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DISCRETE NEGATIVE NORMS IN THE ANALYSIS OF
SUPRACONVERGENT TWO DIMENSIONAL
CELL-CENTERED SCHEMES

S. BARBEIRO

ABSTRACT: In this paper we study the convergence properties of cell-centered finite
difference schemes for second order elliptic equations with variable coefficients. We
prove that the finite difference schemes on nonuniform meshes although not even
being consistent are nevertheless second order convergent. The convergence is stud-
ied with the aid of an appropriate negative norm. Numerical examples support the
convergence result.
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1. Introduction

In the last decades there has been a strong mathematical interest in nu-
merical discretizations methods that have higher convergence order than ex-
pected by analyzing the truncation error in a standard way. In the context
of finite difference schemes on nonequidistant grids this behavior is called
supraconvergence. Different methods of proving supraconvergence of finite
difference schemes for ordinary differential equations have been used by the
various authors (see e.g. [3], [10], [12], [13], [16], [17], [21] and [24]). The
phenomenon of supraconvergence in more than one space dimension has also
been studied in the literature (see e.g. [6], [8], [9] and [19]). The topic in the
context of finite element methods has been treated in the papers [3], [4], [8],
[11], [14], [15], [18], [20], [22], [28].

We are interested in studying this phenomena in a variant of finite dif-
ferences, the so called cell-centered schemes, which are used in many codes.
In fact, these schemes are not even consistent but nevertheless second order
convergent. This fact was noticed by Tikhonov and Samarskii ([26]). Rus-
sell and Wheeler (]23]) use the equivalence of a cell-centered finite difference
method and a mixed finite element method with a special quadrature for-
mula for proving first order convergence of the solution and the gradient.
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Manteuffel and White ([21]) show second order convergence in both vertex-
centered finite difference schemes and cell-centered finite difference schemes
for scalar problems, on nonuniform meshes. Supraconvergence results for
two-dimensional cell-centered schemes were presented by Forsyth and Sam-
mon ([9]) and also by Weiser and Wheeler (|27]), among others.

Our main purpose is to analyze how these two additional orders of con-
vergence come out for more general problems than considered so far. The
analysis of the present paper is based on using negative norms. The analysis
of supraconvergence with one additional order of convergence in [3] and [6]
is more or less explicitly based on the concept of negative norms which are
related to the norm H~!. The concept of negative norms in the analysis of
supraconvergence was also used in [3], [4], [6], [7], [8], [12] and [15]. The idea
in this paper is to work instead with a discrete version of the H~2-norm. The
convergence result relies in the stability inequality with respect to this norm.
The analysis of supraconvergence with two additional order of convergence
for the one-dimensional case is considered in [2], with the aid of so-called
Spijker norms ([25]). These norms are applied twice corresponding to the
two gained additional orders of convergence. The use of Spijker norms is
restricted to one dimension. But they give the idea for a generalization to
higher dimensions because they are related to the negative norms (for more
details see [2]).

We consider the discretization of the differential equation with Dirichlet
boundary condition

—(aug)y — (cuy)y + duy +euy, + fu=g on €, (1)

u=1 on Of. (2)

The coefficients of A are assumed to satisfy a(x,y) > a > 0, c(x,y) > ¢ > 0,

V(z,y) € Q, a,c € W*(Q), d,e, f € W»*(Q2). The domain (2 is an union
of rectangles.

In order to prepare the definition of the cell-centered finite difference ap-

proximation of (1)—(2) let us first introduce the nonuniform grid Gg. In

a rectangle R = (x_1,2n4+1) X (y_1,ynm+1) which contains 2 we define the
subset Gy := Ry X Ry, where

Ri={r1<x<...<xy <TNi1}

and
Ry ={y1 <y <...<ym < Ym+}-
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Let
S = {(j_1pm i) 1 =0,...,N+1,£=0,...,M+1},

where ;19 := (Tj_1 + 2;)/2, Yr_1/2 := (Ye—1 + y¢)/2. Our aim is to obtain
numerical solutions in Qg := Sy N Q. We define also 0Qyg := Sy N 0 and
Qp = QpU0Qg. The grid G is assumed to satisfy the following condition:
the vertices of €2 are in the centers of the rectangles formed by Gp.

