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DISCRETE NEGATIVE NORMS IN THE ANALYSIS OF
SUPRACONVERGENT TWO DIMENSIONAL

CELL-CENTERED SCHEMES

S. BARBEIRO

Abstract: In this paper we study the convergence properties of cell-centered finite
difference schemes for second order elliptic equations with variable coefficients. We
prove that the finite difference schemes on nonuniform meshes although not even
being consistent are nevertheless second order convergent. The convergence is stud-
ied with the aid of an appropriate negative norm. Numerical examples support the
convergence result.
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1. Introduction

In the last decades there has been a strong mathematical interest in nu-
merical discretizations methods that have higher convergence order than ex-
pected by analyzing the truncation error in a standard way. In the context
of finite difference schemes on nonequidistant grids this behavior is called
supraconvergence. Different methods of proving supraconvergence of finite
difference schemes for ordinary differential equations have been used by the
various authors (see e.g. [3], [10], [12], [13], [16], [17], [21] and [24]). The
phenomenon of supraconvergence in more than one space dimension has also
been studied in the literature (see e.g. [6], [8], [9] and [19]). The topic in the
context of finite element methods has been treated in the papers [3], [4], [8],
[11], [14], [15], [18], [20], [22], [28].

We are interested in studying this phenomena in a variant of finite dif-
ferences, the so called cell-centered schemes, which are used in many codes.
In fact, these schemes are not even consistent but nevertheless second order
convergent. This fact was noticed by Tikhonov and Samarskii ([26]). Rus-
sell and Wheeler ([23]) use the equivalence of a cell-centered finite difference
method and a mixed finite element method with a special quadrature for-
mula for proving first order convergence of the solution and the gradient.
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Manteuffel and White ([21]) show second order convergence in both vertex-
centered finite difference schemes and cell-centered finite difference schemes
for scalar problems, on nonuniform meshes. Supraconvergence results for
two-dimensional cell-centered schemes were presented by Forsyth and Sam-
mon ([9]) and also by Weiser and Wheeler ([27]), among others.

Our main purpose is to analyze how these two additional orders of con-
vergence come out for more general problems than considered so far. The
analysis of the present paper is based on using negative norms. The analysis
of supraconvergence with one additional order of convergence in [3] and [6]
is more or less explicitly based on the concept of negative norms which are
related to the norm H−1. The concept of negative norms in the analysis of
supraconvergence was also used in [3], [4], [6], [7], [8], [12] and [15]. The idea
in this paper is to work instead with a discrete version of the H−2-norm. The
convergence result relies in the stability inequality with respect to this norm.
The analysis of supraconvergence with two additional order of convergence
for the one-dimensional case is considered in [2], with the aid of so-called
Spijker norms ([25]). These norms are applied twice corresponding to the
two gained additional orders of convergence. The use of Spijker norms is
restricted to one dimension. But they give the idea for a generalization to
higher dimensions because they are related to the negative norms (for more
details see [2]).

We consider the discretization of the differential equation with Dirichlet
boundary condition

−(aux)x − (cuy)y + dux + euy + fu = g on Ω, (1)

u = ψ on ∂Ω. (2)

The coefficients of A are assumed to satisfy a(x, y) ≥ a > 0, c(x, y) ≥ c > 0,
∀(x, y) ∈ Ω, a, c ∈ W 3,∞(Ω), d, e, f ∈ W 2,∞(Ω). The domain Ω is an union
of rectangles.

In order to prepare the definition of the cell-centered finite difference ap-
proximation of (1)–(2) let us first introduce the nonuniform grid GH . In
a rectangle R = (x−1, xN+1) × (y−1, yM+1) which contains Ω we define the
subset GH := R1 × R2, where

R1 := {x−1 < x0 < . . . < xN < xN+1}

and

R2 := {y−1 < y0 < . . . < yM < yM+1}.
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Let

SH := {(xj−1/2, yℓ−1/2) : j = 0, . . . , N + 1, ℓ = 0, . . . ,M + 1},

where xj−1/2 := (xj−1 + xj)/2, yℓ−1/2 := (yℓ−1 + yℓ)/2. Our aim is to obtain
numerical solutions in ΩH := SH ∩ Ω. We define also ∂ΩH := SH ∩ ∂Ω and
Ω̄H := ΩH ∪∂ΩH. The grid GH is assumed to satisfy the following condition:
the vertices of Ω are in the centers of the rectangles formed by GH .

r r r r r r r r r

r r r r r r r r r

r r r r r r r r r

b b b r r r r r r

b b b r r r r r r

b b b b b b r r r

b b b b b b r r r

r ∈ Ω̄H

b ∈ CH\Ω̄H

Figure 1. Domain and grid points.

Figure 1 illustrates the cell-centered grid in the domain.
If the case of a rectangular domain we allow x−1 = x0, xN+1 = xN , y−1 = y0

and yM+1 = yM .
For the formulation of the difference problem we use the centered difference

quotients in x-direction

(δxvH)j,ℓ+1/2 :=
vj+1/2,ℓ+1/2 − vj−1/2,ℓ+1/2

hj−1/2
,

(δxwH)j−1/2,ℓ+1/2 :=
wj,ℓ+1/2 − wj−1,ℓ+1/2

hj−1
,

where hj−1/2 := xj+1/2−xj−1/2, hj−1 := xj−xj−1. Correspondingly, the finite
centered difference quotients with respect to the y variable are defined, with
the mesh-size vector k in place of h.

Let RH and RGH be the operators that define restrictions to Ω̄H andGH∩Ω,
respectively.
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The difference problem is to find uH ∈ Ω̄H such that

AHuH = MHRGH
g on ΩH , (3)

uH = RHψ on ∂ΩH , (4)

where the difference operator AH is given by

AHuH := −δx(aδxuH) − δy(cδyuH) +Mx(dδxuH) +My(eδyuH) + fuH , (5)

and

(MxwH)j−1/2,ℓ−1/2 :=
wj−1,ℓ−1/2 + wj,ℓ−1/2

2
,

(MywH)j−1/2,ℓ−1/2 :=
wj−1/2,ℓ−1 + wj−1/2,ℓ

2
,

(MHwH)j−1/2,ℓ−1/2 :=
wj−1,ℓ−1 + wj−1,ℓ + wj,ℓ−1 + wj,ℓ

4
,

for (xj−1/2, yℓ−1/2) ∈ ΩH . This last three quantities are zero for (xj−1/2, yℓ−1/2) ∈
∂ΩH.

In the sequel we need norms for grid functions. To this end we introduce in
the next section discrete versions of the Sobolev spaces Wm,2

0 (Ω), m = 0, 1, 2.

