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DISCRETELY COMPACT IMBEDDINGS IN SPACES OF
CELL-CENTERED GRID FUNCTIONS

S. BARBEIRO

Abstract: Compactness of imbeddings in discrete counterparts of Sobolev spaces
is considered. We study the imbeddings in spaces of cell-centered grid functions, in
one and two dimensional domains. No restrictions are made on the mesh-ratios of
the underlying meshes.
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1. Introduction

Results in compactness of imbeddings in spaces of grid functions can play
a main role in the study of stability and convergence of finite difference
schemes. In particular, they are important technical tools in order to es-
tablish supraconvergence results for schemes in non-uniform meshes (see e.g.
[3]-[6] and [8]). In this paper we consider spaces of cell-centered grid func-
tions. We prove discrete compactness of imbeddings in discrete versions of
the Sobolev spaces Wm,p

0 , m = 1, 2, 1 ≤ p ≤ ∞, in one-dimensional domains.
In two-dimensional domains we prove a similar result for the particular case
m = 1 and p = 2. Grigorieff gives, in [7], correspondent results for spaces
of vertex-centered grid functions for the one-dimensional case. In the case of
non-uniform grids, the normed spaces which we consider in this paper do not
coincide to those defined in [7] and an different kinds of proofs are needed.

2. Discrete approximation of Wm,p
0 (0, R)

In this section, we start to introduce the discrete Sobolev spacesWm,p
0 (0, R)

as vector spaces of grid functions. We define the partition in the domain

Gh := {0 = x0 < x1 < · · · < xN = R} .

The set of the cell-centers is given by

Sh := {x1/2, x3/2, . . . , xN−1/2},
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where

xj−1/2 :=
xj−1 + xj

2
, j = 1, . . . , N.

For the grid functions vh and wh defined on S̄h := Sh ∪ {x0, xN} and Gh,
respectively, the centered difference quotients are given by

(δvh)j :=
vj+1/2 − vj−1/2

hj−1/2
, j = 0, . . . , N,

and

(δwh)j−1/2 :=
wj − wj−1

hj−1
, j = 1, . . . , N,

where x−1/2 := x0, xN+1/2 := xN and

hj−1/2 := xj+1/2 − xj−1/2, j = 0, . . . , N,

hj−1 := xj − xj−1, j = 1, . . . , N.

We also consider x−1 := x0, xN+1 := xN , h−1 := hN := 0. Let Λ be a
sequence of mesh sizes h = (h0, . . . , hN−1) such that

hmax := max{hj−1, j = 1, . . . , N}

converges to zero.

Let
◦

W
m,p
h , m = 0, 1, 2, p ∈ [1,∞[, be the space of grid functions on S̄h,

which are zero on 0 and R, equipped with the norm

‖vh‖Wm,p
h

:=

(

m
∑

ℓ=0

|vh|
p

W ℓ,p
h

)1/p

,

where

|vh|
p

W 0,p
h

:=

N
∑

j=1

hj−1|vj−1/2|
p,

|vh|
p

W 1,p
h

:=

N
∑

j=0

hj−1/2| (δvh)j |
p,

|vh|
p

W 2,p
h

:=
N
∑

j=1

hj−1|
(

δ2vh

)

j−1/2
|p.

If p = ∞ we consider the norm

‖vh‖Wm,∞
h

:= max
0≤ℓ≤m

|vh|W ℓ,∞
h
,
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where

|vh|W 0,∞
h

:= max
1≤j≤N

|(vh)j−1/2|,

|vh|W 1,∞
h

:= max
0≤j≤N

| (δvh)j |,

|vh|W 2,∞
h

:= max
1≤j≤N

|
(

δ2vh

)

j−1/2
|

and we denote the corresponding space by
◦

W
m,∞

h . In analogy to the usual

notation for Sobolev spaces, we use
◦

L
p
h for

◦

W
0,p

h and ‖.‖Lp
h

for the respective
norm.