° & QH\QH
e € Qp

FIGURE 1. Domain and grid points.

Figure 1 illustrates the cell-centered grid in the domain.

If the case of a rectangular domain we allow x_1 = xg, ny11 = TN, Y_1 = Yo
and ynr11 = Y-

For the formulation of the difference problem we use the centered difference
quotients in z-direction

Vjt1/2,041/2 — Vj—1/2,0+1/2
hj-1/2

(00vH)jo41/2 =

Y

Wiy — W;_

. JA+1/2 j—1,0+1/2

(5:1:wH)j—1/2,£+1/2 = B )
j—1

where hj_y/0 := xj119—Tj_1/2, hj—1:= x;—x;_1. Correspondingly, the finite
centered difference quotients with respect to the y variable are defined, with
the mesh-size vector k in place of h.

Let Ry and Rg,, be the operators that define restrictions to Qg and GzNQ,
respectively.
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The difference problem is to find uy € Qg such that

Apgug = MpgRg,g on Qp, (3)

ug = Ry on 0y, (4)
where the difference operator Ay is given by
Apug = —0z(adup) — dy(cdyun) + My(dozum) + My(edyum) + fum, (5)

and

Wji—1,0-1/2 + Wjr—1/2
. J—5 Js
(Mywr)j-1/20-172 = :

2
w;_ 1t w;_
) j—1/2,40—1 j—1/24¢
(Mywg)j-1/240-12 = 5 :
Wj—1,0-1+Wj—10+ W1+ Wy

(Mrww)j-1/20-1/2 = 1 ;

for (x;_1/2,ys-1/2) € Q. This last three quantities are zero for (z;_1/2, yr—1/2) €
0Qy.

In the sequel we need norms for grid functions. To this end we introduce in
the next section discrete versions of the Sobolev spaces W" ’Q(Q), m=20,1,2.

2. Discrete 1W"*(Q) spaces

Let V?/I?’z(R), m = 0,1, 2, be the space of grid functions defined in Cy,
which are zero on the set

{(333'—1/2792—1/2) j:O,N—f—l,E:O,,M—f—l \/j: 1,,N, EZO,M—f—l},

equipped with the norm

m s \ /2
ol = (3 loala)
r=0

where
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N M
oulsn = ZZhj—1k2—1|vj—1/2,£—1/2\2,

j=1 =1

N
lorliy = Zzhg 12k (8:v8) 5012 7

j=0 (=1

=17

M=

hjrkejol Oyvm); o0 s

|
=

N M
\UH\S,H ZZ 1k 1(‘ (5 ”H) —1/2,0— 1/2|2+ | (52UH) —1/2,0— 1/2‘2)

_|_
[\
ME
[]=
=
<
=
[\
I
()
=
>
—~
8
<
<
=
~—
<
[

with the difference quotient 0,, given by

(5CCUH)j,€+1/2 - (5CCUH)j,€—1/2 B (53/UH)j+1/2,£ - (5va)j—1/2,é

Ko—1/2 hj_1/9

(&vva)j’g =

Let Ps, be the following operator that extends a grid function vy in Qg to

SH)

Ps,vg :==vyg on Qp, Ps,og:=0 on Sy\Qpg.

We denote by I/IO/;2(Q), m = 0, 1,2, the space of functions defined in Qp,
null in 02y, equipped with the norm

m 1/2
lollm = (3 |Psyonliy) " m=0,12
r=0

The space I/f/}(}2(Q) (also denoted by 213(9)) is endowed by the inner product
N M

(vE, wi)g = Z Z hj—1ke—1(Psyvm)j-1/2.0-1/2(Psy W) j-1/2,0-1/2-
=1 =1

When it is clear from the context that we use the extended function, we omit
the notation P, .
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The discrete spaces introduced above form discrete approximations of their
continuous counterparts in the sense that we explain in what follows.