2. Discrete Wm,2
0 (Ω) spaces

Let
◦

W
m,2

H (R), m = 0, 1, 2, be the space of grid functions defined in CH ,
which are zero on the set

{(xj−1/2, yℓ−1/2) : j = 0, N+1, ℓ = 0, . . . ,M+1 ∨ j = 1, . . . , N, ℓ = 0,M+1},

equipped with the norm

‖vH‖Wm,2
H (R) :=

(

m
∑

r=0

|vH |
2
r,H

)1/2

,

where
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|vH |
2
0,H :=

N
∑

j=1

M
∑

ℓ=1

hj−1kℓ−1|vj−1/2,ℓ−1/2|
2,

|vH |
2
1,H :=

N
∑

j=0

M
∑

ℓ=1

hj−1/2kℓ−1| (δxvH)j,ℓ−1/2 |
2

+
N

∑

j=1

M
∑

ℓ=0

hj−1kℓ−1/2| (δyvH)j−1/2,ℓ |
2,

|vH |
2
2,H :=

N
∑

j=1

M
∑

ℓ=1

hj−1kℓ−1

(

|
(

δ2
xvH

)

j−1/2,ℓ−1/2
|2 + |

(

δ2
yvH

)

j−1/2,ℓ−1/2
|2
)

+2
N

∑

j=0

M
∑

ℓ=0

hj−1/2kℓ−1/2| (δxyvH)j,ℓ |
2,

with the difference quotient δxy given by

(δxyvH)j,ℓ :=
(δxvH)j,ℓ+1/2 − (δxvH)j,ℓ−1/2

kℓ−1/2
=

(δyvH)j+1/2,ℓ − (δyvH)j−1/2,ℓ

hj−1/2
.

Let PSH
be the following operator that extends a grid function vH in Ω̄H to

SH ,

PSH
vH := vH on Ω̄H , PSH

vH := 0 on SH\Ω̄H .

We denote by
◦

W
m,2
H (Ω), m = 0, 1, 2, the space of functions defined in Ω̄H ,

null in ∂ΩH , equipped with the norm

‖vH‖m,H :=
(

m
∑

r=0

|PSH
vH |

2
r,H

)1/2

, m = 0, 1, 2.

The space
◦

W
0,2

H (Ω) (also denoted by
◦

L2
H(Ω)) is endowed by the inner product

(vH , wH)H :=

N
∑

j=1

M
∑

ℓ=1

hj−1kℓ−1(PSH
vH)j−1/2,ℓ−1/2(PSH

w̄H)j−1/2,ℓ−1/2.

When it is clear from the context that we use the extended function, we omit
the notation PSH

.
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The discrete spaces introduced above form discrete approximations of their
continuous counterparts in the sense that we explain in what follows.

Let Λ be a sequence of positive vectors of step-sizes , H = (h, k), such
that the maximum step-size, Hmax, converges to zero. A sequence (vH)Λ ∈

Π
◦

L 2
H(Ω) converges discretely to v ∈ L2(Ω) in (L2(Ω),Π

◦

L 2
H(Ω)), vH → v in

(L2(Ω),Π
◦

L 2
H(Ω)) (H ∈ Λ), if for each ǫ > 0 there exists ϕ ∈ C∞

0 (Ω) such
that

‖v − ϕ‖L2(Ω) ≤ ǫ, lim
Hmax→0

sup{‖vH −RHϕ‖0,H} ≤ ǫ.

A sequence (vH)Λ ∈ Π
◦

W
1,2

H (Ω) converges discretely to v ∈ W 1,2
0 (Ω) in

(W 1,2
0 (Ω),Π

◦

W
1,2

H (Ω)), vH → v in (W 1,2
0 (Ω),Π

◦

W
1,2

H (Ω)) (H ∈ Λ), if for each
ǫ > 0 there exists ϕ ∈ C∞

0 (Ω) such that

‖v − ϕ‖W 1,2(Ω) ≤ ǫ, lim
Hmax→0

sup{‖vH −RHϕ‖1,H} ≤ ǫ.

A sequence (vH)Λ weakly converges to v in (L2(Ω),Π
◦

L 2
H(Ω)), vH ⇀ v in

(L2(Ω),Π
◦

L 2
H(Ω)) (H ∈ Λ), if

(wH , vH)H → (w, v)0 (H ∈ Λ)

for all w ∈ L2(Ω) and (wH)Λ ∈ Π
◦

L 2
H(Ω) such that wH → w in

(L2(Ω),Π
◦

L 2
H(Ω)).

The following lemma ([1]) is an important technical tool in the stability
analysis.

Lemma 1. The sequence of imbeddings (JH)Λ,

JH :
◦

W
1,2

H (Ω) →
◦

L
2
H(Ω) (H ∈ Λ)

is discretely compact.

Lemma 2 ([?]) and Lemma 3 ([1]) give some more information about the
imbedding of Lemma 1.

Lemma 2. Let (vH)Λ ∈ Π
◦

L 2
H(Ω) be a bounded sequence. Then there exists

a subsequence Λ′ ⊂ Λ and an element v ∈ L2(Ω) such that

vH ⇀ v in (L2(Ω),Π
◦

L
2

H(Ω)) (H ∈ Λ′).
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Lemma 3. Let (vH)Λ ∈ Π
◦

W
1,2

H (Ω) be a bounded sequence and an element
v ∈ L2(Ω) such that

vH ⇀ v in (L2(Ω),Π
◦

L
2
H(Ω)) (H ∈ Λ).

Then v ∈W 1,2
0 (Ω).

3. Stability

We introduce the discrete Laplace operator

∆HvH := δ2
xvH + δ2

yvH , vH ∈
◦

W
2,2

H (Ω),

and the norm

|||vH |||2,H := ‖∆HvH‖0,H , vH ∈
◦

W
2,2

H (Ω).

Some trivial algebraic manipulations lead to the next result ([2]).

Lemma 4. The norms ‖.‖2,H and |||.|||2,H are equivalent in
◦

W
2,2

H (Ω).

Let A∗
H be the Hilbert adjoint operator from AH . The following result gives

a stability condition for AH in the negative norm ‖.‖−L,

‖vH‖−L := sup
0 6=ϕH∈

◦

W
2,2

H (Ω)

|(vH , ϕH)H |

‖LϕH‖0,H
, vH ∈

◦

L
2

H(Ω),

where L :
◦

W
2,2
H (Ω) →

◦

L 2
H(Ω) is an injective operator.

