
t = DgT

g
xx, x > 0, t > 0,

T g(0, t) = 0, t > 0,

T g
x (∞, t) = 0, t > 0,

T g(x, 0) = f i(x), x > 0.

(11)

As the solution of (11) is given by ([10])

T g(x, t) =
1

√

4πDgt

∫ ∞

0

f i(y)
(

e
− (x−y)2

4Dgt − e
− (x+y)2

4Dgt

)

dy (12)

it follows that

Cg(x, t) = Cext +
1

√

4πDgt

∫ ∞

0

f i(y)
(

e
− (x−y)2

4Dgt − e
− (x+y)2

4Dgt

)

dy , 0 < x < s(t).

(13)
We now compute the concentration in the rubbery state Cr following an

analogous procedure. We assume that the diffusion equation Cr
t = DrC

r
xx , x > s(t)

holds in the semi-infinite domain along with (5), (6), (7), (9) for some ficti-
tious boundary condition at x = 0 represented by fb(t).

Let

Cr(x, t) = Cinit − T r(x, t), x > s(t). (14)
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where


































T r
t = DrT

r
xx, x > 0, t > 0,

T r(0, t) = fb(t), t > 0,

T r
x(∞, t) = 0, t > 0,

T r(x, 0) = 0, x > 0.

(15)

Once again in (15), fb represents a fictitious boundary term which will be
computed in due course. We have

T r(x, t) = fb(t) +

∫ t

0

1
√

4π(t − τ)

∫ ∞

0

−f ′
b(τ)

(

e−
(x−y)2

4Dr(t−τ) − e−
(x+y)2

4Dr(t−τ)

)

dy dτ,

(16)
and as

∫ t

0

1
√

4π(t − τ)

∫ ∞

0

−f ′
b(τ)

(

e−
(x−y)2

4Dr(t−τ) − e−
(x+y)2

4Dr(t−τ)

)

dy dτ = −fb(t)

+
x√

4πDr

∫ t

0

fb(τ)e−
x2

4Dr(t−τ)
1

(t − τ)3/2
dτ,

we may conclude that

Cr(x, t) = Cinit −
x√

4πDr

∫ t

0

fb(τ)e−
x2

4Dr(t−τ)
1

(t − τ)3/2
dτ, x > s(t). (17)

3.2. The fictitious initial and boundary conditions.

We now proceed to determine the fictitious initial and boundary terms f i

and fb, by analyzing separately the small time and the long time behavior.

(1) Small time behavior: We make the following ansatz:

f i(x) = f i
0, fb(t) = f b

0 , s(t) = 2s0t
n. (18)

We compute in what follows f i
0, f b

0 and n. The concentration in the
rubbery state (17) reduces to

Cr(x, t) = Cinit −
2f b

0√
π

∫ ∞

x√
4Drt

e−z2

dz. (19)
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By making use of the erfc function, we can write (19) in the simpli-
fied form

Cr(x, t) = Cinit − f b
0 erfc

( x√
4Drt

)

, (20)

and at the front s(t), Cr is given by

C⋆ = Cr(s(t), t) = Cinit − f b
0 erfc

(s0t
n−1/2

√
Dr

)

. (21)

Let us suppose that n <
1

2
. In this case Cr(s(t), t) → Cinit as t → 0,

which would imply Cinit = C⋆. We must therefore take n ≥ 1

2
.

The concentration in the glassy state (13) may be written as

Cg(x, t) = Cext +
f i

0√
π

∫ x√
4Dgt

− x√
4Dgt

e−z2

dz,

This may be expressed in terms of the erf function as

Cg(x, t) = Cext + f i
0 erf

( x
√

4Dgt

)

. (22)

As at the front s(t), Cg is given by

Cg(s(t)−, t) = Cext + f i
0 erf

(s0t
n−1/2

√

Dg

)

, (23)

it follows that, for all n ≥ 1

2
, we have Cg(s(t)−, t) → Cext.

We note that if continuity was imposed to the concentration, then

for n >
1

2
we would obtain C⋆ = Cext which is not acceptable. The

lack of continuity contributes to give the front a certain non-Fickian
character.