Let A be a sequence of positive vectors of step-sizes , H = (h, k), such
that the maximum step-size, H,,.., converges to zero. A sequence (UH) A €

I 25(9) converges discretely to v € L2(Q) in (L?(Q), 11 Eg(ﬂ)), vy — v in

(L2(Q),11 zé(ﬂ)) (H € A), if for each € > 0 there exists ¢ € C3°(2) such
that

|v — ngLz(Q) <, Hlim_}gsup{HvH — Ruopllon} <e

max

A sequence (vg)y € 11 I/f/éﬁ(ﬁ) converges discretely to v € W, *(Q) in
(WH2(Q), TTWA(Q)), vy — v in (WI(Q), T WLA(Q)) (H € A), if for each
€ > 0 there exists ¢ € C3°(Q2) such that

HU — QOHWLQ(Q) S €, Hlim OSUp{HUH — RHSOHLH} S €.

max

[¢]

A sequence (vy)y weakly converges to v in (L*(Q),IT1 LA()), vy — v in
(L) 11 LF(Q)) (H € A), if
(wg,vg)g — (w,v)g (H € A)
for all w € L*Q) and (wg)y € I lo;I?I(Q) such that wy — w in

(L9, I L3(9)).
The following lemma ([1]) is an important technical tool in the stability
analysis.

Lemma 1. The sequence of imbeddings (Jg)a,
Ju Wi () —=L3(Q) (H € A)
15 discretely compact.

Lemma 2 ([?]) and Lemma 3 ([1]) give some more information about the
imbedding of Lemma 1.

Lemma 2. Let (vg)p € 11 25(9) be a bounded sequence. Then there exists
a subsequence N C A and an element v € L*(Q) such that

vy — v i (L3(Q),ITL2(Q)) (H e A).
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Lemma 3. Let (vg)a € 11 I/;/I§2(Q) be a bounded sequence and an element
v € L*(Q) such that

vy — v in (LAQ),TTL2(Q) (H € A).
Then v € W,2(9).

3. Stability

We introduce the discrete Laplace operator
Agvyg = 521}1{ + 521}1{, 0% EW§’2(Q),
and the norm

lo.ir = ||Anvmllon, vo EWI?[’?(Q)-

lv|

Some trivial algebraic manipulations lead to the next result ([2]).

Lemma 4. The norms ||.||o.z and ||.|2.z are equivalent in I/f/§2(Q)

Let A3 be the Hilbert adjoint operator from Ay. The following result gives
a stability condition for Ay in the negative norm ||.||_z,

|(vr, o) al

, UH 622 Q),
Tenlon o

lvll-1 = sup
0£orENZ2(Q

where L I/?/éz(ﬂ) —>2§(Q) is an injective operator.
We notice that for vy Eﬁ/éz(ﬁ) holds

((Agvm, om)H| - | (AHUHa (AE)_I@UH)H\
o Lo - 1Z(A,) "wxl]
020 ENZ?(9) I Len 0.5 0wy 1% (Q) H H110,H
I p— (Ve wi) ||

o 1Az " wnllorr

O#UJHEL%{

and Lemma 5 follows.
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Lemma 5. Let L be an injective operator defined in I/f/§2(ﬂ) If

CIL(AY)  wallos < |wallon Ywr €L;(K),

for a constant C' > 0, then

Agvy, °
Cllvallos < sup I Hfi il ﬁ”H)m Yo €W(Q).
0£pre(Q) PHll0.H

(6)

(7)

Our aim in this section is to show that the inequality (7) hold for L = Ay.

For the proof we will use (6).
We first define explicitly the adjoint operator from

Ay WEHQ) —LE(Q),
Aty = AP AW
with

Ag)*vH = —0, (adv) — 6, (cdyvy) in Qp,

Ag)*vH = _5x (CZM;UH) — 5y (EM;UH) + fUH in QH,

where

§ Vj_1/2,0-1/2li—1 + Vjq1/2,0-1/2h;
M , =
( :CUH)j,é—l/Z th_1/2 )

M* _ Yj—rjae-1/oRe 1 TV 100p1 /2R
( va>j—1/2,é T 2]{[_1/2 )

Ag)*vH = Ag)*vH =0 on 0.

AH7

Let us first prove that Aj; is Whl{g(Q)—regular, i.e., there exists C' > 0 such

that
lorllin < ClAgvallon Yvr €EWF(Q).
This will be made with the aid of lemmas 6-9.

