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A LOGIC OF ORTHOGONALITY

JIŘÍ ADÁMEK, MICHEL HÉBERT AND LURDES SOUSA

This paper was inspired by the hard-to-believe fact that Jiř́ı Rosický is getting sixty. We are happy

to dedicate our paper to Jirka on the occasion of his birthday.

Abstract: A logic of orthogonality characterizes all “orthogonality consequences”
of a given class Σ of morphisms, i.e. those morphisms s such that every object
orthogonal to Σ is also orthogonal to s. A simple four-rule deduction system is
formulated which is sound in every cocomplete category. In locally presentable
categories we prove that the deduction system is also complete (a) for all classes
Σ of morphisms such that all members except a set are regular epimorphisms and
(b) for all classes Σ, without restriction, under the set-theoretical assumption that
Vopěnka’s Principle holds. For finitary morphisms, i.e. morphisms with finitely
presentable domains and codomains, an appropriate finitary logic is presented, and
proved to be sound and complete; here the proof follows immediately from previous
joint results of Jǐŕı Rosický and the first two authors.

1. Introduction

The famous “orthogonal subcategory problem” asks whether, given a class
Σ of morphisms of a category, the full subcategory Σ⊥ of all objects or-
thogonal to Σ is reflective. Recall that an object is orthogonal to Σ iff its
hom-functor takes members of Σ to isomorphisms. In the realm of locally
presentable categories for the orthogonal subcategory problem

(a) the answer is affirmative whenever Σ is small – more generally, as
proved by Peter Freyd and Max Kelly [7], it is affirmative whenever
Σ = Σ0 ∪ Σ1 where Σ0 is small and Σ1 is a class of epimorphisms,

and

(b) assuming the large-cardinal Vopěnka’s Principle, the answer remains
affirmative for all classes Σ, as proved by the first author and Jǐŕı
Rosický in [3].
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The problem to which the present paper is devoted is “dual”: we study
the orthogonality consequences of classes Σ of morphisms by which we mean
morphisms s such that every object of Σ⊥ is also orthogonal to s. Example: if
Σ⊥ is reflective, then all the reflection maps are orthogonality consequences of
Σ. Another important example: given a Gabriel-Zisman category of fractions
CΣ : A → A[Σ−1], then every morphism which CΣ takes to an isomorphism
is an orthogonality consequence of Σ. In Section 2 we recall the precise
relationship between Σ⊥ and A[Σ−1].

We formulate a very simple logic for orthogonality consequence (inspired
by the calculus of fractions and by the work of Grigore Roçu [12]) and prove
that it is sound in every cocomplete category. That is, whenever a morphism
s has a formal proof from a class Σ, then s is an orthogonality consequence
of Σ. In the realm of locally presentable categories we also prove that our
logic is complete, that is, every orthogonality consequence of Σ has a formal
proof, provided that

(a) Σ is small – more generally, completeness holds when-
ever Σ = Σ0 ∪ Σ1 where Σ0 is small and Σ1 is a class of
regular epimorphisms

or
(b) Vopěnka’s Principle is assumed.

(We recall Vopěnka’s Principle in Section 4.) In fact the completeness of our
logic for all classes of morphisms will be proved to be equivalent to Vopeňka’s
Principle. This is very similar to results of Jǐŕı Rosický and the first author
concerning the orthogonal subcategory problem, see 6.24 and 6.25 in [3].

Our logic is quite analogous to the Injectivity of [4] and [1], see also [12].
There a morphism s is called an (injectivity) consequence of Σ provided that
every object injective w.r.t. members of Σ is also injective w.r.t. s. Recall
that an object is injective w.r.t. a morphism s iff its hom-functor takes s
to an epimorphism. Recall further from [1] that the deduction system for
Injectivity has just three deduction rules:
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transfinite

composition

si (i < α)
t

if t is an α-composite of the si’s

pushout
s
t

if

s //

�� ��

t
//

is a pushout

cancellation
u · t
t

We recall the concept of α-composite in 3.2 below.
In locally presentable categories the corresponding logic is complete and

sound for sets Σ of morphisms, as proved in [1]. But the Injectivity is not
complete for classes Σ of morphisms in any set theory – unlike the case of
Orthogonality Logic. We give an (absolute) counter-example at the end of
our present paper.

Now both transfinite composition and pushout are sound rules for
orthogonality too. In contrast, cancellation is not sound and has to be
substituted by the following weaker form:

weak

cancellation

u · t v · u
t

Further we have to add a fourth rule in case of orthogonality:

coequalizer
s
t

if
f

//

g
//

t // is a coequalizer
such

that f · s = g · s

We obtain a 4-rule deduction system for which the above completeness results
(a) and (b) will be proved.

The above logics are infinitary, in fact, transfinite composition is a
scheme of deduction rules, one for every ordinal α. We also study the cor-
responding finitary logics by restricting ourselves to sets Σ of finitary mor-
phisms, meaning morphisms with finitely presentable domain and codomain.
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Both in the injectivity case and in the orthogonality case one simply replaces
transfinite composition by two rules:

identity
idA

and

composition s1 s2

t
if t = s2 · s1

This finitary logic is proved to be sound and complete for sets of finitary
morphisms. In fact, in [10] a description of the category of fractions Aω[Σ−1]
(see 2.4) as a dual to the theory of the subcategory Σ⊥ is presented; our
proof of completeness of the finitary logic is an easy consequence.

The result of Peter Freyd and Max Kelly mentioned at the beginning goes
beyond locally presentable categories, and also our preceding paper [1] is
not restricted to this context. Nonetheless, the present paper studies the
orthogonality consequence and its logic in locally presentable categories only.

2. Finitary Logic and the Calculus of Fractions

2.1. Assumption Throughout the paper A denotes a locally presentable
category in the sense of Gabriel and Ulmer; the reader may consult the
monograph [3]. A locally presentable category is a cocomplete category A
such that, for some infinite cardinal λ, there exists a set

Aλ

of objects representing all λ-presentable objects up-to an isomorphism and
such that a completion of Aλ under λ-filtered colimits is all of A. The
category A is then said to be locally λ-presentable. Recall that a theory of a
locally λ-presentable category A is a small category T with λ-small limits∗

such that A is equivalent to the category

Contλ(T )

of all set-valued functors on T preserving λ-small limits. For every locally λ-
presentable category it follows that the dual Aop

λ of the above full subcategory

∗Limits of diagrams of less than λ morphisms are called λ-small limits. Analogously λ-wide
pushouts are pushouts of less than λ morphisms.
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is a theory of A:

A ∼= Contλ(A
op
λ ).