Let Rh be the operator that defines a restriction to Sh.
The discrete spaces introduced above form discrete approximations to

Wm,p
0 (0, R) and Cm

0 [0, R] which we denote by (Wm,p
0 (0, R),Π

◦

W
m,p

h ) and

(Cm
0 [0, R],Π

◦

W
m,∞

h ), respectively. These approximations are considered in
the following sense ([9], [10]): a sequence (vh)h∈Λ is said to converge dis-

cretely in (Wm,p
0 (0, R),Π

◦

W
m,p
h ) to an element v ∈ Wm,p

0 (0, R),

vh → v in (Wm,p
0 (0, R),Π

◦

W
m,p
h ) (h ∈ Λ),

if for each ǫ > 0 there exists ϕ ∈ C∞
0 [0, R] such that

‖v − ϕ‖Wm,p(0,R) ≤ ǫ, lim sup{‖vh − Rhϕ‖Wm,p
h
, h ∈ Λ} ≤ ǫ;

it is said to converge discretely in (Cm
0 [0, R],Π

◦

W
m,∞

h ) to an element v ∈
Cm

0 [0, R],

vh → v in (Cm
0 [0, R],Π

◦

W
m,∞

h ) (h ∈ Λ),

if

‖vh −Rhv‖Wm,∞
h

→ 0 (h ∈ Λ).

We consider compact imbeddings of
◦

W
m,p

h , which have corresponding
Sobolev imbedding results given by the Rellich-Kondrachov theorem (see
e.g. [1]).

Theorem 1. Let m ∈ {1, 2}. The sequence of imbeddings

Jh :
◦

W
m,p
h →

◦

W
m−1,q

h , h ∈ Λ,

for 1 ≤ p, q ≤ ∞, with q <∞ if p = 1, is discretely compact.
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Proof: We first consider the imbedding for the case m = 1

Jh :
◦

W
1,p
h →

◦

L
q
h , h ∈ Λ.

Let (vh)Λ ∈ Π
◦

W
1,p
h be a bounded sequence. Then the sequence (wh)Λ ∈

ΠW 1,p
0 (0, R), which is linear in each interval [xj−1/2, xj+1/2], j = 0, . . . , N ,

satisfying

wh(xj−1/2) := vh(xj−1/2), j = 0, . . . , N + 1,

is bounded in ΠW 1,p
0 (0, R). In fact, if p = ∞ then

‖wh‖W 1,p(0,R) = ‖vh‖W 1,p
h
.

When 1 ≤ p <∞ then by Friedrich’s inequality

‖wh‖W 1,p(0,R) ≤ C|wh|W 1,p(0,R)

and

|wh|W 1,p(0,R) =
(

∫ R

0

|w′(x)|p dx
)1/p

=
(

N
∑

j=0

hj−1/2|(δvh)j|
p
)1/p

= |vh|W 1,p
h (0,R).

We note that the imbedding W 1,p(0, R) → C[0, R], 1 < p <∞, is compact
and consequently we can find is a subsequence Λ′ ⊆ Λ and a function w ∈
C0[0, R] such that

max
x∈[0,R]

|wh(x) − w(x)| → 0 (h ∈ Λ′).

Hence,

vh → w in (C0[0, R],Π
◦

L
∞
h ) (h ∈ Λ′).

Since for 1 ≤ q <∞

‖vh −Rhw‖Lq
h
≤ C‖vh − Rhw‖L∞

h
,

with C = R1/q, we conclude the convergence

vh → w in (Lq(0, R),Π
◦

L
q
h) (h ∈ Λ′).

Let us now consider p = 1. The imbedding W 1,1(0, R) → Lq(0, R) is
compact and subsequently

wh → w in Lq(0, R) (h ∈ Λ′)
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for some subsequence Λ′ ⊆ Λ and w ∈ Lq(0, R). We are now going to prove

that vh → w in (Lq(0, R),Π
◦

L
q
h) (h ∈ Λ′). For each ǫ > 0 and c > 0 it is

possible to find ϕ ∈ C∞
0 [0, R] such that

‖w − ϕ‖Lq(0,R) ≤
ǫ

c
.

Let us consider the function ψh, which is linear in each interval [xj−1/2, xj+1/2],
j = 0, . . . , N , and satisfies

ψh(x) := ϕ(xj−1/2), j = 0, . . . , N + 1.