(2) Large-time behavior: Following [14],we make the following ansatz:

f i(x) = f i
∞eAx, fb(t) = f b

∞eB2t, s(t) = 2s∞tn. (24)
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From (11), it may be deduced that

Cg(x, t) = Cext +
f i
∞√
π

eA2Dgt

(

eAx

∫ ∞

−x+2ADgt√
4Dgt

e−z2

dz − e−Ax

∫ ∞

x−2ADgt√
4Dgt

e−z2

dz
)

, x < s(t) .
(25)

Employing the erfc function, we write (25) as

Cg(x, t) = Cext +
f i
∞
2

eA2Dgt

(

eAx erfc
(

− x + 2ADgt
√

4Dgt

)

− e−Ax erfc
(x − 2ADgt

√

4Dgt

)

)

x < s(t) .

(26)

We determine A by taking limits in (26) as t → ∞. As

lim
t→∞

e
γx+γ2t

α2 erfc
(x + 2γt

2α
√

t

)

= lim
t→∞

2α
√

t√
π(x + 2γt)

e−
x2

4α2t , (27)

and Cg can be written as

Cg(x, t) = Cext +
f i
∞
2

(

2eA2Dgt
(

eAx − e−Ax
)

+e−Ax+A2Dgt erfc
(−x + 2ADgt

√

4Dgt

)

− eAx+A2Dgt erfc
(x + 2ADgt

√

4Dgt

)

)

, x < s(t),

(28)
we obtain, after some simplifications,

lim
t→∞

Cg(x, t) = lim
t→∞

(

Cext + f i
∞

(

eA2Dgt
(

eAx − e−Ax
)

+e
− x2

4Dgt
(

√

Dgt√
π(−x + 2ADgt)

−
√

Dgt√
π(x + 2ADgt)

)

))

.
(29)

The limit in (29) is finite provided that A = 0. As a consequence,
(26) reduces to

Cg(x, t) = Cext +
f i
∞
2

(

erfc
(

− x
√

4Dgt

)

− erfc
( x
√

4Dgt

)

)

, (30)

which is equivalent to

Cg(x, t) = Cext + f i
∞ erf

( x
√

4Dgt

)

. (31)
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Let us consider now the concentration in the rubbery state. Substi-
tuting fb(t) = f b

∞eB2t into (17), we get

Cr(x, t) = Cinit −
f b
∞
2

eB2t
(

eB x√
Dr erfc

(x + 2Bt
√

Dr√
4Drt

)

−e−B x√
Dr erfc

(x − 2Bt
√

Dr√
4Drt

)

)

, x ≥ s(t)

(32)

Next, we discuss B by taking limits, when t → ∞, in the above
expression. Substituting (27) into the large-time limit of (32), we
obtain

lim
t→∞

Cr(x, t) = Cinit −
f b
∞
2

lim
t→∞

e−
x2

4Drt
2
√

Drt√
π(x + 2B

√
Drt)

−f b
∞
2

eB2t− Bx√
Dr erfc

( x

2
√

Drt
− B

√
t
)

, x ≥ s(t).

. (33)

The first limit in the right side of (33) is zero. To guarantee the
boundeness of lim

t→∞
Cr(x, t) we must have B = 0 or

Bt − x√
Dr

≤ 0, x ≥ s(t), (34)

which holds if
s(t) =

√

DrBt. (35)

We next study these two cases:
(a) B = 0 :

The large-time limit (33) is finite provided that B = 0. This
allows us to simplify (32) to obtaining

Cr(x, t) = Cinit − f b
∞ erfc

( x√
4Drt

)

. (36)

We analyze the large-time concentrations Cg and Cr at the front
s(t). Substituting s(t) from (24) into (36) gives

Cr(s(t), t) = Cinit − f b
∞ erfc

(s∞tn−1/2

√
Dr

)

. (37)

For n >
1

2
and t → ∞, we get Cr(s(t), t) → Cinit. As Cr(s(t), t) =

C⋆, this would imply that C⋆ = Cinit. We must therefore conclude

that n ≤ 1

2
.
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(b) s(t) =
√

DrBt :
As Cr(s(t), t) = C⋆ we have

C⋆ = Cinit − f b
∞.