Morphisms with λ-presentable domain and codomain are called λ-ary mor-
phisms.

2.2. Notation (i) For every class Σ of morphisms of A we denote by

Σ⊥

the full subcategory of all objects orthogonal to Σ. If Σ is small, this sub-
category is reflective, see e.g. [7].

(ii) We write Σ |= s for the statement that s is an orthogonality consequence
of s, in other words, Σ⊥ = ({s} ∪ Σ)⊥.

(iii) We denote, whenever Σ⊥ is reflective, by

RΣ : A → Σ⊥

a reflector functor and by ηA : A → RΣA the reflection map; without loss of
generality we will assume RΣηA = idRΣA = ηRΣA.

2.3. Observation If Σ⊥ is a reflective subcategory, then orthogonality conse-
quences of Σ are precisely the morphisms s such that RΣs is an isomorphism.

In fact, if s : A → B is an orthogonality consequence of Σ, then RΣA is
orthogonal to s, which yields a commutative triangle

A
s //

ηA ""D
DDD

DD
DD

B

u||yy
yy

yyy
y

RΣA

The unique morphism ū : RΣB → RΣA with ū · ηB = u is inverse to RΣs:
this follows from the diagram

A
s //

ηA ""D
DDD

DD
DD

B
u

||yy
yy

yyy
y ηB

""E
EEEE

EEE

RΣA
RΣs

// RΣB
ūoo

Conversely, if s : A → B is turned by RΣ to an isomorphism, then every
object X orthogonal to Σ is orthogonal to s: given f : A → X we have a
unique f̄ : RΣA → X with f = f̄ · ηA, and we use f̄ · (RΣs)−1 · ηB : B → X.
It is easy to check that this is the unique factorization of f through s.
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2.4. Remark The above observation shows a connection of the orthogonality
logic with the calculus of fractions of Peter Gabriel and Michel Zisman [8],
see also Section 5.2 in [5].

Given a class Σ of morphisms in A, its category of fractions is a category
A[Σ−1] together with a functor

CΣ : A → A[Σ−1]

universal w.r.t. the property that CΣ takes members of Σ to isomorphisms.
(That is, if a functor F : A → B takes members of Σ to isomorphisms, then
there exists a unique functor F̄ : A[Σ−1] → B with F = F̄ · CΣ.)

The category of fractions is unique up-to isomorphism of categories when-
ever it exists, and it does exist if Σ is small, see [5], 5.2.2.

2.5. Example (see [5], 5.3.1) For every reflective subcategory B of A, R :
A → B the reflector, put Σ = {s |Rs is an isomorphism}. Then B = Σ⊥ ≃
A[Σ−1]. More precisely, there exists an equivalence E : A[Σ−1] → Σ⊥ such
that E · CΣ = R = RΣ.

2.6. Example (see [6]) In the category Ab of abelian groups consider the
single morphism

Σ = {Z → 0}

where Z is the group of integers. Then clearly

Σ⊥ = {0}.

Observe that

Ab[Σ−1] 6∼= {0}

because the coreflector F : Ab → Abt of the full subcategory Abt of all
torsion groups takes Z → 0 to an isomorphism, but F is the identity functor
on Abt. This of course implies that CΣ : Ab → Ab[Σ−1] is monic on Abt.

2.7. Definition (see [8]) A class Σ of morphisms is said to admit a left
calculus of fractions provided that

(i) Σ contains all identity morphisms,
(ii) Σ is closed under composition,
(iii) for every span

s //

f
��

with s ∈ Σ
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there exists a commutative square

s //

f
��

f ′

��

s′
//

with s′ ∈ Σ

and

(iv) for every parallel pair f, g equalized by a member s of Σ there exists
a member s′ of Σ coequalizing the pair:

s //
f

//

g
//

s′ //

2.8. Theorem (see [10], IV.2) Let Σ be a set of finitary morphisms of a
locally finitely presentable category A. If Σ admits a left calculus of fractions
in the subcategory Aω, then Σ⊥ is a locally finitely presentable category whose
theory is dual to Aω[Σ−1].

More precisely: Let CΣ : Aω → Aω[Σ−1] be the canonical functor from
Aω into the category of fractions of Σ in Aω, see 2.4. Then there exists an
equivalence functor

J : Contω(Aω[Σ−1]op) → Σ⊥

such that for the inclusion functor I : Aω → A and the Yoneda embedding
Y : Aω[Σ−1] → Contω(Aω[Σ−1]op) the following diagram

Aω
CΣ //

� _

I

��

Aω[Σ−1]
� _

Y
��

Contω(Aω[Σ−1]op)

J
��

A
RΣ // Σ⊥

(2.1)

commutes.

2.9. Corollary Let Σ admit a left calculus of fractions in Aω. Then the
orthogonality consequences of Σ in Aω are precisely the finitary morphisms
s such that CΣs is an isomorphism.
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In fact, since J ·Y is a full embedding, we know that CΣs is an isomorphism
iff (J · Y · CΣ)s is one, thus, this follows from Observation 2.3.

2.10. Example (refer to 2.6) For Σ = {Z → 0}, the smallest class Σ0 in
Ab (resp., in Abω) containing Σ and admitting a left calculus of fractions
is the class of all (resp., all finitary) morphisms which are identities or have
codomain 0. One sees easily that Ab[Σ−1

0 ] = {0} = Abω[Σ−1
0 ] = Σ⊥

0 = Σ⊥.

2.11. Remark In a finitely cocomplete category A for every set Σ of finitary
morphisms there is a canonical extension of Σ to a set Σ′ admitting a left
calculus of fractions in Aω: let Σ′ be the closure in Aω of

Σ ∪ {idA}A∈Aω

under
(a) composition
(b) pushout

and
(c) “weak coequalizers” in the sense that Σ′ contains, for every pair f, g :

A → B, a coequalizer of f, g whenever f · s = g · s for some member s of Σ′.
We will see in Observation 2.16 below that Σ and Σ′ have the same orthog-
onality consequences.

2.12. Theorem (see [5], 5.9.3) If a set Σ admits a left calculus of fractions,
then the class of all morphisms taken by CΣ to isomorphisms is the smallest
class Σ′ containing Σ and such that given three composable morphisms

t // u // v //

with u · t and v · u both in Σ′, then t lies in Σ′.