We notice that for vH ∈
◦

W
2,2
H (Ω) holds

sup
0 6=ϕH∈

◦

W
2,2

H (Ω)

|(AHvH , ϕH)H |

‖LϕH‖0,H
= sup

0 6=wH∈
◦

L2
H(Ω)

|
(

AHvH , (A
∗
H)−1wH

)

H
|

‖L(A∗
H)−1wH‖0,H

= C sup
0 6=wH∈

◦

L2
H(Ω)

|(vH , wH)H |

‖L(A∗
H)−1wH‖0,H

,

and Lemma 5 follows.
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Lemma 5. Let L be an injective operator defined in
◦

W
2,2

H (Ω). If

C‖L(A∗
H)−1wH‖0,H ≤ ‖wH‖0,H ∀wH ∈

◦

L
2

H(Ω), (6)

for a constant C > 0, then

C‖vH‖0,H ≤ sup
0 6=ϕH∈

◦

W
2,2

H (Ω)

|(AHvH , ϕH)H |

‖LϕH‖0,H
∀vH ∈

◦

W
2,2

H (Ω). (7)

Our aim in this section is to show that the inequality (7) hold for L = ∆H .
For the proof we will use (6).

We first define explicitly the adjoint operator from AH ,

A∗
H :

◦

W
2,2

H (Ω) →
◦

L 2
H(Ω),

A∗
H := A

(2)∗
H + A

(1)∗
H ,

with

A
(2)∗
H vH := −δx (aδxvH) − δy (cδyvH) in ΩH ,

A
(1)∗
H vH := −δx

(

d̄M∗
xvH

)

− δy
(

ēM∗
y vH

)

+ f̄ vH in ΩH ,

where

(M∗
xvH)j,ℓ−1/2 :=

vj−1/2,ℓ−1/2hj−1 + vj+1/2,ℓ−1/2hj

2hj−1/2
, (8)

(

M∗
y vH

)

j−1/2,ℓ
:=

vj−1/2,ℓ−1/2kℓ−1 + vj−1/2,ℓ+1/2kℓ

2kℓ−1/2
, (9)

A
(1)∗
H vH := A

(2)∗
H vH := 0 on ∂ΩH .

Let us first prove that A∗
H is

◦

W
1,2

H (Ω)-regular, i.e., there exists C > 0 such
that

‖vH‖1,H ≤ C‖A∗
HvH‖0,H ∀vH ∈

◦

W
2,2

H (Ω).

This will be made with the aid of lemmas 6–9.

Lemma 6. If (vH)Λ ∈ Π
◦

W
1,2

H (Ω) is a bounded sequence and α ∈ C(Ω̄) then
(

Mx(αδxvH)
)

Λ
and

(

My(αδyvH)
)

Λ
are bounded in Π

◦

L 2
H(Ω).
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Proof: Since

hj−1|
(

αδxvH

)

j−1,ℓ−1/2
+

(

αδxvH

)

j,ℓ−1/2
|2

≤ 4hj−3/2|
(

αδxvH

)

j−1,ℓ−1/2
|2 + 4hj−1/2|

(

αδxvH

)

j,ℓ−1/2
|2,

then
‖Mx(αδxvH)‖2

0,H ≤ 2‖α‖2
L∞(Ω)‖vH‖

2
1,H .

Analogously we have

‖My(αδyvH)‖2
0,H ≤ 2‖α‖2

L∞(Ω)‖vH‖
2
1,H .

Lemma 7. Let H ∈ Λ. Then
(

−δx(aδxvH) − δy(cδyvH), vH

)

H
≥ CP‖vH‖

2
1,H ∀vH ∈

◦

W
1,2

H (Ω), (10)

and
(

AHvH , vH

)

H
≥ CE‖vH‖

2
1,H − CK‖vH‖

2
0,H ∀vH ∈

◦

W
1,2

H (Ω), (11)

with CP > 0, CE > 0 and CK not depending on H.

Proof: Since a has a lower bound a then

a

N
∑

j=0

M
∑

ℓ=1

hj−1/2kℓ−1

∣

∣

(

δxvH

)

j,ℓ−1/2

∣

∣

2

≤ −
N

∑

j=1

M
∑

ℓ=1

kℓ−1

(

(

aδxvH

)

j,ℓ−1/2
−

(

aδxvH

)

j−1,ℓ−1/2

)

v̄j−1/2,ℓ−1/2

=
(

−δx(aδxvH), vH

)

H
.

In the same way we can prove that

c
N

∑

j=1

M
∑

ℓ=0

hj−1kℓ−1/2

∣

∣

(

δyvH

)

j−1/2,ℓ−1

∣

∣

2
≤

(

−δy(cδyvH), vH

)

H
.

Then (10) follows.
From Lemma 6, there exists C > 0 such that

‖Mx(dδxvH) +My(eδyvH)‖0,H ≤ C‖vH‖1,H ,

and then
∣

∣

∣

(

Mx(dδxvH) +My(eδyvH) + fvH, vH

)

H

∣

∣

∣
≤ CL‖vH‖1,H‖vH‖0,H .
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Let ǫ > 0. We can find Cǫ such that

‖vH‖1,H‖vH‖0,H ≤ ǫ‖vH‖
2
1,H + Cǫ‖vH‖

2
0,H .

Taking ǫ =
CP

2CL
we conclude (11) with CE =

CP

2
and CK = CLCǫ.

Lemma 8. Let (vH)Λ ∈ Π
◦

W
1,2

H (Ω) and v ∈W 1,2
0 (Ω) such that

vH → v in (W 1,2
0 (Ω),Π

◦

W
1,2

H (Ω)) (H ∈ Λ)

and let α ∈ C(Ω̄). Then

Mx(αδxvH) → αvx and My(αδyvH) → αvy in (L2(Ω),Π
◦

L
2

H(Ω)) (H ∈ Λ).
(12)

Proof: Let C satisfy ‖α‖L∞(Ω) ≤ C. For any positive real number ǫ there
exists ϕ ∈ C∞(Ω̄) such that

‖v − ϕ‖W 1,2(Ω) ≤ ǫ, lim
Hmax→0

sup{‖vH − RHϕ‖1,H} ≤
1

4C
ǫ.

Since

‖Mx(αδxvH) −Mx(αδxRHϕ)‖0,H ≤ 2‖α‖L∞(Ω)‖vH −RHϕ‖1,H

and for Hmax small enough

‖Mx(αδxRHϕ) −RH(αϕx)‖0,H ≤
ǫ

2
,

then there exists a final section H ∈ Λ such that

‖Mx(αδxvH) −RH(αϕx)‖0,H ≤ ǫ.

Analogously we prove that

‖My(αδyvH) −RH(αϕy)‖0,H ≤ ǫ.