Lemma 6. If (vg)y €11 V?/bl{z(ﬂ) is a bounded sequence and o € C(Q) then

(M (o)), and (My(advy)), are bounded in IT zﬁ,(Q)

A
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Proof: Since

2
hj1l (Oééva)j—m—lm + (O‘(vaH)j,f—l/?l
2 2
< 4hj—3/2|(Qéva)j—l,Z—lﬂl ™ 4hj_1/2‘(a5’”UH>JE€—1/2| ’
then
1M (advm)[[6, 1 < 2l Toyllvalli g

Analogously we have

1My (adyvm) I < 2lallZollvmlly o

Lemma 7. Let H € A. Then
(—5$(a5va) — 5y(c5yvﬂ),vH)H > C’pHvHH%H Yoy EWé’z(Q), (10)

and
(Anvi, o)y = Collva| g — Cxllvallix Yor ewg*(Q), (1)
with Cp > 0, Cg > 0 and Cx not depending on H.
Proof: Since a has a lower bound a then
N M

a hj—1/2kf—1‘ (5$UH)j,£—1/2’2
j=0 (=1

N M
sz ( (ad,vm) Jl-1/2 (a‘SwUH) —1,0— 1/2) Vj=1/2,6-1/2

j=1 (=1
= (—5$(a5va),vH)H.

In the same Way we can prove that

Zzhﬂ 1k 1/2 5UH)3 1/2,0— 1| (=0, (cdyvm), UH)H'

7=1 /=0
Then (10) follows.
From Lemma 6, there exists C' > 0 such that

| M (do,vm) + My(edyvm) o < Cllom|l,m,

IA

and then
(M, (db,0) + My (ebyonr) + fom,vn) 5| < Crllomlhullonllon
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Let € > 0. We can find C, such that

lorllurllvallon < elvgllf gy + Cellvalls a-

Cp
Taking € = % we conclude (11) with Cg = - and Cx = C;C..
L

Lemma 8. Let (vg)py €11 I/f/ly(Q) and v € W, () such that

v — v in (WA(Q), T WAQ))  (H € A)
and let o« € C(Q). Then

M, (ad,vp) — av, and M,(ad,vy) — av, in (L3(Q), 11 LA(Q) (H € A).
(12)

Proof: Let C satisfy ||a|[z=@) < C. For any positive real number € there
exists p € C™(Q) such that

. 1
lv=llwize <e lim sup{llog — R} < 56

Since
| M (advn) — My(ab:Rue)llog < 2||lallz~@llve — Ruvllin

and for H,,,, small enough

M (00, Rirp) — Ria(ovg)llo < 5.
then there exists a final section H € A such that

[ Mo (abev) — Ru(ops) o < e
Analogously we prove that

| My(adyvr) — Ru(opy)llom < e

Consequently (12) holds.
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Lemma 9. Let (vg)a be a bounded sequence in 11 I/f/}}2(ﬂ) and o € C(Q).
Then for a subsequence N C A there exists v € W, (Q) such that

vy — v in (L3(Q),I1 L2(Q)) (H € A)
and the following week convergence hold

M, (ad,vp) — av, and M, (ad,uy) — av, in (LA(Q), T L2(Q)) (H € A').

Proof: It follows from Lemma 6 that (M, (ad,vpm)), is bounded in EE(Q)
Taking Lemma 2 into account we have

(M (ad,om))y — win (LA(Q),I1L3(Q)) (H € A"),
for a subsequence A” C A and w € L*(€2). Then for any ¢ € C5°()
(R, Me(abrvn))n — (o, w)o  (H € AY). (13)