2.13. Remark Apply the above theorem to Σ′ of Remark 2.11: if Σ′′ denotes
the closure of Σ′ under “weak cancellation” in the sense that from u · t ∈ Σ′′

and v · u ∈ Σ′′ we derive t ∈ Σ′′, then Σ′′ is precisely the class taken by CΣ

to isomorphisms. This leads us to the following

2.14. Definition The Finitary Orthogonality Deduction System consists of
the following deduction rules:
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identity
idA

composition
s1 s2

s2 · s1
if s2 · s1 is defined

pushout
s
t

if
s //

�� ��

t
//

is a pushout

coequalizer
s
t

if
g

//

f
// t // is a coequal-

izer and f ·s =
g · s

weak cancellation
u · t v · u

t

We say that a morphism s can be proved from a set Σ of morphisms using
the Finitary Orthogonality Logic, in symbols

Σ ⊢ s

provided that there exists a formal proof of s from Σ using the above five
deduction rules (in Aω).

2.15. Remark A formal proof of s is a finite list

t1, t2, . . . , tk

of finitary morphisms such that s = tk and for every i = 1, . . . , k either ti ∈ Σ,
or ti is the conclusion of one of the deduction rules whose assumptions lie in
the set {t1, . . . , ti−1}.

For a locally presentable category the Finitary Orthogonality Logic is the
application of the relations ⊢ and |= to finitary morphisms of A.

2.16. Observation In every finitely cocomplete category the Finitary Or-
thogonality Logic is sound: if a finitary morphism s has a proof from a set Σ
of finitary morphisms then s is an orthogonality consequence of Σ. Shortly:

Σ ⊢ s implies Σ |= s.
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It is sufficient to check individually the soundness of the five deduction
rules. Every object X is clearly orthogonal to idA; and it is orthogonal to
s2 · s1 whenever X is orthogonal to s1 and s2. The soundness of the pushout
rule is also elementary:

s //

�� ��
∃!

��1
11

11
11

11
11

11

t //

∀ ''NNNNNNNNNNNNN

  @
@

@
@

X

Suppose t is a coequalizer of f, g : A → B and let f ·s = g ·s. Whenever X
is orthogonal to s, it is orthogonal to t. In fact, given a morphism p : B → X,

A′ s // A
g

//

f
//
B

t //

p
��

B′

~~}
}

}
}

X

then from p · f · s = p · g · s it follows that p · f = p · g (due to X ⊥ s) and
thus p uniquely factors through t = coeq(f, g).

Finally, let X be orthogonal to u · t and v · u,

A
t //

p   @
@@

@@
@@

B

r′

���
�
�

r
��

u // C
q

~~}}
}}

}}
}

v // D

w′

wwn n n n n n n nw

wwnnnnnnnnnnnnnnn

X

then we show X ⊥ t. Given p : A → X there exists q : C → X with
p = q · (u · t). Then r = q · u fulfils p = r · t. Suppose r′ fulfils p = r′ · t. We
have, since X ⊥ v ·u, a unique w : D → X with r = w · v ·u and a unique w′

with r′ = w′ · v · u. The equality w · v · u · t = w′ · v · u · t implies w · v = w′ · v,
thus,

r = w · v · u = w′ · v · u = r′.

2.17. Theorem In locally finitely presentable categories the Finitary Or-
thogonality Logic is complete:

Σ |= s implies Σ ⊢ s.

for all sets Σ ∪ {s} of finitary morphisms.
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Proof Let s be an orthogonality consequence of Σ in Aω and let Σ̄ be the
set of all finitary morphisms that can be proved from Σ; we have to verify
that s ∈ Σ̄. Due to the first four deduction rules, Σ̄ clearly admits a left
calculus of fractions in Aω. Hence CΣ̄s is, by Corollary 2.9, an isomorphism.
Theorem 2.12 implies (due to weak cancellation) that s ∈ Σ̄.

2.18. Example demonstrating that we cannot, for the finitary orthogonality
logic, work entirely within the full subcategory Aω: let us denote by

Σ |=ω s

the statement that every finitely presentable object X ∈ Σ⊥ is orthogonal to
s. Then it is in general not true that, given a set of finitary morphisms Σ,
then Σ |=ω s implies Σ ⊢ s.

Let A = Rel(2, 2) be the category of relational structures on two binary
relations α and β. We denote by
∅ the initial (empty) object,
1 a terminal object (a single node which is a loop of α and β),
T a one-element object with α = ∅ and β a loop

and, for every prime p ≥ 3, by
Ap the object on {0, 1, . . . , p− 1} whose relation β is a clique (that is, two

elements
are related by β iff they are distinct) and the relation α is a cycle of length

p with
one additional edge from 1 to 0:

p − 2

zzvvv
vv

vv
vv

3

p − 1

$$I
IIIII

IIII 2

]]<<<<<<<<

0
//
1

@@��������
oo

. . .

Consider the set Σ of finitary morphisms given by

Σ = {u, v} ∪ {∅ → Ap; p ≥ 3 a prime}

where u : T → 1 and v : 1+1 → 1 are the unique morphisms. Orthogonality
of a relational structure X to Σ implies that every loop of the relation β is a
joint loop of both relations (due to u) and such a loop is unique (due to v).
Moreover, the given object X has a unique morphism from each Ap. If X
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is finitely presentable (i.e., in this case, finite), then one of these morphisms
f : Ap → X is not monic; given i 6= j with f(i) = x = f(j), then x is a loop
of β in X (recall that β is a clique in Ap), thus, X has a unique joint loop
of α and β, in other words, a unique morphism 1 → X. Consequently, X is
orthogonal to ∅ → 1. This proves

Σ |=ω (∅ → 1).

However ∅ → 1 cannot be deduced from Σ in the Finitary Deduction System
because the object

Y =
∐

p ≥ 3
p prime

Ap

is orthogonal to Σ but not to ∅ → 1. In fact, Y has no loop of β, thus, Y
is orthogonal to u and v. Furthermore for every prime p ≥ 3 the coproduct
injection ip : Ap → Y is the only morphism in hom(Ap, Y ). In fact, due to
the added edge 1 → 0 a morphism f : Ap → Y necessarily takes {0, 1} ⊆ Ap

onto {0, 1} ⊆ Aq for some q. Since p and q are primes and f restricts to a
mapping of a p-cycle into a q-cycle, it is obvious that p = q. And it is also
obvious that Ap has no endomorphisms mapping {0, 1} into itself except the
identity – consequently, f = ip.

