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Abstract: The Fourier transforms of Laguerre functions play the same canonical
role in Wavelet analysis as do the Hermite functions in Gabor analysis. We will use
them as mother wavelets in a similar way as the Hermite functions were recently
used as windows in Gabor frames by Gröchenig and Lyubarskii. Using results due
to K. Seip concerning lattice sampling sequences on weighted Bergman spaces, we
find a sufficient condition for the discretization of the resulting wavelet transform to
be a frame. As in Gröchenig-Lyubarskii theorem, the density increases with n, when
considering frames generated by translations and dilations of the Fourier transform
of the nth Laguerre function.
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1. Introduction

One of the fundamental questions of applied harmonic analysis is to ob-
tain density conditions on the sequences required to discretize a continuous
integral transform in a way that the resulting discretization is a frame in a
certain Hilbert space. This question was sharply solved for the frames in the
Bargmann-Fock [7], [19], [20] and in the Bergmann space [23]. However, in
the cases of the Wavelet and Gabor transforms, very little is known and only
a few very special windows and analysing wavelets are understood.

The short time Fourier (Gabor) transform with respect to a gaussian win-
dow can be written in terms of the Bargmann transform, mapping isometri-
cally the space L2(R) onto the Bargmann-Fock space of entire functions. This
is the reason why everything is known about the geometry of sequences that
generate frames by sampling the Gabor transform with gaussian windows
g(t) = e−πt

2

. Apart from this example, the only cases where a description
is known of the lattice sequences that generate frames are the hyperbolic
secant g(t) = (cosh at)−1 [14] and the characteristic function of an interval
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[15], which turned out to be a nontrivial problem. There is also a necessary
condition for Gabor frames due to Ramanathan and Steger [18].

If we consider the wavelet case, things appear to be even more mysteri-
ous. There is no known counterpart of Ramanathan and Steger theorem and
the only information available so far concerns a special family of analyzing
wavelets that maps the problem into Bergmann spaces: The wavelet trans-
form, with positive dilation parameter, with respect to a wavelet of the form
(Paul´s Wavelet in some literature)

ψα(t) =

(

1

t+ i

)α+1

(1)

can be rescaled as an isometrical integral transform between spaces of ana-
lytical functions, namely, between the Hardy space on the upper half plane
H2(U) and the Bergman space in the upper half plane A2α+1(U). It is nat-
ural to refer to this isomorphism as the Bergman transform (the designation
analytic wavelet is also frequently used). Since the upper half plane can be
mapped isomorphically onto the unit disc by using linear fractional transfor-
mations, we can construct a transform mapping the Hardy space onto the
Bergman space in the unit disc.

The approaches used to deal with the special situations mentioned in the
above paragraphs are based in techniques which differ from case to case. It
seems highly desirable to follow a more structured approach. The natural
place to look for this structure is within the context of Hilbert spaces of
analytic functions, where the powerful methods from complex analysis may
answer questions that seem hopeless otherwise. Following this line of reason-
ing implies using windows that allow to carry the problem to such spaces. In
this direction a major step was taken recently by Göchenig and Lyubarskii
[10], by considering Gabor systems with Hermite functions of order n as win-
dows. They have proved that if the size of the lattice Λ is < (n+ 1)−1 then
the referred Gabor system is a frame and provided an example supporting
their conjecture that the result is sharp.

In the Bargmann-Fock setting the Hermite functions play a very special
role [9, pag. 57]. They are, up to normalization constants, pre-images,
under the Bargmann transform, of the monomials {zn} and since the latter
constitute an orthogonal basis of the Bargmann-Fock space, their pre-images
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also constitute an orthogonal basis of L2(R). That is, to the isomorphism

L2(R)
B→ F 2(C) (2)

corresponds

hn
B→ cnz

n (3)

where B is the Bargmann transform, F 2(C) is the Bargmann-Fock space,
hn are the Hermite functions and cn some constants dependent on n. They
are canonical to time-frequency analysis in an additional sense, since they
constitute the eigenfunctions of the time-frequency-localization operator with
Gaussian window [2]. The Hermite functions are eigenfunctions of the Fourier
transform and they can be used [16] to describe Feichtinger´s algebra So.