Computing now Cr
x(s(t)+, t) and Cg

x(s(t)−, t) and replacing in (6)
we obtain in the large time limit

−Dr
Cinit − C⋆

2

B√
Dr

=
√

DrB
(

C⋆ − Cext − f i
∞

)

,

that is

f i
∞ = Cinit − Cext. (38)

With this value of f i
∞ we have from (23)

lim
t→∞

Cg(s(t)−, t) = Cinit.

As the concentration on the glassy region, Cg(x, t), must satisfy

Cg(x, t) ≤ C⋆

we conclude that Cinit ≤ C⋆ which is not admissible because in
a desorption problem Cinit > C⋆. This means that (35) does not
holds.

We must therefore conclude that the speed of the front behaves like

tn−1 with n ≥ 1

2
for small time and n ≤ 1

2
for large time.

3.3. Dependence of the moving front on the problem data.

In this section we analyse the behavior of the moving front in the case

n =
1

2
. This choice is justified from an experimental point of view because

as reported in the literature, desorption phenomena presents, in same cases,
great similarity with a Fickian behavior. From a mathematical point of view

if n =
1

2
an almost complete analytical treatment can be achieved. For this

choice of n we compute f b
0 , f

b
∞ and estimates for f i

0, f
i
∞, s0 and for s∞.

(1) Small time behavior:
From (18) the expression for the front position s(t) is

s(t) = 2s0

√
t, (39)
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and then (21) takes the form

f b
0 =

Cinit − C⋆

erfc
(

s0√
Dr

) . (40)

We note that as in our model the concentration in the glassy phase,
Cg, is not continuous, f i

0 can not be completely computed. It assumes
the role of a parameter that will be specified once a definition for
the desorption speed is considered. In what follows we establish an
inequality that f i

0 must satisfy.
Taking into account (20), (22), (39) and (40) in (6) we obtain after

some straightforward computations

√

Dre
− s20

Dr

Cinit − C⋆

erfc
(

s0√
Dr

) − f i
0

(

√

Dge
− s20

Dg + s0

√
π erf

( s0
√

Dg

)

)

−s0

√
π
(

Cext − C⋆

)

= 0. (41)

In this equation s0 and f i
0 are unknowns. We look at f i

0 like a
parameter and we solve (41) for each value of this parameter. Let
us denote the first member of (41) by g(s0). In what follows, using
geometrical arguments, we establish conditions on f i

0 that guarantee
the existence of solutions s0 of (41).
(a) For

f i
0 ≤

√

Dr

Dg
(Cinit − C⋆), (42)

it can be demonstrated that g(0) > 0.
On the other hand the sign of lim

s0→+∞
g(s) is the sign of Cinit −

Cext − f i
0, that is, when

f i
0 ≥ Cinit − Cext, (43)

the corresponding limit is g(+∞) < 0.
From (42) and (43) we conclude that for

f i
0 ∈ [Cinit − Cext ,

√

Dr

Dg
(Cinit − C⋆)]
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when

Cinit − Cext ≤
√

Dr

Dg
(Cinit − C⋆), (44)

holds, then equation (41) has at least one solution.
We note that if Cext = C⋆ (44) is always satisfied. If the external
environment is dry, that is Cext = 0, we have from (44)

Cinit ≥

√

Dr

Dg
C⋆

√

Dr

Dg
− 1

. (45)

When Dr is much larger than Dg we can consider we can consider
√

Dr

Dg

√

Dr

Dg
− 1

≃ 1,

and (44) is trivially verified.
(b) Given

f i
0 ≥

√

Dr

Dg
(Cinit − C⋆), (46)

it follows that g(0) < 0. Furthermore, for

f i
0 ≤ Cinit − Cext , (47)

it can be shown that g(+∞) > 0.
From (46), (47) we deduce that for

f i
0 ∈ [

√

Dr

Dg
(Cinit − C⋆) , Cinit − Cext]

when

Cinit − Cext >

√

Dr

Dg
(Cinit − C⋆), (48)

holds, then equation (41) has at least one solution.
From the previous consideration we finally conclude that for

f i
0 ∈

[

min{Cinit−Cext,

√

Dr

Dg
(Cinit−C⋆)}, max{Cinit−Cext,

√

Dr

Dg
(Cinit−C⋆)}

]