3. General Orthogonality Logic

3.1. Remark (i) Recall our standing assumption that A is a locally pre-
sentable category. We will now present a (non-finitary) logic for orthogonal-
ity and prove that it is always sound, and that for sets of morphisms it is
also complete. We will actually prove the completeness not only for sets, but
also for classes Σ of morphisms which are presentable, i.e., for which there
exists a cardinal λ such that every member s : A → B of Σ is a λ-presentable
object of the slice category A ↓ A. The completeness of our logic for all
classes Σ of morphisms is the topic of the next section.

(ii) We recall the concept of a transfinite composition of morphisms as used
in homotopy theory. Given an ordinal α (considered, as usual, as the chain
of all smaller ordinals), an α-chain in A is simply a functor C from α to A.
It is called smooth provided that C preserves directed colimits, i.e., if i < α
is a limit ordinal then Ci = colimj<i Cj.

3.2. Definition Let α be an ordinal. A morphism h is called an α-composite
of morphisms hi(i < α), where α is an ordinal, provided that there exists a
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smooth α-chain Ai(i ≤ α) such that h is the connecting morphism A0 → Aα

and each hi is the connecting morphism Ai → Ai+1 (i < α).

3.3. Examples (1) An ω-composite of a chain

A0
h0 // A1

h1 // A2
h2 // . . .

is, for any colimit cocone ci : Ai → C (i < ω) of the chain, the morphism
c0 : A0 → C.

(2) A 2-composite is the usual concept of a composite of two morphisms.
(3) Any identity morphism is the 0-composite of a 0-chain.

3.4. Definition The Orthogonality Deduction System consists of the follow-
ing deduction rules.

transfinite

composition

si (i < α)
t

if t is an α-composite of the si’s

pushout
s
t

if

s //

�� ��

t
//

is a pushout

coequalizer
s
t

if
f

//

g
//

t
// is a coequalizer

and
f · s = g · s

weak

cancellation

u · t v · u
t

We say that a morphism s can be proved from a class Σ of morphisms in
the Orthogonality Logic, in symbols

Σ ⊢ s

provided that there exists a formal proof of s from Σ using the above deduc-
tion rules.

3.5. Remark (1) The deduction rule transfinite composition is, in fact,
a scheme of deduction rules: one for every ordinal α.
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(2) A proof of s from Σ is a collection of morphisms ti (i ≤ α) for some
ordinal α such that s = tα and for every i ≤ α either ti ∈ Σ, or ti is the
conclusion of one of the deduction rules above whose assumptions lie in the
set {tj}j<i.

(3) The λ-ary Orthogonality Deduction System is the deduction system
obtained from 3.4 by restricting transfinite composition to all ordinals
α < λ. We obtain the λ-ary Orthogonality Logic by applying this deduction
system to λ-ary morphisms, see 2.1. In the λ-ary Orthogonality Logic the
proofs are also restricted to those of length α < λ.

Example: if λ = ω we get precisely the Finitary Orthogonality Logic of
Section 2.

3.6. Examples Other useful sound rules for orthogonality consequence can
be derived from the above deduction system. Here are some examples:

(i) The 2-out-of-3 rule: in a commutative triangle

A
t

��~~
~~

~~
~ s

��@
@@

@@
@@

B u
// C

any morphism can be derived from the remaining two. In fact

{t, u} ⊢ s by composition,
{u, s} ⊢ t by weak cancellation (put v = id),

and to prove

{t, s} ⊢ u by weak cancellation (put v = id)

form a pushout of t and s:

A
t //

s
��

B

s̄
��

u

��0
0

0
0

0
0

0
0

C
t̄ //

idC ''PPPPPPPP D r

  @
@

@
@

C
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We obtain a unique morphism r as indicated. Observe that due to r · t̄ = id
the diagram

D
t̄·r //

id
// D

r // C

is a coequalizer with the parallel pair equalized by t̄. Thus we have

t s
pushout

t̄ s̄
coequalizer

r
composition

u = r ·
s̄

(ii) A coproduct t + t′ : A + B → A′ + B′ can be derived from t and t′.
This follows from the pushouts along coproduct injections (denoted by ):

A
t //

��

��

A′

��

��

A + B
t+idB

// A′ + B

B
t′ //

��

��

B′

��

��

A′ + B
idA′ +t′

// A′ + B′

Thus we have

t t′
pushout

t + idB idA′ +t′
composition

t+t′ = (idA′ +t′) ·(t+
idB)

(iii) More generally:
∐

i∈I ti can be derived from {ti}i∈I . This follows easily
from (ii) and transfinite composition.

(iv) Given two parallel pairs, a natural transformation with components
s1, s2 between them and a colimit t of that natural transformation between
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their coequalizers:

A1

s1
��

f
//

g
// A2

s2
��

c // C

t
��

A′
1

f ′

//

g′
// A′

2
c′ // C ′

(where c = coeq(f, g) and c′ = coeq(f ′, g′)), then t can be deduced from the
components of the natural transformations,

{s1, s2} ⊢ t.

In fact, form a pushout P of s2 and c and denote by u : P → C ′ the obvious
factorization morphism:

A1

s1

��

f
//

g
// A2

s2

��

c // C

t

��

s̄2

~~~~
~~

~~
~~

P

q
���
�
�

u

��/
//

//
//

//
//

//
//

/

Q

A′
1

f ′

//

g′
// A′

2 c′
//

c̄

GG����������������

C ′

v
__?

?
?

?

Then u is a coequalizer of c̄ · f ′ and c̄ · g′. (In fact, given q : P → Q merging
that pair, then q · c̄ merges f ′, g′, thus, there exists v with q · c̄ = v · c′. Since
c̄ is an epimorphism, this implies q = v · u. The uniqueness of v is clear:
suppose q = w · u, then w · c′ = w · u · c̄ = q · c̄ = v · c′, thus, w = v.) The
above diagram shows that s1 equalizes c̄ · f ′ and c̄ · g′:

(c̄ · f ′) · s1 = c̄ · s2 · f = s̄2 · c · f = s̄2 · c · g = c̄ · s2 · g = (c̄ · g′) · s1.

Consequently we have

s1 s2 by coequalizer and pushout

u s̄2

by composition

t
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(v) More generally: For any small category D, given diagrams D1, D2 :
D → A and given a natural transformation between them

sX : D1X → D2X for X ∈ objD

then its colimit t : colimD1 → colimD2 can be derived from its components:

{sX}X∈objD ⊢ t.

This follows easily from (iii) and (iv) by applying the standard construction
of colimits by means of coproducts and coequalizers ([11]).

(vi) In a commutative diagram

A1

f

~~}}
}}

}}
}}

}}
}}

}}
}}

}}
}}

}
s1
��

g

  A
AA

AA
AA

AA
AA

AA
AA

AA
AA

AA

A′
1

p

~~~~
~~

~~
~ q

  @
@@

@@
@@

A2
s2 //

ḡ

!!B
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
A′

2

q̄   A
AA

AA
AA

A
A′

3

p̄~~}}
}}

}}
}}

A3
s3oo

f̄

}}||
||

||
||

||
||

||
||

||
||

|

P ′

P

t

OO

where the outer and inner squares are pushouts, the morphism t (a colimit of
the natural transformation with components s1, s2, s3) can be derived from
{s1, s2, s3}. This is (v) for the obvious D.