Wavelet and Gabor analysis share many similarities and many of their
structural aspects can be bound together in a more general theory using
representations of locally compact abelian groups [11], [8]. In looking for a
Wavelet-analogue of Gröchenig-Lyubarskii structured approach to the den-
sity problem, we must first clarify what functions should be used instead
of the Hermite functions. In analogy to the above paragraph it is natural
to consider the pre-images, under the Bergman transform, of the monomi-
als {zn} in the unit disc (up to an isomorphism with the upper half plane).
Since the {zn} form a basis of the weighted Bergman spaces in the unit disc
(independently of the weight), their pre-images must be an orthogonal basis
of the Hardy space H2(U) and it is reasonable to expect that such functions
will play a similar role in Wavelet analysis as do the Hermite functions in
Gabor analysis. Such functions are the Fourier transforms of the Laguerre
functions and they will be ad-hoc denoted by Sαn .

Additional structural evidence that the functions Sαn are canonical in Wavelet
analysis comes from the work of Daubechies and Paul [3], where it is shown
that they are the eigenfunctions of a differential operator that commutes with
a time–scale localization operator, once windows of the form (1) are chosen.
This completely parallels the situation with the time-frequency-localization
operators with gaussian windows, which commute with the harmonic oscil-
lator and therefore have as eigenfunctions the Hermite functions [2]. It was
observed by Seip [21] that these problems have a more natural formulation
when mapped into the convenient spaces of analytical functions.
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2. Description of the results

There exists an analogue of the correspondence between (2) and (3), but
involving four different functional spaces and the corresponding bases: To
the sequence of isomorphisms between the Hilbert spaces

L2(0,∞)
F←→ H2(U)

Berα

→ A2α+1(U)
Tα→ A2α+1(D), (4)

where A2α+1(U) and A2α+1(D) are the weighted Bergmann spaces in the
upper-half plane and in the unit disc, respectively, corresponds the relations
between the basis of the respective spaces:

lαn
F←→ Sαn

Berα

→ cαnΨ
α
n
Tα→ cαnz

n. (5)

for some constants cαn, where lαn is the nth Laguerre function of order n and
parameter α, Sαn is its Fourier transform and Ψα

n is a basis of A2α+1(U) to
be defined in section 4. This correspondence was implicit in the conection
between papers [3] and [21] but since it was not stated explicitly, we devote
section 4 to clarify how exactly does it work.

The functions Sαn were computed recently in closed form [5], but the con-
nection to the Wavelet transform seems to have been unnoticed. It is also
shown in [5] that Sαn are, up to a fractional transformation, defined in terms
of a certain system of orthogonal polynomials on the unit circle. We will
show that this family of polynomials is nothing more but the circular Ja-
cobi orthogonal polynomials for which there is, for computational purposes,
a very convenient three term recurrence formula. This connection will make
our case to call the functions Sαn the rational Jacobi orthogonal functions.

With a computational method available for evaluating the functions Sαn
and graphic evidence of their good localization properties (see for example
the plots of their real versions in page 44 of [1]), it is natural to investigate
how to use such functions as analysing wavelets and to obtain frames from
the resulting discretization. We will obtain the following sufficient condition
on the density of the parameters of the hyperbolic lattice {(ajbk, aj)}j,k∈Z:

b log a <
4π

2n+ α

that is, as in Gröchenig and Lyubarskii result [10], this density increases with
n. The proof of this sufficiently condition will be dramatically simplified with
the observation of the following ocurrence: There exist sequences of numbers
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{Cα,n} and {aα,nk } such that

Sαn (
t

2
) = Cα,n

n
∑

k=0

aα,nk ψk+α
2
(t). (6)

This is a lucky coincidence, to say the least. It will allow the use of Seip´s
results from [22] and [23] in a relatively strightforward way.

We organize our ideas as follows. The next section contains the main defini-
tions and facts concerning Wavelet transforms, Bergman spaces and Laguerre
functions. Section four contains the evaluation of the pre-images required to
build up the correspondences (4) and (5). The fifth section contains our main
results on Wavelet frames with Fourier transforms of Laguerre functions. We
conclude the paper collecting some further properties of the functions Sαn and
clarifying their classification within known families of orthogonal polynomi-
als.

3. Preparation

3.1. The Bergman transform. Now we present a sinthesis of ideas that
appeared in the section 3.2 of [11] and in [3] (see also [1, pag. 31]) Here
they will be exposed in such a way that the role of the Bergman spaces is
emphasized.

Consider the dilation and translation operators

Dsf(x) = |s|−
1

2 f(s−1x)

Txf(t) = f(t− x)

and define

ψx,s(t) = TxDsψ(t) = |s|−
1

2 ψ(
t− x
s

).