Consequently (12) holds.
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Lemma 9. Let (vH)Λ be a bounded sequence in Π
◦

W
1,2

H (Ω) and α ∈ C(Ω̄).

Then for a subsequence Λ′ ⊆ Λ there exists v ∈W 1,2
0 (Ω) such that

vH → v in (L2(Ω),Π
◦

L
2

H(Ω)) (H ∈ Λ′)

and the following week convergence hold

Mx(αδxvH) ⇀ αvx and My(αδyvH) ⇀ αvy in (L2(Ω),Π
◦

L
2

H(Ω)) (H ∈ Λ′).

Proof: It follows from Lemma 6 that (Mx(αδxvH))Λ is bounded in
◦

L 2
H(Ω).

Taking Lemma 2 into account we have

(Mx(αδxvH))Λ ⇀ w in (L2(Ω),Π
◦

L
2

H(Ω)) (H ∈ Λ′′),

for a subsequence Λ′′ ⊆ Λ and w ∈ L2(Ω). Then for any ϕ ∈ C∞
0 (Ω)

(RHϕ,Mx(αδxvH))H → (ϕ,w)0 (H ∈ Λ′′). (13)

From Theorem 1 and Lemma 3, there exists v ∈ W 1,2
0 (Ω) and Λ′ ⊆ Λ′′,

such that

vH → v in (L2(Ω),Π
◦

L
2

H(Ω)) (H ∈ Λ′).

Let us prove that

δx(αM
∗
xRHϕ) ⇀ (αϕ)x in (L2(Ω),Π

◦

L
2

H(Ω)) (H ∈ Λ′), (14)

with (M∗
xRHϕ)j,ℓ−1/2 given by (8). Let ψ ∈ C∞

0 (Ω). From Lemma 8
(

−δx(αM
∗
xRHϕ), RHψ

)

H
=

(

RHϕ,Mx(αδxRHψ)
)

H

→ (ϕ, αψx)0,

or equivalently,
(

−δx(αM
∗
xRHϕ), RHψ

)

H
→

(

−(αϕ)x, ψ
)

0
. (15)

From Theorem 2, there exists z ∈ L2(Ω) such that

δx(αM
∗
xRHϕ) ⇀ z in (L2(Ω),Π

◦

L
2
H(Ω)) (H ∈ Λ′)

and consequently
(

−δx(αM
∗
xRHϕ), RHψ

)

H
→ (−z, ψ)0. (16)

From (15) and (16) we obtain (14).
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Since
(

RHϕ,Mx(αδxvH)
)

H
=

(

−δx(αM
∗
xRHϕ), vH

)

H

→
(

−(αϕ)x, v
)

0
= (ϕ, αvx)0,

using (13) we conclude that

Mx(αδxvH) ⇀ αvx in (L2(Ω),Π
◦

L
2
H(Ω)) (H ∈ Λ′).

We prove

My(αδyvH) ⇀ αvy in (L2(Ω),Π
◦

L
2

H(Ω)) (H ∈ Λ′)

analogously.

Theorem 1. There exists a final sequence Λ′ ⊂ Λ and C not depending on
H such that

‖vH‖1,H ≤ C‖A∗
HvH‖0,H ∀vH ∈

◦

W
1,2

H (Ω), (17)

H ∈ Λ′.

Proof: Assuming (17) not to hold we can find a subsequence Λ′′ ⊆ Λ and
elements vH , H ∈ Λ′′, such that

‖vH‖1,H = 1 and ‖A∗
HvH‖0,H → 0 (H ∈ Λ′′). (18)

Lemma 1 and Lemma 3 allow the sequence Λ′′ and v ∈W 1,2
0 (Ω) to be chosen

such that

vH → v in (L2(Ω),Π
◦

L
2
H(Ω)) (H ∈ Λ′′).

Let w ∈ W 1,2
0 (Ω) be the solution of

(awx, zx)0 + (cwy, zy)0 =
(

(dv)x + (ev)y + fv, z
)

0
∀z ∈ W 1,2

0 (Ω) (19)

and (wH)Λ ∈ Π
◦

W
1,2

H (Ω) such that

wH → w in (W 1,2
0 (Ω),Π

◦

W
1,2
H (Ω)) (H ∈ Λ).

Let us prove the convergence

|zH |1,H → 0, (20)

for zH = vH − wH . Lemma 7 gives the existence of C > 0 such that

|zH |
2
1,H ≤ C

(

(A∗
HvH , zH)H + a(wH , zH) + c(wH , zH) + (vH , A

(1)
H zH)H

)

, (21)
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where

a(wH , zH) :=
N

∑

j=0

M
∑

ℓ=1

hj−1/2kℓ−1a(xj, yℓ−1/2) (δxwH)j,ℓ−1/2 (δxz̄H)j,ℓ−1/2

and

c(wH , zH) :=
N

∑

j=1

M
∑

ℓ=0

hj−1kℓ−1/2c(xj−1/2, yℓ) (δywH)j−1/2,ℓ (δyz̄H)j−1/2,ℓ .

Since ‖A∗
HvH‖0,H → 0 then (A∗

HvH , zH)H → 0. Let z = v −w. Our aim is to
prove that

a(wH , zH) → (awx, zx)0 (H ∈ Λ′′), (22)

and

c(wH , zH) → (cwy, zy)0 (H ∈ Λ′′). (23)

Lemma 8 yields

Mx(δxwH) → wx in (L2(Ω),Π
◦

L
2

H(Ω)) (H ∈ Λ).

Since (zH)Λ, H ∈ Λ′′, is bounded in Π
◦

W
1,2

H (Ω), Lemma 9 allows a subse-
quence Λ′ ⊂ Λ′′ to be chosen such that

(Mx(aδxzH))Λ ⇀ azx in (L2(Ω),Π
◦

L
2

H(Ω)) (H ∈ Λ′),

and consequently (22) holds. We prove (23) analogously.
For the last term of (21) we have

(vH , A
(1)
H zH)H → (v, A(1)z)0 (H ∈ Λ′′).

Since w is the solution of (19) then

a(wH , zH) + c(wH , zH) + (vH , A
(1)
H zH)H → 0 (H ∈ Λ′′)

and (20) follows. Then

vH = zH + wH → w in (L2(Ω),Π
◦

L
2
H(Ω)) (H ∈ Λ′),

and

(Aw, z)0 = 0 ∀z ∈ W 1,2
0 (Ω).

For A being injective ‖vH‖1,H = 1 is not possible.