There exists cq > 0 such that

cqq‖vh − Rhϕ‖
q
Lq

h

≤

∫ R

0

|wh − ψh|
q dx.

Since ψh → ϕ in Lq(0, R) then

∫ R

0

|wh − ψh|
q dx→

∫ R

0

|w − ϕ|q dx (h ∈ Λ′).

Consequently, taking c = cq, holds

lim sup{‖vh − Rhϕ‖Lq
h
, h ∈ Λ′} ≤ ǫ.

This concludes the first part of the proof, i.e., the sequence Jh :
◦

W
1,p
h →

◦

L
q
h ,

h ∈ Λ is discretely compact.

We consider now the sequence of imbeddings (Jh)Λ, Jh :
◦

W
2,p
h →

◦

W
1,q

h . Let

(vh)Λ ∈ Π
◦

W
2,p
h be bounded. The sequence (wh)Λ, where wh is defined by

wh(xj) := (δvh)j , j = 0, . . . , N,

linear in each interval [xj, xj+1], j = 0, . . . , N−1, is bounded in ΠW 1,p(0, R).
For p > 1 then Rellich-Kondrachov Theorem gives the existence of Λ′ ⊂ Λ
and w1 ∈ C[0, R] such that

max
0≤j≤N

| (δvh)j − w1(xj)| → 0 (h ∈ Λ′).
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Let w0(x) :=

∫ x

0

w1(t) dt. We have, taking v0 = w0 = 0 into account,

|vj−1/2 − w0(xj−1/2)| ≤
N
∑

i=0

∣

∣(δv)i − w1(xi)
∣

∣+
N
∑

i=0

|w1(xi) − (δw0)i|

≤ R max
0≤i≤N

∣

∣(δv)i − w1(xi)
∣

∣+ R max
0≤i≤N

|w′
0(xi) − (δw0)i|,

j = 0, . . . , N + 1. Hence the convergence

max
0≤j≤N+1

|vj−1/2 − w0(xj−1/2)| → 0 (h ∈ Λ′′),

follows and we conclude that

vh → w0 (h ∈ Λ′) in (C1
0 [0, R],Π

◦

W
1,∞

h ).

For the case p = 1 the proof is analogous.

The next lemma is helpful in the proof of the compactness imbedding
theorem for the two-dimensional case.

Lemma 1. Let (vh)Λ ∈ Π
◦

W
1,p

h be a bounded sequence, with 1 ≤ p <∞. For

any τ ∈ R, the step function defined by

wh(x) := vh(xj−1/2), x ∈]xj−1, xj], j = 1, . . . , N,

and zero outside of these intervals, satisfies
∫

I

|wh(x+ τ) − wh(x)|
p dx ≤ 3(|τ | + hmax)

p|vh|
p

W 1,p
h

, (1)

where I is any interval containing (x0, xN).

Proof: Let τ > 0. Then
∫

I

|wh(x+ τ) − wh(x)|
p dx ≤

∫ R−τ

0

|wh(x+ τ) − wh(x)|
p dx

+

∫ 0

−τ

|wh(x+ τ)|p dx+

∫ R

R−τ

|wh(x)|
p dx.

For f defined by

f(x) := j, x ∈]xj−1, xj],
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we have, using Hölder’s inequality,
∫ R−τ

0

|wh(x+ τ) − wh(x)|
p dx

≤

∫ R−τ

0

(

f(x+τ)−1
∑

k=f(x)

∣

∣wh(xk+1/2) − wh(xk−1/2)
∣

∣

)p

dx

≤

∫ R−τ

0

(

f(x+τ)−1
∑

k=f(x)

hk−1/2

)p−1
f(x+τ)−1
∑

k=f(x)

hk−1/2 |(δvh)k|
p dx.