The wavelet transform of a function f , with respect to the wavelet ψ is

Wψf(x, s) = 〈f, TxDsψ(t)〉L2(R) =

∫ ∞

−∞
f(t)ψx,s(t)dt.

A function ψ ∈ L2(R) is said to be admissible if
∫ ∞

0

|Fψ(s)|2 ds
s

= K



6 LUIS DANIEL ABREU

where K is a constant. If ψ is admissible, then for all f ∈ L2(R) we have
∫ ∞

0

∫ ∞

−∞
s−2 |Wψf(x, s)|2 dxds = K ‖f‖2 (7)

We will restrict ourselves to parameters s > 0 and functions f ∈ H2(U),
where H2(U) is the Hardy space in the upper half plane U = {z = x + is :
s > 0}

H2(U) = {f : f is analytic in U and sup
0<s<∞

∫ ∞

−∞
|f(x+ is)|2 dx <∞}.

Let F denote the Fourier transform

(Ff)(t) =
1√
2π

∫ ∞

−∞
e−itxf(x)dx

By the Paley-Wiener theorem, H2(U) is constituted by the functions whose
Fourier transform is supported in (0,+∞) and belongs to L2(0,∞).

Now take the special window ψα(t) defined in (1). Since

Fψ−x,sα (t) = 1[0,∞]s
α+ 1

2 tαe−(−s+ix)t (8)

then

Wψα
f(−x, s) = sα+ 1

2

∫ ∞

0

tαeizt(Ff)(t)dt (9)

where the function defined by the integral is analytic in z = x + si. The
identity (7) gives

∫ ∫

U

|Wψα
f(−x, s)|2 s−2dxds = ‖f‖H2(R) (10)

This motivates the definition of the Bergman transform, or the analytic
wavelet transform by

Berα f(z) = s−α−
1

2Wψα
f(−x, s) (11)

where z = x + is (see for instance [12], where the authors use this Bergman
transform with the same normalization in the case α = 1). Introducing the
scale of weighted Bergman spaces

Aα(U) = {f analytic in U such that

∫ ∫

U

|f(z)|2 sα−2dxds <∞},



WAVELET FRAMES WITH FOURIER TRANSFORMS OF LAGUERRE FUNCTIONS 7

it is clear from (10) and (11) that Berα f(z) ∈ A2α+1(U). We have therefore
an isometric transformation

Berα : H2(R)→ A2α+1(U)

3.2. Fourier transforms of Laguerre functions. The Laguerre polyno-
mials will play a central role in our discussion.One way to define them is by
means of the Rodrigues formula

Lαn(x) =
exx−α

n!

dn

dxn
[

e−xxα+n
]

(12)

and this gives, in power series form

Lαn(x) =
(α+ 1)n

n!

n
∑

k=0

(−n)k
(α+ 1)k

xk

k!
.

For information on specific systems of orthogonal polynomials, we suggest
[13]. The Laguerre functions are defined as

lαn(x) = 1[0,∞](x)e
−x/2xα/2Lαn(x)

and they are known to constitute an orthogonal basis for the space L2(0,∞).
By the Paley-Wiener theorem, the Fourier transform is an isomorphism be-
tweenH2(U) and L2(0,∞). Therefore, the Fourier transform of the functions
lαn form an orthogonal basis for the space H2(U). From now on we will set

Sαn (t) = F lαn(t) (13)

The functions Sαn (t) can be evaluated explictly using (12). This was already
done by Shen in [5], where the author was interested in describing the orthog-
onal polynomials which arise from an application of the Fourier transform on
the Laguerre polynomials. A description of this method of generating new
families of orthogonal polynomials with an interesting historical account is in
the paper [17] where a link is provided between Jacobi and Meixner-Polaczek
polynomials. Following [5], we have

Sαn (t) =
Γ

(

α
2 + 1

)

(1 + α)n

n!

n
∑

k=0

(−n)k(
α
2 + 1)k

k!(α+ 1)k

(

1
1
2 − it

)k+α
2
+1

(14)
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4. Bergman transform of Sαn (t)
In this section the correspondences (4) and (5) will be established via a

direct calculation. The complex linear fractional transformations will play
an important role, in a style that is reminiscent of the way they are used
in the discrete series representation of SL(2,R) over the Bergman space [6,
chapter IX].

We first define a set of functions that, as we shall see later, constitute a
basis of Aα(U). For every n ≥ 0 and α > −1 let

Ψα
n(z) =

(

iz − 1
2

iz + 1
2

)n (

iz +
1

2

)−α−1

.