(vii) The following (strong) cancellation property

u · t
t

holds for all epimorphisms t. In fact, the square

u·t //

t
��

id
��

u
//

is a pushout, thus, from u · t we derive u via pushout, and then we use
(i).
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(viii) A wide pushout t = s̄i · si of morphisms si (i ∈ I)

A
si

~~~~
~~

~~
~~

t

��

Ai

s̄i   @
@@

@@
@@

@

B

can be derived from those morphisms :

{si}i∈I ⊢ t

If I is finite, this follows easily from pushout, identity and composition.
For I infinite use transfinite composition.

(viii) coequalizer has the following generalization: given parallel mor-
phisms gj : A → B (j ∈ J) such that a morphism s : A′ → A equalizes the
whole collection, then the joint coequalizer t : B → B′ of the collection fulfils

s ⊢ t.

In fact, for every (j, j′) ∈ J × J a coequalizer tjj′ of gj and gj′ fulfils s ⊢ tjj′.
By (viii), we have s ⊢ t since t is a wide pushout of all tjj′.

3.7. Observation In every cocomplete (not necessarily locally presentable)
category the Orthogonality Logic is sound: for every class Σ of morphisms a
morphism s which has a proof from Σ is an orthogonality consequence of Σ:

Σ ⊢ s implies Σ |= s

The verification that transfinite composition is sound is trivial: given
a smooth chain C : α → A and an object X orthogonal to hi : Ci → Ci+1

for every i < α, then X is orthogonal to the composite h : C0 → Cα of the
hi’s. In fact, for every morphism u : C0 → X there exists a unique cocone
ui : Ci → X of the chain C with u0 = u: the isolated steps are determined by
X ⊥ hi and the limit steps follow from the smoothness of C. Consequently
uα : Cα → X is the unique morphism with u = uα · h.

3.8. Definition (see [9]) A morphism t : A → B of A is called λ-presentable
if, as an object of the slice category A ↓ A, it is λ-presentable.

3.9. Remark (i) This is closely related to a λ-ary morphism: t is λ-ary (i.e.,
A and B are λ-presentable objects of A) iff t is a λ-presentable object of the
arrow category A→, see [3].
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(ii) Unlike the λ-ary morphisms (which are the morphisms of the small
category Aλ) the λ-presentable morphisms form a proper class: for example
all identity morphisms are λ-presentable.

(iii) A simple characterization of λ-presentable morphisms was proved in
[9]:

f is λ-presentable ⇔ f is a pushout of a λ-ary morphism
(along an arbitrary morphism).

(iv) The λ-ary morphisms are precisely the λ-presentable ones with λ-
presentable domain (see [9]). That is, given f : A → B λ-presentable, then

A λ-presentable ⇒ B λ-presentable.
(v) For every object A the cone of all λ-presentable morphisms with domain

A is essentially small. This follows from (iii), or directly: since A ↓ A is
a locally presentable category, it has up to isomorphism only a set of λ-
presentable objects.

3.10. Example A regular epimorphism which is the coequalizer of a pair
of morphisms with λ-presentable domain is λ-presentable. That is, given a
coequalizer diagram

K
f

//

g
// A

t // B

then
K is λ-presentable ⇒ t is λ-presentable.

In fact, given a λ-filtered diagram in A ↓ A with objects di : A → Di

and with a colimit cocone ci : (di, Di) → (d, D) = colimi∈I(di, Di), then for
every morphism h : (t, B) → (d, D) of A ↓ A we find an essentially unique
factorization through the cocone as follows:

K
f

//

g
// A

t //

di

��0
00

00
00

00
00

00
00

0
d

  A
AA

AA
AA

A B

h
��

D

Di

ci

OO

The morphism d = h · t merges f and g. Observe that ci merges di · f and
di · g for any i ∈ I. Since K is λ-presentable and D = colimDi is a λ-filtered
colimit in A, it follows that some connecting map dij : (di, Di) → (dj, Dj) of
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our diagram merges di · f and di · g. This implies dj · f = dj · g, hence, dj

factors through t:

dj = k · t for some k : B → Dj.

Then k : (t, B) → (dj, Dj) is the desired factorization. It is unique because t
is an epimorphism.

3.11. Definition A class Σ of morphisms is called presentable provided that
there exists a cardinal λ such that every member of Σ is a λ-presentable
morphism.

3.12. Example Every small class is presentable. In this case there even
exists λ such that all members are λ-ary morphisms. This follows from the
fact that every object of a locally presentable category is λ-presentable for
some λ, see [3].

3.13. Remark We will prove that the Orthogonality Logic is complete for
presentable classes of morphisms. This sharply contrasts with the follow-
ing: if A is a locally finitely presentable category and Σ is a class of finitely
presentable morphisms, the Finitary Orthogonality Logic needs not be com-
plete:

3.14. Example (see [4]) Let A be the category of algebras on countably
many nullary operations (constants) a0, a1, a2, . . . Denote by I = {an}n∈N

an initial algebra, by 1 a terminal algebra, and by ∼k the congruence on I
merging just ak and ak+1. The corresponding quotient morphism

ek : I → I/ ∼k

is clearly finitely presentable, and so is the quotient morphism

f : C → 1

where C = {0, 1} is the algebra with a0 = 0 and ai = 1 for all i ≥ 1. It is
obvious that

{e1, e2, e3, . . .} ∪ {f} |= e0.

Nevertheless, as verified in [4], e0 cannot be proved from {e1, e2, e3, . . . }∪{f}
in the Finitary Orthogonality Logic. Observe that this does not contradict
Theorem 2.17: the morphism f above is not finitary.
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3.15. Construction of a Reflection Let Σ be a class of λ-presentable
morphisms in a locally λ-presentable category A. For every object A of A a
reflection

rA : A → Ā

of A in the orthogonal subcategory Σ⊥ is constructed as follows:
We form the diagram DA : DA → A of all λ-presentable morphisms s :

A → As provable from Σ with domain A. Let Ā be a colimit of DA with the
colimit cocone s̄ : As → Ā. We show that the morphism

rA = s̄ · s : A → Ā (independent of s)

is the desired reflection.
The precise definition of DA is as follows: we denote by Σ̄λ the class of all

λ-presentable morphisms s with Σ ⊢ s. Let DA be the full subcategory of
the slice category A ↓ A on all objects lying in Σ̄λ. By 3.9 (v) the diagram

DA : DA → A, DA( A
s // As ) = As

is essentially small.

3.16. Proposition For every object A the diagram DA is λ-filtered and rA :
A → Ā is a reflection of A in Σ⊥; moreover, Σ ⊢ rA.

Proof (1) The diagram DA is λ-filtered: From coequalizer and 3.6(viii),
Σ̄λ is closed under weak coequalizers in the sense of 2.11(c) and under λ-wide
pushouts. This assures that A ↓ Σ̄λ is closed under λ-small colimits in A ↓ A,
thus the category DA is λ-filtered.

(2) We prove

Σ ⊢ rA

and

Σ ⊢ s̄ for all s in DA.

This follows from 3.6(v) applied to the natural transformation from the
constant diagram of value A to DA with components s : A → As: Its colimit
is rA.

Now observe that the rule 2-out-of-3, 3.6(i), also yields that Σ ⊢ s̄ for all s
in DA.
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(3) Given a morphism t : R → Q in Σ we prove that every morphism
f : R → Ā has a factorization through t.

R∗ t∗ //

u
��

g

����
��
��
��
��
��
��
��
�

Q∗

v
��

g̃

��*
**

**
**

**
**

**
**

**
**

**
**

**

R
t //

f
��

Q

f̄
��

As
s̄ //

t̃
**UUUUUUUUUUUUUUUUUUUUUUUUUU Ā

t̂ // P̂

P̃

q
__????????

By 3.9(iii) there exists a λ-ary morphism t∗ : R∗ → Q∗ such that t is a pushout
of t∗ (along a morphism u). Due to (1) and since R∗ is a λ-presentable object,
the morphism

f · u : R∗ → Ā = colimAs

factors through one of the colimit morphisms:

f · u = s̄ · g for some s : A → As in DA and some g : R∗ → As.

We denote by t̂ a pushout of t∗ along f · u, and by t̃ a pushout of t∗ along g.
This leads to the unique morphism

q : P̃ → P̂ with q · t̃ = t̂ · s̄ and q · g̃ = f̄ · v.

By (2) we know that Σ ⊢ s̄. Consequently, composition yields

Σ ⊢ q · t̃

since q · t̃ = t̂ · s̄, and Σ ⊢ t̂ by pushout. Next, we observe that

Σ ⊢ q

by 3.6(vi): apply it to the pushouts P̃ and P̂ and the natural transformation
with components idR∗, s̄ and idQ∗. Now the 2-out-of-3 rule yields

Σ ⊢ t̃.

Moreover, t̃ is λ-presentable since t∗ is λ-ary, see 3.9(iii). Therefore, the
morphism

p = t̃ · s : A → P̃
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is also λ-presentable, and Σ ⊢ p by composition. Thus,

p : A → P̃ is an object of DA.

The corresponding colimit morphism p̄ : P̃ → Ā fulfils

rA = p̄ · p.

Further, since t̃ is a connecting morphism of the diagram DA from s to p, it
follows that

s̄ = p̄ · t̃.

Consequently,

(p̄ · g̃) · t∗ = p̄ · t̃ · g = s̄ · g = f · u

and the universal property of the pushout Q of t∗ and u yields a unique

h : Q → Ā with f = h · t and p̄ · g̃ = h · v.

This is the desired factorization of f through t.
(4) Ā lies in Σ⊥: Given h, k : Q → Ā equalized by t, we prove h = k.

R∗ t∗ //

u
��

Q∗

v
��

k∗

  A
AA

AA
AA

A h∗

  A
AA

AA
AA

A

R
t // Q

h
��

k
��

As
c∗ //

s̄

~~||
||

||
||

C∗

w̄

tti i i i i i i i i i i i i