Since

f(x+τ)−1
∑

k=f(x)

hk−1/2 ≤ τ + hmax we obtain

∫ R−τ

0

|wh(x+ τ) − wh(x)|
p dx

≤ (τ + hmax)
p−1

NR−τ
∑

j=0

(

hj−1

f(xj+τ)−1
∑

k=j

hk−1/2 |(δvh)k|
p
)

≤ (τ + hmax)
p−1

N
∑

k=0

(

hk−1/2 |(δvh)k|
p

k
∑

j=s(k)

hj−1

)

,

where NR−τ and s(k), are the biggest integer and the smallest integers, re-

spectively, such that

NR−τ
∑

i=1

hi−1 ≤ R − τ and f(xs(k) + τ) − 1 ≥ k. From

xk − xs(k) < τ

k
∑

j=s(k)

hj−1 < τ + hmax,

we conclude that
∫ R−τ

0

|wh(x+ τ) − wh(x)|
p dx ≤ (τ + hmax)

p|vh|
p

W 1,p
h

. (2)

On the other hand,
∫ 0

−τ

|wh(x+ τ)|p dx =

∫ τ

0

|wh(x)|
p dx ≤

Nτ
∑

j=1

hj−1

∣

∣wh(xj−1/2)
∣

∣

p
,
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with Nτ the smallest integer such that

Nτ
∑

i=1

hi−1 ≥ τ, and then

∫ 0

−τ

|wh(x+ τ)|p dx ≤

Nτ
∑

j=1

hj−1

(

j−1
∑

k=0

|vh(xk+1/2) − vh(xk−1/2)|
)p

=

Nτ
∑

j=1

hj−1

(

j−1
∑

k=0

hk−1/2|
(

δvh

)

k
|
)p

.

Since

Nτ
∑

j=1

hj−1 ≤ τ + hmax and for j ≤ Nτ ,

j−1
∑

k=0

hk−1/2 ≤ τ + hmax, it follows

by an application of Hölder’s inequality
∫ 0

−τ

|wh(x+ τ)|p dx ≤ (τ + hmax)
p|vh|

p

W 1,p
h

. (3)

In the same way as before, we have

∫ R

R−τ

|wh(x)|
p dx ≤

N
∑

j=NR−τ

hj−1

(

N
∑

k=j

hk−1/2|
(

δvh

)

k
|
)p

and consequently
∫ R

R−τ

|wh(x)|
p ≤ (τ + hmax)

p|vh|
p

W 1,p
h

. (4)

From (2), (3) and (4) we obtain (1).
The case τ < 0 can be proved analogously.

3. Discrete approximation of L2(Ω) and W 1,2
0 (Ω), Ω ⊂ R

2

We now need norms for functions on two-dimensional grids. To this end we
introduce discrete versions of the Sobolev spaces Wm,2

0 (Ω), m = 0, 1, where
Ω is an union of rectangles.

Let us first introduce the nonuniform grid GH . In a rectangle
R = (x−1, xN+1) × (y−1, yM+1) which contains Ω we define the subset GH :=
R1 ×R2, where

R1 := {x−1 < x0 < . . . < xN < xN+1}
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and

R2 := {y−1 < y0 < . . . < yM < yM+1}.

The grid GH is assumed to satisfy the following condition: The grid GH is
assumed to satisfy the following condition: the vertices of Ω are in the centers
of the rectangles formed by GH . If the case of a rectangular domain we allow
x−1 = x0, xN+1 = xN , y−1 = y0 and yM+1 = yM .

Let

SH := {(xj−1/2, yℓ−1/2) : j = 0, . . . , N + 1, ℓ = 0, . . . ,M + 1},

where xj−1/2 := (xj−1 + xj)/2, yℓ−1/2 := (yℓ−1 + yℓ)/2, and ΩH := SH ∩ Ω,
∂ΩH := SH ∩ ∂Ω, Ω̄H := ΩH ∪ ∂ΩH .

In the definition of the discrete norms we use the following centered divided
differences in x-direction

(δxvH)j,ℓ+1/2 :=
vj+1/2,ℓ+1/2 − vj−1/2,ℓ+1/2

hj−1/2
,

(δxwH)j−1/2,ℓ+1/2 :=
wj,ℓ+1/2 − wj−1,ℓ+1/2

hj−1
,

where hj−1/2 := xj+1/2−xj−1/2, hj−1 := xj−xj−1. Correspondingly, the finite
central difference with respect to the variable y are defined, with the mesh
size vector k in place of h.