From Theorem 1 and Lemma 3, there exists v € Wy *(Q) and A’ C A”,
such that

v — v in (L2(Q), I L2(Q)) (H € A).
Let us prove that
5(aM; Rirp) = (ap), in (LA(Q), T LF(Q)) (H € A), (14)
with (M7Rug); 1/ given by (8). Let ¢ € C3°(€2). From Lemma 8
- (90704¢x)07
or equivalently,
(—5x(on;Rng), RH¢)H — (—(ozgp)x,w)o. (15)
From Theorem 2, there exists z € L*(2) such that
6.(aM;Ryrp) — = in (L*(Q), 11 L3() (H € A
and consequently
(=0 (aM;Rue), Ryv)) ,, — (—2,9)o. (16)
From (15) and (16) we obtain (14).
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Since
(Rue, Mx(ozéxvg))H = (=6.(aM;Rp), UH)H
= (=(ap)e,v), = (i, avy)o,
using (13) we conclude that
M, (ad,vr) — av, in (L3(Q),TT L2(Q)) (H € A).
We prove
M, (ad,vi) — avy, in (LX(Q),T1 LH(Q)) (H € A)

analogously.
m

Theorem 1. There exists a final sequence A" C A and C' not depending on
H such that

lorllg < ClA5Gvellor  Yor eWa2(Q), (17)
H e N,

Proof: Assuming (17) not to hold we can find a subsequence A” C A and
elements vy, H € A”, such that

HUHHLH =1 and HATLIUHHQH — 0 (H c A”). (18)

Lemma 1 and Lemma 3 allow the sequence A” and v € VVO1 2(Q) to be chosen
such that

v — v in (L2(Q), T LE(Q)) (H e A").
Let w € W, () be the solution of

(awg, 22)0 + (cwy, 2y)0 = ((dv)x + (ev), + fu, z)o Vz e Wol’2(Q) (19)
and (wg)p € 11 V?/Eﬁ(ﬂ) such that
wi — w in (W2(Q), T WA Q) (H € A).
Let us prove the convergence

‘ZH‘LH—>O, (20)

for zyg = vy — wy. Lemma 7 gives the existence of C' > 0 such that

|zH|%H < C((AEUH, zm)g + alwy, zg) + c(wy, zg) + (v, Ag)zH)H), (21)
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where
N M
a(wr, zi) = Y > hj_apkealas, yeiye) Gewn); oy s (0Z0) 5412
j=0 (=1
and
N M
c(wy, 2m) Z Z j—17<?£—1/20($j—1/2, Ye) (5ywH)j—1/2,€ (5y5H)j—1/2,£-
j=1 (=

Since ||Ajvrl|o.g — O then (A5vm, 2r)g — 0. Let 2 = v —w. Our aim is to
prove that
a(wy, zg) — (awg, z.)0 (H € A"), (22)

and
c(wy, zg) — (cwy, zy)0 (H € A"). (23)
Lemma 8 yields

M, (S,wn) — wy in (LX(Q), 11 LA(Q))  (H € A).

Since (zg)a, H € A", is bounded in II I/?/I§2(Q), Lemma 9 allows a subse-
quence A’ C A” to be chosen such that

(M (ad,z)), — az, in (L2(Q),T1 LA(Q)) (H € A,

and consequently (22) holds. We prove (23) analogously.
For the last term of (21) we have

(vi, AV 2y — (v, ADz2)y  (H € A).
Since w is the solution of (19) then
a(wH, ZH) + C(UJH, ZH) + (UH, AS)ZH)H — 0 (H € AH)
and (20) follows. Then
v = 2 +wy — w in (L3(Q), I LE(Q) (H € A),

and
(Aw,2)g =0 Yz e W,?(Q).

For A being injective ||vg||1. g = 1 is not possible.

2+

Let us now prove a stability result for A
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Lemma 10. There exists C' not depending on H such that
lorllen < CIAG vallos + lonlhm) Yor eWi®(@),  (24)
H e A
Proof: Let vy EI/?/I?[?(Q) We define

N M
BWyy = ZZhj—lké—l(5;%1_711)]'—1/2,2—1/2

j=1 (=1
y |:Cl(xj—1/27 y£—1/2) - a(:z:j_1, W—l/2) (5va)j_1 —1/9
hj i |
+a(xj, Ye-1/2) ;la(xj—l/% Ye-1/2) (5va)j,e—1/2}
j—1
N M
c(x i yg) - C(x i—1/25 yf) 7
+ Z Z hyj ko1 jp— h; = (0yv11) 172,000y Vr ) 6
j=0 (=0 a
N M | C(ij+1/27y€) — oz, ye) 5 . Oy UF ) 5
+ Z Z hiko_1/2 h (Oyva)js1/2.60 V)i
j=0 (=0 !