Now define a map Tα such that for every function f ∈ Aα(U) the action of
Tα is

Tαf(w) = f

[

i

2

w + 1

w − 1

](

1

1− w

)α+1

(15)

The range space of Tα is a weighted Bergman space in the unit disc. The
weighted Bergman spaces in the unit disc are denoted by Aα(D) and defined
as

Aα(D) =

{

f analytic in D such that

∫ ∫

D

|f(z)|2 (1− |z|)α−2dxdy <∞
}

.

Lemma 4.1 The map

Tα : Aα(U)→ Aα(D)

is an unitary isometry between Hilbert spaces.

Proof : Argue as in the proof of Lema 1 in [6, pag.185].

Proposition 4.1 For n = 0, 1, ..., the following relations hold:

Berα(S2α
n ) = cαnΨ

α
n , with cαn = (−1)α+1(2α+ n)!/n! (16)

and, for |z| < 1,

Tα(Ψ
α
n) = zn (17)

In other words, the function S2α
n is the pre-image, under Tα ◦

(

1
cαn
Berα

)

, of

zn ∈ Aα(D).
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Proof : Using the Plancherel theorem for the Fourier transform, formula (8)
and (13) we have

Berα S2α
n (z) = s−α−

1

2

∫ ∞

−∞
S2α
n (t)ψ−x,sα (t)dt

= −
∫ ∞

0

e−(iz+ 1

2
)tt2αL2α

n (t)dt

Applying Rodrigues formula (12) for the Laguerre polynomials, the result is

Berα S2α
n (z) =

(−1)α+1

n!
L

[

dn

dxn
[

e−xx2α+n
]

]

(iz − 1

2
)

= cαnΨ
2α
n (z),

where L stands for the Laplace transform, whose well known properties es-
tablish the last identity. Now, the linear fractional transformation

w =
2z + i

2z − i =
iz − 1

2

iz + 1
2

is an analytic isomorphism between the upper half plane and the unit circle.
Since the inverse of this transformation is given by

z =
i

2

w + 1

w − 1
,

a short calculation with the definition of Tα gives (17).

Corollary 1. {Ψα
n(z)} is a basis of Aα(U) and the map Tα is an unitary

isomorphism between Aα(U) and Aα(D).

Proof : Since {zn} is an orthogonal basis of the space Aα(D) [6, pag. 186]
and it is contained in the range of Tα, Tα is onto and therefore an unitary
isomorphism.The functions {Ψα

n(z)} form a basis for the space Aα(U) since
they are the pre-images of the basis {zn}.

As a consequence we obtain a new proof of the (known) isomorphic property
of the Bergman transform.

Corollary 2. The transform Berα : H2(R) → A2α+1(U) is an isometric
isomorphism.

Proof : The isometry is a consequence of the isometric property of the wavelet
transform, so we need only to prove that the Ber

α
2 is onto. But in view of the
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preceding result, the range of Ber
α
2 contains a basis of Aα(U). Therefore,

Ber
α
2 is onto.

Remark 1. Similar calculations as we have seen here also play a role in
[4], in the context of Laplace transformations and group representations and
in [3], to obtain an explicit formula for the eigenvalues of the time-scale
localization operator.

5. Wavelet frames with Fourier transforms of Laguerre

functions

We wish to construct wavelet frames with analysing wavelets Sαn , by us-
ing the common discretization of the continuous wavelet transform via the
hyperbolic lattice. A sequence of functions {ej} is said to be a frame in a
Hilbert space H if there exist constants A and B such that

A ‖f‖2 ≤
∑

j

|〈f, ej〉|2 ≤ B ‖f‖2 . (18)

Discretizing the scale parameter s in the Wavelet transform by a sequence
aj and the parameter x by ajbk gives

Wψf(ajbk, aj) = 〈f, TajbkDajψ〉 . (19)

We want to know conditions in a and b under which {TajbkDajψ} is a frame,
for a given wavelet ψ.

In spaces of analytic functions a related concept to frames is the one of
a set of sampling. A set Γ = {zj} is said to be a set of sampling for the
Bergman space Aα(U) if there exist positive constants A and B such that

A

∫ ∫

U

|f(z)|2 yα−2dxdy ≤
∑

j

|f(zj)|2 yαj ≤ B

∫ ∫

U

|f(z)|2 yα−2dxdy (20)

The following theorem is due to Seip [22].
Theorem A Let Γ(a, b) = {zjk}j,k∈Z, where zjk = aj(bk + i). Γ(a, b) is a

set of sampling for Aα(U) if and only if b log a < 4π
α−1.