,
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(41) has always a solution. We remark that these bounds on f i
0 do not

guarantee that Cg(s(t)−, t) ≤ C⋆. To have this upper bound satisfied
we must also require that

f i
0 ≤

C⋆ − Cext

erf
(

s0√
Dg

). (49)

(2) Large time behavior:

From (37) we obtain f b
∞ =

Cinit − C⋆

erfc
(

s∞√
Dr

) , which coincides with the pre-

vious result for small-time (40). Consequently, the definitions for both
Cg and Cr are equal in the small and large time limits and then s∞
satisfies (41), where f i

0 and s0 are replaced by f i
∞ and s∞ respectively.

We note again that if an analytical expression for the front speed
was joined to (41) (with f i

0 and s0 replaced by f i
∞ and s∞ respectively)

the values of s∞ and f i
∞ could be computed univocally.

As before we conclude that equation (41) (with f i
0 and s0 replaced

by f i
∞ and s∞ respectively) has a solution s∞ = s0, which will be

represented by s̄.

We recall again that due to the fact that we didn’t specify a law for the
speed the value of f i is not established. Instead we estimated previously an
interval of variation for f i. Therefore s ”appears” as a function of f i and f i

can be considered as a parameter to control the front speed.

In the numerical experiments which follow s̄ presents a very slight variation
with f i. Such numerical experiments pretend to illustrate the dependence of
s̄ on the problem data, that is C⋆, Cext, Dr and Dg.

Figure 1 illustrates the behavior of s̄ with the transition concentration C⋆.
We observe that as C⋆ increases an increasing of s̄ is observed. In fact as C⋆

increases not as much penetrant needs to desorb in order for the solution to
attain C⋆ and so s̄ increases.

The velocity of the front depends also on the exterior concentration Cext. In
Figure 2 we plot the graphics of s̄ for different values of Cext. An increase of
Cext implies a decreases of the position of the front. In fact as Cext increases
the flux out of the front is smaller and s̄ decreases.

The behavior of s̄ when the rubbery coefficient Dr increases is illustrated
in Figure 3. As expected the increase of Dr implies a decrease of s̄. In fact as
Dr increases the flux from the rubbery region increases so there is a greater



A PHENOMENOLOGICAL MODEL FOR DESORPTION IN POLYMERS 15

0.68 0.7 0.72 0.74 0.76 0.78
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

C
init

=1,D
r
=1, D

g
=0.2, C

ext
=0

C
*
=0.7

C
*
=0.8

Figure 1. Behavior of s̄ with C⋆.
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Figure 2. Behavior of s̄ with Cext.

barrier to surmount and consequently s̄ decreases. The mentioned barrier
decreases as Dg increases. Consequently as Dg increases s̄ also increases. In
Figure 4 we plot the graphics of s̄ for Dg = 0.2 and Dg = 0.4.

In Figure 5 we represent the behavior of s̄ with Cinit. As Cinit increases,
the flux from the rubbery region increases and consequently s̄ decreases.
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Figure 4. Behavior of s̄ with Dg.

Finally, in order to study the stability behavior of s̄ when Cinit is perturbed
we consider C̃(x, 0) = Cinit − ǫ. Let s̄ǫ be the corresponding solution of (41).
To establish heuristically the stability of s(t) we plotted the error |s̄ − s̄ǫ|
for several values of the parameters ǫ. The experiments carried on exhibit
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strong evidence of stability of the front. In Figure 6 we show a typical plot
of |s̄ − s̄ǫ|.

In Section 4 the stability behavior of s̄ is used to establish the stability of
model (4) -(9).
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Figure 6. The error |s̄ − s̄ǫ| for ǫ ∈ [10−16, 10−6].
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3.4. The large time behavior of the front revisited.

In a certain number of experimental papers is reported that the speed of
the front in desorption is constant at large times. As proved in Section 3.2
when n = 1 is considered, that is when a constant speed is assumed in the
framework of model (4) -(9), we obtain the necessary condition Cinit ≤ C⋆

which is not admissible. The question then arises of how to modify our
present model in order that a constant speed of the front is admissible for
large times. In what follows we give a answer to this question by modifying
the front condition (6).