We denote by
◦

W
m,2
H (R), m = 0, 1, the space of grid functions defined in

CH , that are zero on the set

{(xj−1/2, yℓ−1/2) : j = 0, N+1, ℓ = 0, . . . ,M+1 ∨ j = 1, . . . , N, ℓ = 0,M+1},

and equipped with the norm

‖vH‖Wm,2
H (R) :=

(

m
∑

r=0

|vH |
2
r,H

)1/2

,
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where

|vH |
2
0,H :=

N
∑

j=1

M
∑

ℓ=1

hj−1kℓ−1|vj−1/2,ℓ−1/2|
2,

|vH |
2
1,H :=

N
∑

j=0

M
∑

ℓ=1

hj−1/2kℓ−1| (δxvH)j,ℓ−1/2 |
2

+
N
∑

j=1

M
∑

ℓ=0

hj−1kℓ−1/2| (δyvH)j−1/2,ℓ |
2.

Let PSH
be the following operator that extends a grid function vH in Ω̄H

to SH ,

PSH
vH := vH in Ω̄H , PSH

vH := 0 in SH\Ω̄H .

We denote by
◦

W
m,2

H (Ω), m = 0, 1, the space of functions defined in Ω̄H , that
are zero on ∂ΩH , equipped with the norm

‖vH‖m,H :=
(

m
∑

r=0

|PSH
vH |

2
r,H

)1/2

, m = 0, 1.

The space
◦

W
0,2

H (Ω) (also denoted by
◦

L2
H(Ω)) is endowed by the inner product

(vH , wH)H :=
N
∑

j=1

M
∑

ℓ=1

hj−1kℓ−1(PSH
vH)j−1/2,ℓ−1/2(PSH

w̄H)j−1/2,ℓ−1/2.

When it is clear from the context that we use the extended function, we omit
the notation PSH

.
Let RH be the operator that define the restriction to Ω̄H .
The discrete spaces introduced above form discrete approximations of their

continuous counterparts in the sense that we explain in what follows. Let
Λ be a sequence of positive vectors H = (h, k) of step-sizes such that the

maximum step-size Hmax converges to zero. A sequence (vH)Λ ∈ Π
◦

L 2
H(Ω)

converges discretely to v ∈ L2(Ω) in (L2(Ω),Π
◦

L 2
H(Ω)), vH → v in

(L2(Ω),Π
◦

L 2
H(Ω)) (H ∈ Λ), if for each ǫ > 0 there exists ϕ ∈ C∞

0 (Ω) such
that

‖v − ϕ‖L2(Ω) ≤ ǫ, lim
Hmax→0

sup{‖vH −RHϕ‖0,H} ≤ ǫ.
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A sequence (vH)Λ ∈ Π
◦

W
1,2

H (Ω) converges discretely to v ∈ W 1,2
0 (Ω) in

(W 1,2
0 (Ω),Π

◦

W
1,2
H (Ω)), vH → v in (W 1,2

0 (Ω),Π
◦

W
1,2

H (Ω)) (H ∈ Λ), if for each
ǫ > 0 there exists ϕ ∈ C∞

0 (Ω) such that

‖v − ϕ‖W 1,2(Ω) ≤ ǫ, lim
Hmax→0

sup{‖vH −RHϕ‖1,H} ≤ ǫ.

A sequence (vH)Λ converges weakly to v in (L2(Ω),Π
◦

L 2
H(Ω)), vH ⇀ v in

(L2(Ω),Π
◦

L2
H(Ω)) (H ∈ Λ), if

(wH , vH)H → (w, v)0 (H ∈ Λ)

for all w ∈ L2(Ω) and (wH)Λ ∈ Π
◦

L 2
H(Ω) such that wH → w in

(L2(Ω),Π
◦

L2
H(Ω)).

The following theorem was proved by Stummel in [9].

Theorem 2. Let (vH)Λ be a bounded sequence in Π
◦

L 2
H(Ω). Then, there exists

a subsequence Λ′ of Λ and v ∈ L2(Ω), such that

vH ⇀ v in (L2(Ω),Π
◦

L
2

H(Ω)) (H ∈ Λ′).