Remark 2. Observe that {TajbkDajψα}j,k∈Z is a frame of H2(U) iff Γ(a, b) =
{z = ajbk + aji}j,k∈Z is a set of sampling for A2α+1(U). Indeed, since func-
tions in A2α+1(U) can be identified with Berα transforms of H2(U) functions,
it follows from (20) and (11) that Γ(a, b) is a set of sampling for A2α+1(U)
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if and only if

A

∫ ∫

U

|Wψα
f(x, s)|2 dxds

s2
≤

∑

j,k

∣

∣Wψα
f(ajbk, aj)

∣

∣

2 ≤ B

∫ ∫

U

|Wψα
f(x, s)|2 dxds

s2

using (10) this is equivalent to

A ‖f‖2H2(U) ≤
∑

j,k

|〈f, TajbkDajψα〉|2 ≤ B ‖f‖2H2(U)

which says that {TajbkDajψα}j,k is a frame in H2(U).

The next Lemma is crucial and it is just a simple modification of the
representation (14).

Lemma 5.2 The functions Sαn can written as the linear combination (6)
of analysing wavelets ψk+α

2
(t) defined by (1) with the coefficients Cα,n and

aα,nk given as

Cα,n =
Γ

(

α
2

+ 1
)

(1 + α)n

n!

aα,nk = (2i)k+
α
2
+1(−n)k(

α
2 + 1)k

k!(α+ 1)k
.

Our sufficient density result follows from Theorem A and Lemma 2.

Theorem 1. If b log a < 4π
2n+α, then {TajbkDajSαn ( t2)}j,k is a frame of H2(U).

Proof : The definition of the Wavelet transform gives, using (6),

WSα
n ( t

2
)f(−x, s) =

〈

f, T−xDsS
α
n (
t

2
)

〉

= Cα,n
n

∑

k=0

aα,nk
〈

f, T−xDsψk+α
2

〉

= Cα,n
n

∑

k=0

aα,nk Wψk+ α
2

f(−x, s).

Therefore, defining the function F (z) as

F (z) = s−n−
α
2
− 1

2WSα
n ( t

2
)f(−x, s)

we can write

F (z) = Cα,n
n

∑

k=0

aα,nk sk−nBerk+
α
2 f(z)
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Since Berk+
α
2 f ∈ A2k+α+1(U), it is clear that sk−nBerk+

α
2 f(z) ∈ A2n+α+1(U)

for all k < n and this is sufficient to assure that F ∈ A2n+α+1(U). Since, by
hypothesis, b log a < 4π

2n+α
, then Γ(a, b) is a set of sampling for A2n+α+1(U).

From this we infer that F verifies the inequality

A

∫ ∫

U

|F (z)|2 s2n+α−1dxds ≤
∑

j

|F (zj)|2 s2n+α+1
j ≤ B

∫ ∫

U

|F (z)|2 s2n+α−1dxds

(21)
or

A

∫ ∞

0

∫ ∞

−∞

∣

∣

∣
WSα

n ( t
2
)f(−x, s)

∣

∣

∣

2

s−2dxds (22)

≤
∑

j,k

∣

∣

∣
WSα

n ( t
2
)f(ajbk, aj)

∣

∣

∣

2

≤ B

∫ ∞

0

∫ ∞

−∞

∣

∣

∣
WSα

n ( t
2
)f(−x, s)

∣

∣

∣

2

s−2dxds

taking into account that Sαn ( t
2
) is admissible, we can apply (7) and (19) to

write the above inequalities as

A ‖f‖2 ≤
∑

j,k

∣

∣

∣

∣

〈

f, TajbkDajSαn (
t

2
)

〉∣

∣

∣

∣

2

≤ B ‖f‖2

and conclude that {TajbkDajSαn ( t2)}j,k is a frame.

Remark 3. Theorem 2 parallels Theorem 3.1 in [10], which states that, in
the case of the uniform lattice for the time-frequency plane, if the size of
the lattice Λ is < (n + 1)−1 then the Gabor system {e2πiλ2tHn(t − λ1) : λ =
(λ1, λ2) ∈ Λ}, where Hn stands for the Hermite function of order n, is a
frame for L2(R). In particular, if one is dealing with the Von Neumann
lattice with parameters a and b, the condition is ab < (n+ 1)−1.