Let us now prove a stability result for A
(2)∗
H .
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Lemma 10. There exists C not depending on H such that

‖vH‖2,H ≤ C
(

‖A
(2)∗
H vH‖0,H + ‖vH‖1,H

)

∀vH ∈
◦

W
2,2

H (Ω), (24)

H ∈ Λ.

Proof: Let vH ∈
◦

W
2,2

H (Ω). We define

B(1)
x vH :=

N
∑

j=1

M
∑

ℓ=1

hj−1kℓ−1(δ
2
xv̄H)j−1/2,ℓ−1/2

×
[a(xj−1/2, yℓ−1/2) − a(xj−1, yℓ−1/2)

hj−1
(δxvH)j−1,ℓ−1/2

+
a(xj, yℓ−1/2) − a(xj−1/2, yℓ−1/2)

hj−1
(δxvH)j,ℓ−1/2

]

+

N
∑

j=0

M
∑

ℓ=0

hj−1kℓ−1/2

c(xj, yℓ) − c(xj−1/2, yℓ)

hj−1
(δyvH)j−1/2,ℓ(δxyv̄H)j,ℓ

+
N

∑

j=0

M
∑

ℓ=0

hjkℓ−1/2

c(xj+1/2, yℓ) − c(xj, yℓ)

hj
(δyvH)j+1/2,ℓ(δxyv̄H)j,ℓ

B(2)
x vH :=

N
∑

j=1

M
∑

ℓ=1

hj−1kℓ−1a(xj−1/2, yℓ−1/2)|(δ
2
xvH)j−1/2,ℓ−1/2|

2

+

N
∑

j=0

M
∑

ℓ=0

hj−1/2kℓ−1/2c(xj, yℓ)|(δxyvH)j,ℓ|
2,

B
(1)
y and B

(2)
y similar to B

(1)
x and B

(2)
x , respectively, replacing a with c, x with

y and the indexes in a obvious way. We have
(

A
(2)∗
H vH , δ

2
xvH + δ2

yvH

)

H
= −B

(1)
H vH − B

(2)
H vH , (25)

where B
(1)
H := B

(1)
x +B

(1)
y and B

(2)
H := B

(2)
x + B

(2)
y .

The conditions assumed for the coefficients a and c give the existence of
CE > 0 and CL > 0 such that

CE|vH |
2
2,H ≤ B

(2)
H vH
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and

B
(1)
H vH ≤ CL|vH |1,H |vH |2,H ,

which together with (25) yield

CE|vH |
2
2,H ≤ |

(

A
(2)∗
H vH , δ

2
xvH + δ2

yvH

)

H
| + |B

(1)
H vH |

≤ ‖A
(2)∗
H vH‖0,H |vH |2,H + CL|vH |1,H |vH |2,H .

Then (24) follows with C = max{1/CE, CL/CE}.

The main result of this section is the following stability theorem.

Theorem 2. There exists C > 0 and a final section Λ′ ⊂ Λ such that

‖vH‖0,H ≤ C sup
0 6=wH∈

◦

W
2,2

H (Ω)

|(AHvH , wH)H |

‖wH‖2,H
∀vH ∈

◦

W
2,2

H (Ω), (26)

H ∈ Λ′.

Proof: Let vH ∈
◦

W
2,2

H (Ω). Since A
(1)∗
H :

◦

W
1,2

H (Ω) →
◦

L 2
H(Ω) is bounded then

there exists CL > 0 such that

‖A
(2)∗
H vH‖0,H ≤ ‖A∗

HvH‖0,H + ‖A
(1)∗
H vH‖0,H ≤ ‖A∗

HvH‖0,H + CL‖vH‖1,H .

Lemma 10 gives the existence of C ′ > 0 such that

‖vH‖2,H ≤ C ′(‖A
(2)∗
H vH‖0,H + ‖vH‖1,H)

≤ C ′‖A∗
HvH‖0,H + (C ′ + C ′CL)‖vH‖1,H .

From Theorem 1 follows the existence of C > 0 such that

‖vH‖2,H ≤ C‖A∗
HvH‖0,H ∀vH ∈

◦

W
2,2

H (Ω). (27)

Finally, we observe that (27) is equivalent to

‖(A∗
H)−1wH‖2,H ≤ C‖wH‖0,H ∀wH ∈

◦

L
2
H(Ω).

The estimate (26) can be given the alternative form which uses a negative
norm

‖vH‖0,H ≤ C‖AHvH‖−∆H
∀vH ∈

◦

W
2,2

H (Ω).
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4. Convergence

The main result of this paper in Theorem 3 relies in the stability result of
Theorem 2. An estimate for ‖RHu− uH‖0,H will be obtained with the aid of
(26) replacing vH by RHu− uH and bounding

(

AH(RHu) −MH(RGH
g), vH

)

H
.

The bounds in lemmas 11–13 are for that purpose.

In what follows we use the notation
∑

ΩH

for the sum over the set of indexes

(j, ℓ) such that (xj+1/2, yℓ+1/2) ∈ ΩH .

Lemma 11. Let u ∈ H4(Ω). Then there holds

|
(

−δx(aδxu), vH

)

H
−

(

MHRGH
(aux)x, vH

)

H
|

≤ C‖a‖W 3,∞(Ω)

(

∑

ΩH

(h2
j + k2

ℓ )
2‖u‖2

H4((xj ,xj+1)×(yℓ,yℓ+1))

)1/2

‖vH‖2,H

(28)

and

|
(

−δy(cδyu), vH

)

H
−

(

MHRGH
(cuy)y, vH

)

H
|

≤ C‖c‖W 3,∞(Ω)

(

∑

ΩH

(h2
j + k2

ℓ )
2‖u‖2

H4((xj ,xj+1)×(yℓ,yℓ+1))

)1/2

‖vH‖2,H ,

(29)

for all vH ∈
◦

W
2,2
H (Ω).

Proof: Let vH ∈
◦

W
2,2

H (Ω). We consider, in first place, only the terms in
(

δxaδxu, vH

)

H
and

(

MHRGH
(aux)x, vH

)

H
which have the factor v̄j+1/2,ℓ+1/2,

for some j, with ℓ given. Let us suppose, without loss of generality, that the
set of the points in the form (., yℓ+1/2) belonging to ΩH is

{(xpℓ+1/2, yℓ+1/2), (xpℓ+3/2, yℓ+1/2), . . . , (xpℓ+Nℓ−1/2, yℓ+1/2)}.

Let

S1 :=

pℓ+Nℓ−1
∑

j=pℓ

hjkℓ

(

δxaδxu
)

j+1/2,ℓ+1/2
v̄j+1/2,ℓ+1/2
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and

S
(1)
1 := −

pℓ+Nℓ
∑

j=pℓ

(

∫ yℓ+1

yℓ

∫ xj+1/2

xj−1/2

a(xj, y)ux(x, y) dx dy
)

(

δxv̄H

)

j,ℓ+1/2
.