The discrete compactness result in the one-dimensional case was obtained
using a correspondent result in the continuous case. Functions defined in
all the domain which coincide with grid functions in the grid points were
considered. The proof is based in the fact that this continuous functions
are bounded if the correspondent grid functions have that property. In the
two-dimensional case we could not find such continuous prolongations of grid
functions.

The prove of the discrete compactness result that we present in the follow-
ing is based in the Kolmogorov compactness theorem ([1], [11]) and uses the
next lemma.
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Lemma 2. Let (vH)Λ ∈ Π
◦

W
1,2
H (Ω) be a bounded sequence. Let us consider

the step function wH defined by

wH(x, y) := vj+1/2,ℓ+1/2, (x, y) ∈ (xj, xj+1) × (yℓ, yℓ+1) ⊂ Ω,

and zero on R
2\Ω. Let Q be a set containing Ω. Then, for all τ = (τ1, τ2) ∈

R
2 the following estimate holds
∫

Q

|wH(x+ τ1, y+ τ2)−wH(x, y)|2 dxdy ≤ 6(|τ1|+ |τ2|+hmax +kmax)
2|vH |

2
1,H .

(5)

Proof: For τ = (τ1, τ2) ∈ R
2 holds

∫

Q

|wH(x+ τ1, y + τ2) − wH(x, y)|2 dxdy

≤ 2

∫

Q

|wH(x+ τ1, y + τ2) − wH(x, y + τ2)|
2 dxdy

+2

∫

Q

|wH(x, y + τ2) − wH(x, y)|2 dxdy.

Since
∫

Q

|wH(x+ τ1, y + τ2) − wH(x, y + τ2)|
2 dxdy

≤

M
∑

ℓ=1

kℓ−1

∫ xN+τ1

x0−τ1

|wH(x+ τ1, yℓ−1/2) − wH(x, yℓ−1/2)|
2 dx,

then from Lemma 1, we obtain
∫

Q

|wH(x+ τ1, y + τ2) − wH(x, y + τ2)|
2 dxdy

≤ 3(|τ1| + hmax)
2

M
∑

ℓ=1

kℓ−1

N
∑

j=0

hj−1/2

∣

∣

(

δx(PCH
vH)
)

j,ℓ−1/2

∣

∣

2

≤ 3(|τ1| + hmax)
2|vH |

2
1,H .

Analogously,
∫

Q

|wH(x, y + τ2) − wH(x, y)|2 dxdy ≤ 3(|τ2| + kmax)
2|vH |

2
1,H .
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We conclude that
∫

Q

|wH(x+ τ1, y + τ2) − wH(x, y)|2 dxdy

≤ 6
[

(|τ1| + hmax)
2 + (|τ2| + kmax)

2
]

|vH |
2
1,H .

Theorem 3. The sequence of imbeddings (JH)Λ,

JH :
◦

W
1,2
H (Ω) →

◦

L
2

H(Ω) (H ∈ Λ), (6)

is discretely compact.

Proof: Let (vH)Λ ∈ Π
◦

W
1,2
H (Ω) be a bounded sequence. There exists M

independent of H such that

‖vH‖1,H ≤M.

For (wH)Λ from the previous lemma holds
∫

Ω

|wH(x+ η1, y + η2) − wH(x, y)|2 dxdy ≤ 6(|τ1| + |τ2| + hmax + kmax)
2M2.

Since
‖wH‖L2(Ω) = |vH |0,H ≤M,

then (wH)Λ is uniformly bounded in ΠL2(Ω). Using the Kolmogorov com-
pactness theorem, we conclude that the sequence (wH)Λ is relatively compact
in L2(Ω). There exists a sequence Λ′ ⊆ Λ and w ∈ L2(Ω) such that

wH → w in L2(Ω) (H ∈ Λ′).

In order to conclude the proof we need to prove that

vH → w in (L2(Ω),Π
◦

L
2
H) (H ∈ Λ′).

Let ǫ > 0. There exists ϕ ∈ C∞
0 (Ω) such that

‖w − ϕ‖L2(Ω) ≤ ǫ.