~~~
~

~
~

Ā
c // C

Since Q∗ is λ-presentable, the morphisms h · v, k · v : Q∗ → Ā both fac-
tor through some of the colimit morphisms of the λ-filtered colimit Ā =
colimDA:

h · v = s̄ · h∗ and k · v = s̄ · k∗ for some h∗, k∗ : Q∗ → As.

Form coequalizers

c = coeq(h, k) and c∗ = coeq(h∗, k∗)

From h · t = k · t coequalizer yields

Σ ⊢ c

and then (2) above and composition yields

Σ ⊢ c · s̄.
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From the equality (c · s̄) ·h∗ = (c · s̄) ·k∗ we conclude that c · s̄ factors through
c∗. Since c∗ is an epimorphism, 3.6(vii) yields

Σ ⊢ c∗.

Moreover, c∗ is a λ-presentable morphism since c∗ = coeq(h∗, k∗) and Q∗ is
λ-presentable, see Example 3.10. The morphism

w = c∗ · s : A → C∗

is thus also a λ-presentable morphism with Σ ⊢ w, in other words (w, C∗) is
an object of DA, and

c∗ : (s, AS) → (w, C∗) is a morphism of DA.

This implies that the colimit maps fulfil

s̄ = w̄ · c∗.

We are ready to prove h = k: by the universal property of the pushout Q we
only need showing h · v = k · v:

h · v = s̄ · h∗ = w̄ · c∗ · h∗

and analogously k · v = w̄ · c∗ · k∗, thus c∗ · h∗ = c∗ · k∗ finishes the proof.
(5) The universal property of rA: Let f : A → B be a morphism with B

orthogonal to Σ. Thus B is orthogonal to all morphisms s with Σ ⊢ s, see
3.7.

A
f

//

s
��

rA

��

B

As

fs
>>}}}}}}}

s̄
��

Ā

g

GG����������������

For every object s : A → As of DA let fs : As → B be the unique factorization
of f through s. These morphisms clearly form a compatible cocone of DA,
and the unique factorization g : Ā → B fulfils, for any object s of DA,

f = fs · s = g · s̄ · s = g · rA.

Conversely, suppose g′ · rA = f , then g = g′ because for every object s of DA

we have
g′ · s̄ = fs = g · s̄;

this follows from B ⊥ s due to (g′ · s̄) · s = f = fs · s.