We have

S1 =

pℓ+Nℓ−1
∑

j=pℓ

kℓ

(

(

aδxu
)

j+1,ℓ+1/2
−

(

aδxu
)

j,ℓ+1/2

)

v̄j+1/2,ℓ+1/2

= −

pℓ+Nℓ
∑

j=pℓ

hj−1/2kℓ

(

aδxu
)

j,ℓ+1/2

(

δxv̄H

)

j,ℓ+1/2

= −

pℓ+Nℓ
∑

j=pℓ

kℓ

∫ xj+1/2

xj−1/2

a(xj, yℓ+1/2)ux(x, yℓ+1/2) dx
(

δxv̄H

)

j,ℓ+1/2
.

The functional

λ(g) := g
(1

2

)

−

∫ 1

0

g(ξ) dξ

is bounded in W 2,1(0, 1) and vanishes for g = 1 and ξ. Thus the Bramble-
Hilbert Lemma (see e.g. [5]) gives the existence of a positive constant C such
that

|λ(g)| ≤ C‖g′′‖L1(0,1).

From the last estimate applied to g = w, where

w(ξ) := a(xj, yℓ + ξkℓ)

∫ xj+1/2

xj−1/2

ux(x, yℓ + ξkℓ) dx ξ ∈ [0, 1],

follows

S1 = S
(1)
1 −

pℓ+Nℓ
∑

j=pℓ

∫ yℓ+1

yℓ

∫ xj+1/2

xj−1/2

Ej,ℓ

(

δxv̄H

)

j,ℓ+1/2
,

with

|Ej,ℓ| ≤ Ck2
ℓ

∣

∣

∣
a(xj, .)

∫ xj+1/2

xj−1/2

ux(x, .) dx
∣

∣

∣

W 2,1((yℓ,yℓ+1))
.

Let

S2 :=

pℓ+Nℓ−1
∑

j=pℓ

hjkℓ

(

MHRGH
(aux)x

)

j+1/2,ℓ+1/2
v̄j+1/2,ℓ+1/2,
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which can be written in the form

S2 = S
(1)
2 +

pℓ+Nℓ−1
∑

j=pℓ

Fj,ℓ v̄j+1/2,ℓ+1/2,

where

S
(1)
2 :=

pℓ+Nℓ−1
∑

j=pℓ

∫ yℓ+1

yℓ

∫ xj+1

xj

(aux)x(x, y) dx dy v̄j+1/2,ℓ+1/2

and

Fj,ℓ :=
(

MHRGH
(aux)x

)

j+1/2,ℓ+1/2
−

∫ yℓ+1

yℓ

∫ xj+1

xj

(aux)x(x, y) dx dy.

Fj,ℓ can be bounded with the aid of the Bramble-Hilbert Lemma. Let the
function w be defined by

w(ξ, η) := (aux)x(xj + ξhj , yℓ + ηkℓ), (ξ, η) ∈ (0, 1) × (0, 1).

Then

Fj,ℓ = hjkℓ

(w(0, 0) + w(1, 0) + w(0, 1) + w(1, 1)

4
−

∫ 1

0

∫ 1

0

w(ξ, η) dξ dη
)

.

The functional

λ(g) :=
g(0, 0) + g(1, 0) + g(0, 1) + g(1, 1)

4
−

∫ 1

0

∫ 1

0

g(ξ, η) dξ dη,

g ∈ W 2,1((0, 1)× (0, 1)), is bounded and vanishes for g = 1, ξ and η. Again,
by Bramble-Hilbert Lemma the estimate

|λ(g)| ≤ C|g|W 2,1((0,1)×(0,1))

holds and we obtain the bound

|Fj,ℓ| ≤ C
(

h2
j‖(aux)xxx‖L1((xj ,xj+1)×(yℓ,yℓ+1))

+kℓhj‖(aux)xxy‖L1((xj ,xj+1)×(yℓ,yℓ+1)) + k2
ℓ‖(aux)xyy‖L1((xj ,xj+1)×(yℓ,yℓ+1))

)

.
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Let us finally consider the difference S
(1)
1 − S

(1)
2 . For S

(1)
2 we have

S
(1)
2 =

pℓ+Nℓ−1
∑

j=pℓ

∫ yℓ+1

yℓ

(

(aux)(xj+1, y) − (aux)(xj, y)
)

dyv̄j+1/2,ℓ+1/2

= −

pℓ+Nℓ
∑

j=pℓ

∫ yℓ+1

yℓ

hj−1/2(aux)(xj, y) dy
(

δxv̄H)j,ℓ+1/2

= −

pℓ+Nℓ
∑

j=pℓ

∫ yℓ+1

yℓ

∫ xj+1/2

xj−1/2

(aux)(xj, y) dx dy
(

δxv̄H)j,ℓ+1/2

and then

S
(1)
1 − S

(1)
2 = (T1 + T2)/2 + T3 + T4,

with

T1 := −

pℓ+Nℓ
∑

j=pℓ+1

∫ yℓ+1

yℓ

[

hj−1

2

(

ux(xj−1, y) + ux(xj, y)
)

−

∫ xj

xj−1

ux(x, y)dx

]

×
(

a(xj−1, y)(δxv̄H)j−1,ℓ+1/2 + a(xj, y)(δxv̄H)j,ℓ+1/2

)

dy,

T2 := −

pℓ+Nℓ
∑

j=pℓ+1

∫ yℓ+1

yℓ

[

hj−1

2

(

ux(xj, y) − ux(xj−1, y)
)

+

∫ xj−1/2

xj−1

ux(x, y)dx−

∫ xj

xj−1/2

ux(x, y)dx

]

×
(

a(xj, y)(δxv̄H)j,ℓ+1/2 − a(xj−1, y)(δxv̄H)j−1,ℓ+1/2

)

dy,

T3 := −

∫ yℓ+1

yℓ

[hpℓ−1

2
ux(xpℓ

, y) −

∫ xpℓ

xpℓ−1/2

ux(x, y)dx
]

a(xpℓ
, y) dy(δxv̄H)pℓ,ℓ+1/2,

and

T4 := −

∫ yℓ+1

yℓ

[hpℓ+Nℓ

2
ux(xpℓ+Nℓ

, y) −

∫ xpℓ+Nℓ+1/2

xpℓ+Nℓ

ux(x, y)dx
]

a(xpℓ+Nℓ
, y) dy

×(δxv̄H)pℓ+Nℓ,ℓ+1/2.
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The sum in T1 contains the errors of the trapezoidal rule that can be bounded
with the aid of the Bramble-Hilbert Lemma by

|T1| ≤ C

pℓ+Nℓ
∑

j=pℓ+1

h2
j−1‖uxxx‖L1((xj ,xj+1)×(yℓ,yℓ+1))‖a‖L∞((xj ,xj+1)×(yℓ,yℓ+1))

×
(

|(δxv̄H)j−1,ℓ+1/2| + |(δxv̄H)j,ℓ+1/2|
)

.