It is possible to state an analogue of Theorem 2 in terms of the deeper
Beurling type density results from [23]. In order to do this we need some
definitions. Define the pseudohyperbolic metric on the unit disk by ̺(z, ζ) =
∣

∣

∣

z−ζ
1−ζz

∣

∣

∣
. A sequence Γ = {zj} ⊂ D is separated if infn 6=j

∣

∣

∣

zj−zn

zj−zn

∣

∣

∣
> 0 and its

lower density D− is given by

D−(Γ) = lim
r→1

inf inf
z

∑

̺(zj,z)<r
(1− ̺(zj, z))

log 1
1−r

The next Theorem is from [23]:
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Theorem B A separated sequence Γ ⊂ D is a sampling sequence for Aα(D)
iff D−(Γ) > α

2 .
From this we obtain the following, with the same proof as in Theorem 1.

Theorem 2. Let Γ ⊂ D denote a uniformed separated sequence obtained
from mapping the sequence {zk,j = ak + ibj} ⊂ U into the unit disk via a
Cayley transform. If D−(Γ) > n + α+1

2 then {Tak
DbjS

α
n ( t2)}j,k is a frame of

H2(U)

Remark 4. Observe that combining the Paley-Wiener with the Plancherel
theorem, we have ‖f‖H2(U) = ‖f‖L2(0,∞) and the results of Theorem 1 and 2

say also that we have a frame for L2(0,∞).

6. Further properties of the functions Sαn (t)
The notation

F (a, b; c; x) =

∞
∑

k=0

(a)k(b)k
k!(c)k

xk.

for the hypergeometric function is used in this section. Rewriting Sαn in this
notation gives

Sαn (t) = Cα,n

(

1

2
− it

)−α
2
−1

F (−n, α
2

+ 1;α+ 1;
1

1
2 − it

)

(observe that the infinite sum becomes a polynomial of order n, since (−n)k =
0 if k > 0). Composing the functions Sαn (t) with the fractional linear trans-
formation

z =
2t− i
2t+ i

(23)

the result is

Sαn (t) = Γ
(α

2
+ 1

)

(1− z)α
2
+1gαn(z) (24)

where

gαn(z) =
(α/2)n
n!

F (−n, α
2

+ 1;−n− α/2 + 1; z)

is a polynomial in z of degree n. This was pointed out in [5]. It was also
shown that these polynomials satisfy the orthogonality

∫

|z|=1

gαn(z)g
α
n(z) |1− z|α

dz

z
= 0 if m 6= n (25)
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and therefore are orthogonal on the unit circle with respect to the weight

w(z) = sinα
θ

2
dθ. (26)

This fact implies many properties, since there exists a very rich theory for
orthogonal polynomials on the unit circle (see [24] and references therein and
also chapter 8 of [13]). For example, the general theory assures that all the
zeros of gαn(z) lay within the unit disc.

Remark 5. Setting a = α
w in Example 8.2.5 at [13], and using the identity

1− eiθ = 4 sin2 θ
2 to write the measure (8.2.21) as (26) we recognize that the

polynomials gαn(z) are, up to a normalization, a family of orthogonal polyno-
mials on the unit circle known as the circular Jacobi orthogonal polynomials.

Remark 6. From (25) the functions z−
1

2 (1− z)α
2 gαn(z) are orthogonal on the

circle and form a basis of the Hardy space on the unit disc

H2(D) = {f : f is analytic in D and sup
r<1

∫ 2π

0

∣

∣f(reit)
∣

∣

2
dt <∞}

it is also clear that Sαn (t) are orthogonal on the real line (the boundary of the
upper half place). Since gαn(z) are the circular Jacobi orthogonal polynomials,

the basis functions z−
1

2 (1− z)α
2 gαn(z) are the circular Jacobi orthogonal func-

tions and it is therefore natural to call Sαn (t) the rational Jacobi orthogonal
functions.

Remark 7. From the general theory [13, (8.2.10)] follows that, if κn is the
leading coefficient of the polynomial, then the sequence of polynomials {gαn(z)}
satisfies a three term recurrence relation

κng
α
n(0)gαn+1(z) + κn−1g

α
n+1(0)zgαn−1(z)

= [κng
α
n+1(0) + κn+1g

α
n(0)z]gαn(z)

where κn is the leading coefficient of the polynomial. From the explicit rep-
resentation of the polynomials gαn(z) it is easily seen that

κn =
(α2 + 1)n

n!

φn(0) =
α(α2 + 1)n−1

2n!
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This three term recurrence relation provides a effective method for computa-
tional purposes: To evaluate the functions Sαn (t) it is sufficient to combine
this recurrence relation with formulas (23) and (24).
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