A LOGIC OF ORTHOGONALITY 25

3.17. Theorem The Orthogonality Logic is complete for all presentable
classes Σ of morphisms: every orthogonality consequence of Σ has a proof
from Σ in the Orthogonality Deduction System. Shortly,

Σ |= t implies Σ ⊢ t.

Proof Given an orthogonality consequence t : A → B of Σ, form a reflection
rA : A → Ā of A in Σ⊥ as in 3.15. Then Σ |= t implies that Ā is orthogonal
to t, thus we have u : B → Ā with rA = u · t. From 3.16 we know that

Σ ⊢ u · t.

Now we have that Σ |= u · t (= rA) and Σ |= t, and this trivially implies
that Σ |= u. Thus by the same argument with t replaced by u there exists a
morphism v such that

Σ ⊢ v · u.

The last step is weak cancellation :

u · t v · u
t

3.18. Corollary The Orthogonality Logic is complete for classes Σ of mor-
phisms of the form

Σ = Σ0 ∪ Σ1, Σ0 small and Σ1 ⊆ RegEpi.

Proof Let λ be a regular cardinal such that A is locally λ-presentable, and
all morphisms of Σ0 are λ-presentable. We will substitute Σ1 with a class
Σ̃1 of λ-presentable morphisms as follows: for every member s : A → B of
Σ1 choose a pair f, g : A′ → A with s = coeq(f, g). Express A′ as a λ-filtered
colimit of λ-presentable objects Ai with a colimit cocone

ai : Ai → A′ (i ∈ Is).

Form a coequalizer si : A → Bi of f ·ai, g ·ai : Ai → B for every i ∈ Is. Then
we obtain a filtered diagram with the objects Bi (i ∈ Is) and the obvious
connecting morphisms. The unique bi : Bi → B with s = bi ·si form a colimit
of that diagram. Moreover, an object X is orthogonal to s iff it is orthogonal
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to si for every i ∈ Is:

Ai

ai // A′

g
//

f
//
A

u

��

si

��

s // B

v

~~

�
�

�
�

	
�

Bi

vi

��

bi

??~~~~~~~~

X

Let Σ̃1 be the class of all morphisms si for all s ∈ Σ1 and i ∈ Is. Then the
class

Σ̃ = Σ0 ∪ Σ̃1

consists of λ-presentable morphisms, see Example 3.10, and Σ⊥ = Σ̃⊥. Given
an orthogonality consequence t of Σ, we thus have a proof of t from Σ̃, see
Theorem 3.17. It remains to prove

s ⊢ si for every s ∈ Σ and i ∈ Is;

then Σ̃ ⊢ t implies Σ ⊢ t. In fact, since si is an epimorphism, apply 3.6(vii)
to s = bi · si.

3.19. Remark Since all λ-ary morphisms form essentially a set (since Aλ

is small), the λ-ary Orthogonality Logic (see 3.5) is complete for classes of
λ-ary morphisms – the proof is analogous to that of Theorem 2.17.

4. Vopěnka’s Principle

4.1. Remark The aim of the present section is to prove that the Orthog-
onality Logic is complete (for all classes of morphisms) in all locally pre-
sentable categories iff the following large-cardinal Vopěnka’s principle holds.
Throughout this section we assume that the set theory we work with satisfies
the Axiom of Choice for classes.

4.2. Definition Vopěnka’s Principle states that the category Rel(2) of graphs
(or binary relational structures) does not have a large discrete full subcate-
gory.

4.3. Remark (1) The following facts can be found in [3]:
(i) Vopěnka’s Principle is a large-cardinal principle: it implies the existence

of measurable cardinals. Conversely, the existence of huge cardinals implies
that Vopěnka’s Principle is consistent.
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(ii) An equivalent formulation of Vopěnka’s Principle is: the category Ord

of ordinals cannot be fully embedded into any locally presentable category.
(2) The following proof is analogous to the proof of Theorem 6.22 in [3].

4.4. Theorem Assuming Vopěnka’s Principle, the Orthogonality Logic is
complete for all classes of morphisms (of a locally presentable category).

Proof (1) Every class Σ can be expressed as the union of a chain

Σ =
⋃

i∈Ord

Σi (Σi ⊆ Σj if i ≤ j)

of small subclasses – this follows from the Axiom of Choice. We prove that
every object A has a reflection in Σ⊥ by forming reflections

ri(A) : A → Ai

in Σ⊥
i for every i ∈ Ord, see 2.2. These reflections form a transfinite chain

in the slice category A ↓ A: for i ≤ j the fact that Σi ⊆ Σj implies the
existence of a unique aij : Ai → Aj forming a commutative triangle

A
ri(A)

����
��

��
�� rj(A)

��@
@@

@@
@@

Ai aij

// Aj

We prove that this chain is stationary, i.e., there exists an ordinal i0 such
that ai0j is an isomorphism for all j ≥ i0 – it will follow immediately that
rA = ri0(A) is a reflection of A in Σ⊥.

(2) Assuming the contrary, we have an object A and ordinals i(k) for
k ∈ Ord with i(k) < i(l) for k < l such that none of the morphisms

ai(k),i(l) with k < l

is an isomorphism. We derive a contradiction to Vopěnka’s Principle: the
slice category A ↓ A is locally presentable, and we prove that the functor

E : Ord → A ↓ A, k 7→ ri(k)(A)

is a full embedding. In fact, for every morphism u such that the diagram

A
ri(k)(A)

}}{{
{{

{{
{{ ri(l)(A)

!!C
CC

CC
CC

C

Ai(k) u
// Ai(l)
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commutes, we have k ≤ l and u = ak,l. The latter follows from the universal
property of ri(k)(A). Thus, it is sufficient to prove the former: assuming k ≥ l
we show k = l. In fact, the morphism u is inverse to ai(l),i(k) because

(u · ai(l),i(k)) · ri(l)(A) = ri(l)(A) implies u · ai(l),i(k) = id

and analogously for the other composite. Our choice of the ordinals i(k) is
such that whenever ai(l),i(k) is an isomorphism, then k = l.

(3) Every orthogonality consequence t : A → B of Σ has a proof from
Σ. The argument is now precisely as in Theorem 3.17: we use the above
reflections rA and the fact that Σ ⊢ rA (see Proposition 3.16 and the above
fact that rA = ri0(A) for some i0).

4.5. Example (under the assumption of the negation of Vopěnka’s Princi-
ple). In the category

Rel(2, 2)

of relational structures on two binary relations α, β we present a class Σ of
morphisms together with an orthogonality consequence t which cannot be
proved from Σ:

Σ |= t but Σ 6⊢ t.