For T2 we have only the first order bound but the factor

a(xj, y)(δxv̄H)j,ℓ+1/2 − a(xj−1, y)(δxv̄H)j−1,ℓ+1/2

allows to estimate T2 with the same order as T1. We have

a(xj, y)(δxv̄H)j,ℓ+1/2 − a(xj−1, y)(δxv̄H)j−1,ℓ+1/2

= a(xj−1/2, y)
(

(δxv̄H)j,ℓ+1/2 − (δxv̄H)j−1,ℓ+1/2

)

+
(

a(xj−1/2, y) − a(xj−1, y)
)

(δxv̄H)j−1,ℓ+1/2

+
(

a(xj, y) − a(xj−1/2, y)
)

(δxv̄H)j,ℓ+1/2

= hj−1a(xj−1/2, y)(δ
2
xv̄H)j−1/2,ℓ+1/2

+
hj−1

2

(

ax(η1, y)(δxv̄H)j−1,ℓ+1/2 + ax(η2, y)(δxv̄H)j,ℓ+1/2

)

,

for some η1 ∈ [xj−1, xj−1/2], η2 ∈ [xj−1/2, xj], and then

|T2| ≤ C

pℓ+Nℓ
∑

j=pℓ+1

h2
j−1‖uxx‖L1((xj ,xj+1)×(yℓ,yℓ+1))‖a‖W 1,∞((xj ,xj+1)×(yℓ,yℓ+1))

×
(

|(δ2
xv̄H)j−1/2,ℓ+1/2| + |(δxv̄H)j−1,ℓ+1/2| + |(δxv̄H)j,ℓ+1/2|

)

.

For T3 and T4 we have

|T3| ≤

∫ yℓ+1

yℓ

hpℓ−1

8
‖uxx(., y)‖L1((xpℓ−1/2,xpℓ

))|a(xpℓ
, y)| dy|(δxv̄H)pℓ,ℓ+1/2|

and

|T4| ≤

∫ yℓ+1

yℓ

hpℓ+Nℓ

8
‖uxx(., y)‖L1((xpℓ+Nℓ

,xpℓ+Nℓ+1/2))|a(xpℓ+Nℓ, y)| dy

×|(δxv̄H)pℓ+Nℓ,ℓ+1/2|.
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Considering the equality

(δxv̄H)pℓ,ℓ+1/2 = −

j
∑

i=pℓ

hi(δ
2
xv̄H)i+1/2,ℓ+1/2 + (δxv̄H)j+1,ℓ+1/2,

j = pℓ, . . . , pℓ +Nℓ − 1, follows

pℓ+Nℓ−1
∑

j=pℓ

hj(δxv̄H)pℓ,ℓ+1/2 =

pℓ+Nℓ−1
∑

j=pℓ

hj

(

j
∑

i=pℓ

hi(δ
2
xv̄H)i+1/2,ℓ+1/2

)

+

pℓ+Nℓ−1
∑

j=pℓ

hj(δxv̄H)j+1,ℓ+1/2,

and then

|(δxv̄H)pℓ,ℓ+1/2| ≤

pℓ+Nℓ−1
∑

j=pℓ

hj|(δ
2
xv̄H)j+1/2,ℓ+1/2|

+
1

xpℓ+Nℓ
− xpℓ

pℓ+Nℓ−1
∑

j=pℓ

hj|(δxv̄H)j+1,ℓ+1/2|.

For T3 we have

|T3| ≤
hpℓ−1

8
‖uxx‖L1((xpℓ−1/2,xpℓ

)×(yℓ,yℓ+1))‖a(xpℓ
, .)‖L∞((yℓ,yℓ+1))

×
(

pℓ+Nℓ−1
∑

j=pℓ

hj|(δ
2
xv̄H)j+1/2,ℓ+1/2| +

1

xpℓ+Nℓ
− xpℓ

pℓ+Nℓ−1
∑

j=pℓ

hj|(δxv̄H)j+1,ℓ+1/2|
)

,

and in the same way for T4 we obtain

|T4| ≤
hpℓ+Nℓ

8
‖uxx‖L1((xpℓ+Nℓ

,xpℓ+Nℓ+1/2)×(yℓ,yℓ+1))‖a(xpℓ+Nℓ
, .)‖L∞((yℓ,yℓ+1))

×
(

pℓ+Nℓ−1
∑

j=pℓ

hj|(δ
2
xv̄H)j+1/2,ℓ+1/2| +

1

xpℓ+Nℓ
− xpℓ

pℓ+Nℓ−1
∑

j=pℓ

hj|(δxv̄H)j+1,ℓ+1/2|
)

.

Using the Schwarz inequality we obtain (28).
The proof of (29) is analogous.
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Lemma 12. Let u ∈ H3(Ω). Then the following estimates hold

|
(

Mx(dδxu), vH

)

H
−

(

MHRGH
(dux), vH

)

H
|

≤ C‖d‖W 2,∞(Ω)

(

∑

ΩH

(h2
j + k2

ℓ )
2‖uxxx‖

2
L2((xj ,xj+1)×(yℓ,yℓ+1))

)1/2

‖vH‖1,H

(30)

and

|
(

My(eδyu), vH

)

H
−

(

MHRGH
(euy), vH

)

H
|

≤ C‖e‖W 2,∞(Ω)

(

∑

ΩH

(h2
j + k2

ℓ )
2‖uyyy‖

2
L2((xj ,xj+1)×(yℓ,yℓ+1))

)1/2

‖vH‖1,H

(31)

for all vH ∈
◦

W
1,2
H (Ω).