In order to understand the physical meaning of the front condition (6) we
introduce M(t), the total mass of the penetrant in the polymeric matrix at
each time t, which defined by

M(t) =

∫ ∞

0

C(x, t) dx. (50)

Taking derivatives in (50) we have

M ′(t) =

∫ s(t)

0

DgC
g
xx(x, t) dx +

∫ ∞

s(t)

DrC
r
xx(x, t) dx

+s′(t)
(

Cg(s(t)−, t) − Cr(s(t)+, t)
)

,

(51)

and then

M ′(t) = Dg

(

Cg
x(s(t)−, t) − Cg

x(0, t)
)

+ Dr

(

Cr
x(∞, t) − Cr

x(s(t)+, t)

+s′(t)
(

Cg(s(t)−, t) − Cr(s(t)+, t)
)

.
(52)

As the polymer is desorbing M ′(t) ≤ 0 and consequently from Cr
x(∞, t) = 0,

we establish

DgC
g
x(s(t)−, t) − DrC

r
x(s(t)+, t) + s′(t)

(

Cg(s(t)−, t) − Cr(s(t)+, t)
)

≤ DgC
g
x(0, t) .

(53)

This last inequality can be written as

[J ]s(t) ≤ s′(t)[C]s(t) + DgC
g
x(0, t) . (54)

When t → ∞, we deduce from (31), that Cg
x(0, t) → 0 and consequently (54)

assumes the form
[J ]s(t) ≤ s′(t)[C]s(t) . (55)
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We note that our previous results have been obtained under the more restric-
tive condition (6).

Let us consider now that s(t) is defined, as before, by (35). Replacing
Cr

x(s(t)+, t) and Cg
x(s(t)−, t) in new front condition (55) we obtain, instead

of (38), the inequality

f i
∞ ≤ Cinit − Cext. (56)

Finally replacing (56) in (23)we have

lim
t→∞

Cg(s(t)−, t) ≤ Cinit

which is trivially verified. We can then conclude that relaxing the front
condition (6) the model admits a linear speed of the front at large times.

4. On the stability of the model

In this section we investigate the overall stability of the model (4) -(9)
under a perturbation of the initial condition (7). In Section 3 we presented
an heuristic evidence of the stability of s(t). We assume in what follows that
the front is stable with respect to perturbations of the initial condition Cinit.
The usual L2 norm is denoted by ‖.‖L2. We shall first establish an estimate
for ‖C(., t)‖L2 with homogeneous boundary conditions.

Multiplying (4) by C, in the sense of the L2 inner product, we have

(Ct, C) = −(DCx, Cx) + [CJ ]s(t)

+ C(0, t)J(0, t)− C(L, t)J(L, t).
(57)

It can be easily shown that

d

dt
‖C‖2

L2 = 2

∫ L

0

CtC dx + s′(t)
(

C(s(t)−, t)2 − C(s(t)+, t)2
)

. (58)

Substituting (58) and the zero boundary condition at x = 0 and x = ∞
into (57) we obtain

1

2

d

dt
‖C‖2

L2 = −(DCx, Cx) +
1

2
s′(t)

(

C(s(t), t)2
− − C(s(t)+, t)2

)

+ [CJ ]s(t).

(59)
As we are considering a desorption problem we assume that Cx > 0. Under

this assumption we next prove that

1

2
s′(t)

(

C(s(t)−, t)2 − C(s(t)+, t)2
)

+ [CJ ]s(t) ≤ 0 . (60)
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Multiplying (6) by C(s(t)−, t) + C(s(t)+, t), we obtain

1

2
s′(t)

(

C(s(t)+, t)2 − C(s(t)−, t)2
)

=
1

2
[J ]s(t) (C(s(t)−, t) + C(s(t)+, t)) .

Therefore, (60) follows if we prove that for Cx > 0 holds the inequality

1

2
[J ]s(t) (C(s(t)−, t) + C(s(t)+, t)) + [CJ ]s(t) ≤ 0. (61)

We may express (61) in the simpler form

(J(s(t)−, t) + J(s(t)+, t)) (C(s(t)−, t) − C(s(t)+, t)) ≥ 0 .