We use the notation of Example 2.18. The negation of the Vopěnka’s Prin-
ciple yields graphs

(Xi, Ri) in Rel(2)

for i ∈ Ord, forming a discrete category. For every i let Ai be the object of
Rel(2, 2) on Xi whose relation α is Ri and β is a clique (see 2.18). Our class
Σ consists of the morphisms u, v of 2.18 and

∅ → Ai for all i ∈ Ord.

We claim that the morphism
t : ∅ → 1

is an orthogonality consequence of Σ. In fact, let B be an object orthogonal
to Σ and let i be an ordinal such that Ai has cardinality larger than B. We
have a (unique) morphism h : Ai → B, and since h cannot be monic, the
relation β of B contains a loop (recall that β is a clique in Ai). This implies
that B has a unique joint loop of α and β, therefore, B ⊥ t.

To prove
Σ 6⊢ t

it is sufficient to find a category A in which
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(i) Rel(2, 2) is a full subcategory closed under colimits
and

(ii) some object K of A is orthogonal to Σ but not to t.
From (ii) we deduce that t cannot be proved from Σ in the category A,
see Observation 3.7. However, (i) implies that every formal proof using the
Orthogonality Deduction System 3.4 in the category Rel(2, 2) is also a valid
proof in A. Together, this implies Σ 6⊢ t in Rel(2, 2).

The simplest approach is to choose A = REL(2, 2), the category of all
possibly large relational systems on two binary relations, i.e., triples (X, α, β)
where X is a class and α, β are subclasses of X × X. Morphisms are class
functions preserving the binary relations in the expected sense. This category
contains Rel(2, 2) as a full subcategory closed under small colimits, and the
object

K =
∐

i∈Ord

Ai

is not orthogonal to t : ∅ → 1 since none of Ai contains a joint loop of α and
β. However, it is easy to verify that K is orthogonal to Σ.

A more “economical” approach is to use as A just the category Rel(2, 2)
with the unique object K added to it, i.e., the full subcategory of REL(2, 2)
on {K} ∪ Rel(2, 2).

4.6. Corollary Vopěnka’s Principle is equivalent to the statement that the
Orthogonality Logic is complete for classes of morphisms of locally presentable
categories.

5. A counterexample

The Orthogonality Logic can be formulated in every cocomplete category,
and we know that it is always sound, see 3.7. But outside of the realm of
locally presentable categories the completeness can fail (even for finite sets
Σ):

5.1. Example We start with the category CPO⊥ of strict CPO’s: objects
are posets with a least element ⊥ and with directed joins, morphisms are
strict continuous functions (preserving ⊥ and directed joins). This category
is well-known to be cocomplete. We form the category

CPO⊥(1)

of all unary algebras on strict CPO’s: objects are triples (X,≤, α), where
(X,≤) is a strict CPO and α : X → X is an endofunction of X, morphisms
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are the strict continuous algebra homomorphisms. It is easy to verify that
the forgetful functor CPO⊥(1) → CPO⊥ is monotopological, thus, by 21.42
and 21.16 in [2] the category CPO⊥(1) is cocomplete.

We present morphisms s1, s2 and t of CPO⊥(1) such that an algebra A is
orthogonal to

(a) s1 iff its operation α has at most one fixed point
(b) s2 iff its operation α fulfils x ≤ αx for all x
and
(c) t iff α has precisely one fixed point.

We then have

{s1, s2} |= t

In fact, if an algebra A fulfils (b), we can define a transfinite chain ai (i ∈ Ord)
of its elements by

ao =⊥
ai+1 = αai,

and
aj =

∨
i<j ai for all limit ordinals j.

This chain cannot be 1–1, thus, there exist i < j with ai = aj and we conclude
that ai is a fixed point of α. The fixed point is unique due to (a), thus, A is
orthogonal to t. On the other hand

{s1, s2} 6⊢ t

The argument is analogous to that in Example 4.5: The category A of possi-
bly large CPO’s with a unary operation contains CPO⊥(1) as a full subcat-
egory closed under small colimits. And the following object K is orthogonal
to s1 and s2 but not to t:

K = (Ord,≤, succ)

where ≤ is the usual ordering of the class of all ordinalds, and succ i = i + 1
for all ordinals i.

Thus, it remains to produce the desired morphisms s1, s2 and t. The
morphism s1 is the following quotient

•x

	
α

•y

	
α

⊥• α
// •

α
// . . .

s1 //

•x=y

	
α

⊥• α
// •

α
// . . .
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where both the domain and codomain are flat CPO’s (all elements except
⊥ are pairwise incomparable). The morphism s2 is carried by the identity
homomorphism

x•
α

// •
α

// . . .

⊥• α
// •

α
// . . .

id //
x•

α
// •

α
// . . .

⊥• α
// •

α
// . . .

where the domain is flat and the codomain is flat except for the unique
comparable pair not involving ⊥ being x < αx. Finally, t is the embedding

⊥• α
// •

α
// . . . t //

•

	
α

⊥• α
// •

α
// . . .

with both the domain and the codomain flat.

6. Injectivity Logic

As mentioned in the Introduction, for the injectivity logic the deduction
system consisting of transfinite composition, pushout and cancella-

tion is sound and complete for sets Σ of morphisms. In contrast to Theorem
4.4 this deduction system fails to be complete for classes of morphisms in gen-
eral, independently of set theory:

6.1. Example Let Rel(2) be the category of graphs. For every cardinal n
let Cn denote a clique (2.18) on n nodes. Then the morphism

t : ∅ → 1

is an injectivity consequence of the class

Σ = {∅ → Cn; n ∈ Card}.

In fact, given a graph X injective w.r.t. Σ, choose a cardinal n > cardX. We
have a morphism f : Cn → X which cannot be monomorphic. Consequently,
X has a loop. This proves that X is injective w.r.t. t.

The argument to show that t cannot be proved from Σ is completely analo-
gous to 5.1: the category REL(2) of potentially large graphs contains Rel(2)

as a full subcategory closed under small colimits. The object K =
∐

n∈Card

Cn

is injective w.r.t. Σ but not injective w.r.t. t. Therefore, t does not have
a formal proof from Σ in the Injectivity Deduction System above applied in
REL(2). Consequently, no such formal proof exists in Rel(2).
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Instead of REL(2) we can, again, use the full subcategory on Rel(2)∪{K}
for our argument.
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[3] J. Adámek and J. Rosický: Locally presentable and accessible categories, Cambridge University
Press, 1994.
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