For the step function ψH defined by

ψH(x, y) := ϕ(xj+1/2, yℓ+1/2), (x, y) ∈ (xj, xj+1) × (yℓ, yℓ+1) ⊂ Ω,

null otherwise, we have

‖ψH − ϕ‖L2(Ω) → 0 (H ∈ Λ)
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and then

‖vH − RHϕ‖0,H = ‖wH − ψH‖L2(Ω) → ‖w − ϕ‖L2(Ω).

The next lemma gives some more information about the imbeddings con-
sidered in the Theorem 3. Correspondent results for spaces of continuous
functions are well known (see e.g. [2, Theorem 3.12]).

Lemma 3. If (vH)Λ ∈ Π
◦

W
1,2

H (Ω) is bounded and weakly convergent to v in

(L2(Ω),Π
◦

L2
H(Ω)) then v ∈ W 1,2

0 (Ω).

Proof: Let (vH)Λ be a bounded sequence in Π
◦

W
1,2

H (Ω) such that

vH ⇀ v in (L2(Ω),Π
◦

L
2

H(Ω)) (H ∈ Λ). (7)

We consider (wH)Λ from Lemma 2. From the proof of the last theorem, we
know that (wH)Λ converges to w ∈ L2(Ω), for some Λ′ ⊆ Λ. Let us consider
the sequence (w̃H)Λ′ defined by

w̃H := wH in Ω, w̃H := 0 in R
2\Ω,

and the prolongation to R
2 of w

w̃ := w in Ω, w̃ := 0 in R
2\Ω.

We note that w̃H → w̃ in L2(R2) (H ∈ Λ′). For ϕ ∈ C∞
0 (R2) and all

η = (η1, η2) ∈ R
2, η 6= 0, we have

∫

R2

∣

∣

(

w̃H(x+ η1, y + η2) − w̃H(x, y)
)

ϕ(x, y)
∣

∣dxdy

≤
(

∫

R2

∣

∣w̃H(x+ η1, y + η2) − w̃H(x, y)
∣

∣

2
dxdy

)1/2

‖ϕ‖L2(R2)

Since (5), then
∫

R2

∣

∣

(

w̃H(x+ η1, y + η2) − w̃H(x, y)
)

ϕ(x, y)
∣

∣dxdy ≤ C
(

|η| +Hmax

)

‖ϕ‖L2(R2).

Taking the limit when Hmax → 0, results
∫

R2

∣

∣

(

w̃H(x+ η1, y + η2) − w̃H(x, y)
)

ϕ(x, y)
∣

∣dxdy ≤ C|η|‖ϕ‖L2(R2),
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and consequently
∫

R2

|ϕ(x− η1, y − η2) − ϕ(x, y)|

|η|
|w̃(x, y)| dxdy ≤ C‖ϕ‖L2(R2).

Considering η = ε(1, 0) and the limit ε→ 0,we conclude that
∫

R2

|ϕx(x, y)w̃(x, y)| dxdy ≤ C‖ϕ‖L2(R2),

for ϕ ∈ C∞
0 (R2). Analogously, taking η = ε(0, 1), we obtain

∫

R2

|ϕy(x, y)w̃(x, y)| dxdy ≤ C‖ϕ‖L2(R2),

for all ϕ ∈ C∞
0 (R2). Consequently, w̃ ∈ W 1,2(R2). Since w is a restriction of

w̃ to Ω and w̃ = 0 in R
2\Ω then w ∈ W 1,2

0 (Ω).

Let us finally prove that v = w. Let r ∈ L2(Ω) and (rH)Λ ∈ Π
◦

L 2
H(Ω), such

that rH → r in (L2(Ω),Π
◦

L2
H(Ω)) (H ∈ Λ). For the step function defined by

sH(x, y) := rH(xj+1/2, yℓ+1/2), (x, y) ∈ (xj, xj+1) × (yℓ, yℓ+1) ⊂ Ω,

zero in R
2\Ω, we have

(vH , rH)H = (wH , sH)0 → (w, r)0 (H ∈ Λ).

Finally,

vH ⇀ w in (L2(Ω),Π
◦

L
2
H(Ω)) (H ∈ Λ).

Considering (7) we conclude that v = w.
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