As C(s(t)−, t) − C(s(t)+, t) ≤ 0 and Cx > 0 we have

J(s(t)−, t) + J(s(t)+, t) ≤ 0, (62)

and consequently (61) is proved.
Finally using (60) in (59) we obtain

1

2

d

dt
‖C‖2

L2 ≤ −(DCx, Cx), (63)

from which we deduce
1

2

d

dt
‖C‖2

L2 ≤ 0. (64)

This leads us to the following proposition:

Proposition 1. Let C be the solution of (4)-(9) with initial conditions Cinit

and homogeneous boundary conditions. Then

‖C(., t)‖L2 ≤ ‖Cinit‖L2, t ≥ 0. (65)

As a consequence of Proposition 1 we can state that the initial boundary
value problem (4)-(9) has at most one solution. From Proposition 1 we can
also establish the stability of the model. For the purpose of our analysis,
we consider C and C̃ to be the solutions of problems with initial conditions
respectively v0 and ṽ0, where v0 − ṽ0 > 0 and v = C − C̃.

As a corollary of Proposition 1, we establish the following result:

Corollary 1. Let C and C̃ be solutions of (4)-(5) with initial conditions v0

and ṽ0, where v0 > ṽ0. It follows that

‖v(., t)‖L2 ≤ ‖v0 − ṽ0‖L2, t ≥ 0. (66)
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5. Numerical illustrations

In this section we illustrate the behavior of the model studied in the pre-
vious sections. Let {xi = xi−1 + h, i = 1, . . . , N}, with x0 = 0, xN = L, be a
spatial grid in [0, L] where L is large enough. In [0, T ], T > 0, we define the
time grid {tj = tj−1 + ∆t, j = 1, . . . , M} with t0 = 0 and tM = T.

Each time step is decomposed in two stages. In the first stage we compute
a Fickian approximation which is corrected in the second stage. We describe
separately the initial step and a typical step.

(1) Initialization.
(a) First stage:

We discretize explicitly equation (4) obtaining

Cj+1
i − Cj

i

∆t
= DrD2,xC

j
i , i = 1, . . . , N, j ≥ 0, (67)

with initial and boundary conditions

C0
i = Cinit, i = 0, . . . , N, Cj

0 = Cext, Cj
N−1 = Cj

N+1 j ≥ 1, (68)

where

D2,xC
j
i =

Cj
i+1 − 2Cj

i + Cj
i−1

h2

and xN+1 = L + h.
Let tj1⋆

be the first time level such that, at some grid point, the
numerical approximation is less than the transition concentration
C⋆. Let xi1⋆

be such that C
j1⋆

i < C∗, i = 0, . . . , i1⋆
− 1, C

j1⋆

i1⋆
= C⋆.

Then xi1⋆
is the first transition point determined by the Fickian

behavior of the penetrant in the polymer and, in [0, xi1⋆
) and

[xi1⋆
, L], at this instant, the polymer presents numerical glassy

and rubbery states respectively. The computed transition points
is, in what follows, referred as Fikian transition points.

(b) Second stage:
The speed separating the rubber and glassy states is controlled
by (41) which is f i

0 dependent. As remarked before, this param-
eter can be specified if a particular expression for the speed is
taken into account. This equation is solved, for a specified f i

0,
numerically and for each time level we compute a new candidate
to a transition point s(tj1⋆

) ≃ s̄(tj1⋆
) = 2s̄

√

tj1⋆
. Then we define a



22 D. M. G. COMISSIONG, J.A. FERREIRA AND P. DE OLIVEIRA

new transition point, xi1⋆ ,new, as the minimum between s̄(tj) and
the Fickian one, that is

xi1⋆,new
= min{s̄(tj1⋆

) , xi1⋆
}.