Proof: Let us consider the terms in
(

Mx(dδxu), vH

)

H
and

(

MHRGH(dux), vH

)

H
which have the factor v̄j+1/2,ℓ+1/2, for some j, with ℓ given. We obtain for
(

Mx(dδxu), vH

)

H
and

(

MHRGH
(dux), vH

)

H
, respectively,

pℓ+Nℓ−1
∑

j=pℓ

kℓhj

(

Mx(dδxu)
)

j+1/2,ℓ+1/2
v̄j+1/2,ℓ+1/2

=

pℓ+Nℓ−1
∑

j=pℓ

kℓ

[

j
∑

i=pℓ

hi

(

Mx(dδxu)
)

i+1/2,ℓ+1/2

−

j−1
∑

i=pℓ

hi

(

Mx(dδxu)
)

i+1/2,ℓ+1/2

]

v̄j+1/2,ℓ+1/2

= −

pℓ+Nℓ
∑

j=pℓ

kℓ

j−1
∑

i=pℓ

hi

(

Mx(dδxu)
)

i+1/2,ℓ+1/2
(v̄j+1/2,ℓ+1/2 − v̄j−1/2,ℓ+1/2)

= −

pℓ+Nℓ
∑

j=pℓ

kℓhj−1/2

j−1
∑

i=pℓ

hi

(

Mx(dδxu)
)

i+1/2,ℓ+1/2
(δxv̄H)j,ℓ+1/2



SUPRACONVERGENT TWO DIMENSIONAL CELL-CENTERED SCHEMES 23

and

pℓ+Nℓ−1
∑

j=pℓ

kℓhj

(

MHRGH
(dux)

)

j+1/2,ℓ+1/2
v̄j+1/2,ℓ+1/2

= −

pℓ+Nℓ
∑

j=pℓ

kℓhj−1/2

j−1
∑

i=pℓ

hi

(

Mx(dux)
)

i+1/2,ℓ+1/2
(δxv̄H)j,ℓ+1/2

+

pℓ+Nℓ−1
∑

j=pℓ

hj

2
kℓ

(

(Ey)j,ℓ+1/2 + (Ey)j+1,ℓ+1/2

)

v̄j+1/2,ℓ+1/2,

where

(Ey)j,ℓ+1/2 :=
(dux)j,ℓ + (dux)j,ℓ+1

2
− (dux)j,ℓ+1/2.

Let w(ξ) := (dux)(xj, yℓ + ξkℓ), ξ ∈ [0, 1]. Then

(Ey)j,ℓ+1/2 =
w(0) + w(1)

2
− w

(1

2

)

.

The functional

λ(g) :=
g(0) + g(1)

2
− g

(1

2

)

is bounded in W 2,1(0, 1) and vanishes for g = 1 and ξ. Again by the Bramble-
Hilbert Lemma the estimate

|λ(g)| ≤ C‖g′′‖L1(0,1), g ∈ W 2,1(0, 1),

holds and we obtain the bound

pℓ+Nℓ−1
∑

j=pℓ

hj

2
kℓ|(Ey)j,ℓ+1/2 + (Ey)j+1,ℓ+1/2||vj+1/2,ℓ+1/2|

≤

pℓ+Nℓ−1
∑

j=pℓ

hj

2
k2

ℓ

(

‖
(

(dux)xx

)

(xj, .)‖L1(Iℓ) + ‖
(

(dux)xx

)

(xj+1, .)‖L1(Iℓ)

)

×|vj+1/2,ℓ+1/2|. (32)



24 S. BARBEIRO

We have
j−1
∑

i=pℓ

hi

[

(

Mx(dδxu)
)

i+1/2,ℓ+1/2
−

(

Mx(dux)
)

i+1/2,ℓ+1/2

]

=

j−1
∑

i=pℓ+1

hi−1/2di,ℓ+1/2

(

(δxu)i,ℓ+1/2 − ux(xi, yℓ+1/2)
)

+
hj−1

2
dj,ℓ+1/2

(

(δxu)j,ℓ+1/2 − ux(xj, yℓ+1/2)
)

+
hpℓ

2
dpℓ,ℓ+1/2

(

(δxu)pℓ,ℓ+1/2 − ux(xpℓ
, yℓ+1/2)

)

.

Using (32) we obtain the bound (30). The proof of (31) is analogous.

Lemma 13. Let w ∈ H2(Ω). Then

|
(

RHw, vH

)

H
−

(

MHRGH
w, vH

)

H
|

≤ C
(

∑

ΩH

(h2
j + k2

ℓ )
2‖w‖2

H2((xj ,xj+1)×(yℓ,yℓ+1))

)1/2

‖vH‖0,H (33)

for all vH ∈
◦

L 2
H(Ω).

Proof: We can write
(

MHRGH
w

)

j+1/2,ℓ+1/2
= wj+1/2,ℓ+1/2 + (Ex)j+1/2,ℓ + (Ex)j+1/2,ℓ+1

+(Ey)j+1/2,ℓ+1/2,

where

(Ex)j+1/2,ℓ :=
wj,ℓ + wj+1,ℓ

4
−
wj+1/2,ℓ

2
and

(Ey)j+1/2,ℓ+1/2 :=
wj+1/2,ℓ + wj+1/2,ℓ+1

2
− wj+1/2,ℓ+1/2.

Using the Bramble-Hilbert Lemma as before we obtain (33).

Let us consider in (33) w = fu. We obtain

|
(

fu, vH

)

H
−

(

MHRGH
(fu), vH

)

H
|

≤ C‖f‖W 2,∞(Ω)H
2
max

(

∑

ΩH

‖u‖2
H2((xj ,xj+1)×(yℓ,yℓ+1))

)1/2

‖vH‖0,H (34)
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for all vH ∈
◦

L2
H(Ω).

The next convergence theorem follows from Theorem 2 and from the bounds
(28), (29), (30), (31) and (34).

Theorem 3. Let Ω be a union of rectangles. Assume that the solution u of
(1)–(2) lies in H4(Ω). Then for H ∈ Λ, with Hmax small enough, the discrete
problem (3)–(4) has a unique solution uH which satisfies

‖RHu− uH‖0,H ≤ C
(

∑

ΩH

(h2
j + k2

ℓ )
2‖u‖2

H4((xj ,xj+1)×(yℓ,yℓ+1))

)1/2

≤ CH2
max‖u‖H4(Ω).

5. Numerical results

We present numerical results for the problem

−∆u = f on Ω = (0, 1)× (0, 1),
u = 0 on ∂Ω,

which has the solution u(x, y) = [x(x− 1)y(y − 1)]2.
Figure 2 shows the numerical solution on 500 random meshes (N−1×M−1

points placed in Ω at random), where N and M ranges from 10 to 110. The
logarithm of the norm of the error, log(‖RHu−uH‖0,H), is plotted versus the
logarithm of the maximum step-size. The straight line is the least-squares fit
to the points and has the slope 2.1721, which confirms the estimates given
in Theorem 3.
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Figure 2. log(‖RHu− uH‖0,H) versus log(hmax).
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