(i) If the transition point is the Fickian one, that is xi1⋆,new
=

xi1⋆
, then the computed numerical approximations for the

concentrations Cg(xi, tj1⋆
), Cr(xi, tj1⋆

) are corrected consid-
ering the finite difference equations

C
g,j1⋆

i − C
g,j1⋆−1
i

∆t
= DgD2,xC

g,j1⋆−1
i , i = 1, . . . , i1⋆

− 1,

C
g,j1⋆

0 = Cext, C
g,j1⋆

i1⋆
= C

j1⋆

i1⋆−1,

C
g,j1⋆−1
i = C

j1⋆

i , i = 1, . . . , i1⋆
− 1,

C
r,j1⋆

i − C
r,j1⋆−1
i

∆t
= DrD2,xC

r,j1⋆−1
i , i = i1⋆

+ 1, . . . , N,

C
r,j1⋆

i1⋆
= C⋆, C

r,j1⋆

N−1 = C
r,j1⋆

N+1,

C
r,j1⋆−1
i = C

j1⋆

i , i = i1⋆
+ 1, . . . , N .

(69)

(ii) If the transition point is obtained with a non-Fickian cor-
rection, that is xi1⋆ ,new = s̄(tj1⋆

), then we replace (69) by

C
g,j1⋆

i − C
g,j1⋆−1
i

∆t
= DgD2,xC

g,j1⋆−1
i , i = 1, . . . , i1⋆,new − 1,

C
g,j1⋆

0 = Cext, C
g,j1⋆

i1⋆,new
= C

j1⋆

i1⋆,new−1 ,

C
g,j1⋆−1
i = C

j1⋆

i , i = 1, . . . , i1⋆,new − 1 ,

C
r,j1⋆

i − C
r,j1⋆−1
i

∆t
= DrD2,xC

r,j1⋆−1
i , i = i1⋆,new + 1, . . . , N,

C
r,j1⋆

i1⋆,new
= C⋆, C

r,j1⋆

N−1 = C
r,j1⋆

N+1 ,

C
r,j1⋆−1
i = Cinit, i = i1⋆,new + 1, . . . , N .

(70)

(2) Typical steps.
(a) First stage :

Let xi⋆ be the transition point at time level tj⋆
. The approximation

to the concentrations at level tj⋆+1 are computed using

Cj⋆+1
i − Cj⋆

i

∆t
= DgD2,xC

j⋆

i , i = 1, . . . , i⋆ − 1,

Cj⋆+1
i − Cj⋆

i

∆t
= DrD2,xC

j⋆

i , i = i⋆ + 1, . . . , N,

(71)
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and

Cj⋆+1
i⋆

− C⋆+Ci1⋆
g,j⋆

2

∆t
=

1

h

(

Dr

Cr,j⋆

i⋆+1 − C⋆

h
− Dg

Cg,j⋆

i⋆
− Cg,j⋆

i⋆−1

h

)

. (72)

We compare the concentrations Cj⋆+1
i , i = 1, . . . , N, with C⋆ and

we compute xℓ⋆
such that Cj⋆+1

i < C⋆, for i = 1, . . . , ℓ⋆ − 1, and

Cj⋆+1
ℓ⋆

= C⋆.
(b) Second stage:

Solving numerically equation (41) at time level tj⋆+1 we compute
a new candidate to a transition point s̄(tj⋆+1). Then we define the
new transition point xℓ⋆,new by

xℓ⋆,new
= min{s̄(tj⋆+1) , xℓ⋆

}.
The numerical approximations computed in the first stage are
then corrected using the procedure described in the second stage
of the initialization with convenient adaptations.

In all numerical experiments that we present in this section we consider

∆t = 4 ∗ 10−5, h = 0.01, C⋆ = 0.8, Dr = 1, Dg = 0.4, Cext = 0,

and the plots are exhibited for different values of f i
0.

In Figure 7 we plot the non-Fickian approximations computed with f i
0 =

0.5, 0.55, 0.6. As f i
0 increases the speed of the front also increases.

Approximations for the accumulated flux F (t) = −
∫ t

0

J(0, µ) dµ, t > 0, are

plotted in Figures 8. An increase of f i
0 implies an increase of the accumulated

flux.
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Figure 7. The non-Fickian approximations obtained with f i
0 =

0.5 (left), f i
0 = 0.55 (center) and f i

0 = 0.6 (right).
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and f i
0 = 0.6 (right).

In Figure 9 we plot the Fickian approximations, that is approximations
computed using the method described before without the non-Fickian cor-
rection of the transition point. We observe that the transition point presents
an higher speed.
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Figure 9. The Fickian approximations.
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