N M
BPvg = > hjakesa(@io1j Yo-1/2) | (G30m)-1/2.0-1/2]

N M
+ Z Z hj—1y2ke1/2c(z, yo)] (5:cyUH)j,é\2a
j=0 (=0

Bysl) and B?SQ) similar to B;(Cl) and B§;2), respectively, replacing a with ¢,  with

y and the indexes in a obvious way. We have

(Ag)*UH, 5:%1}]{ + 5§UH>H = _BS)UH — Bg)UH, (25)

where B\Y := B 4+ B{Y and B := BY + B{?.
The conditions assumed for the coefficients a and ¢ give the existence of
Cgr > 0 and Cf, > 0 such that

Crlvul3 y < B va
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and
BS)UH < Crlvgh mlvele.m,
which together with (25) yield
C’E|UH|§7H < \(Ag)*vH, Sy + 5§UH)H\ + |BS)UH‘
< A vrllomlvmlom + Crloa|ymlvalom.

Then (24) follows with C' = max{1/Cg, CL/Cg}.

|
The main result of this section is the following stability theorem.
Theorem 2. There exists C' > 0 and a final section A" C A such that
A o
fonllog <€ sup WA OIEL g iz (g

veonerigrey  IVHll

HeN.

(¢]

Proof: Let vy EIX/§2(Q) Since Ag)*: I/f/ly(ﬂ) — LA(Q) is bounded then
there exists C, > 0 such that

1A vullo.r < | Asonllos + A vrllos < || AGvelos + Crlloalla.

Lemma 10 gives the existence of C’ > 0 such that

logllor < C'UAY vullom + lvrlz)
< ' Ayvalon + (C"+ C'CL)||va|1,a-

From Theorem 1 follows the existence of C' > 0 such that
|vnlln < CllAgvrlon  You W) (27)

Finally, we observe that (27) is equivalent to

1(A5)  wllom < Cllwallog  Vwn €LE(Q).

=
The estimate (26) can be given the alternative form which uses a negative
norm

|lvrllor < CllAnvell-a, Yom €W (Q).
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4. Convergence

The main result of this paper in Theorem 3 relies in the stability result of
Theorem 2. An estimate for ||Rgu — ug|lo g will be obtained with the aid of
(26) replacing vy by Rgu — uy and bounding

(AH(RHU) — MH(RGHQ); UH)H.

The bounds in lemmas 11-13 are for that purpose.

In what follows we use the notation Z for the sum over the set of indexes
Qy
(J, £) such that (zj,1/2, Yer1/2) € Qm-

Lemma 11. Let u € H*(Q)). Then there holds
|(—02(adsu), ver) ; — (MuRa, (atg)e, vir) 4

1/2
< Cllallwso) (302 + By e ranr) ol

Qu
(28)
and
\(—5y(c5yu), UH)H — (MHRGH(cuy)y, UH)Hl
< Olelhweeeioy (S04 RPNl ol
N (29)

for all vy El/f/ﬁ,z(Q)

Proof: Let vy EIX/§2(Q) We consider, in first place, only the terms in
(5xa5xu,vH)H and (MHRGH(aux)x, UH)H which have the factor ¥,1/2¢+1/2,
for some j, with ¢ given. Let us suppose, without loss of generality, that the
set of the points in the form (.,y,11/2) belonging to Qp is

{($p¢+1/2, y£+1/2)7 (gjpz+3/27 yé+1/2), ce (xpg—i-Ng—l/% y£+1/2)}-

Let
pe+Ng—1

Sii= Y hike(8:a8,0) g 5051 /20010

J=Dr
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and
petNe Yer1  [Tiy1/2
1 _
Si U Z (/ / a(xj, y)u(r,y) dz d?/) (5w”H)j,z+1/2'
J=pe Ye Tj_1/2
We have
pet+Ne—1
S1 = Z kf((a(swu)jﬂ,fﬂ/z - (aéwu)j,é+1/2>77j+1/2,€+1/2
J=pe
Pet+Ne
= = Z hj—1/2kf(a5wu)j,é+1/2(5$77H)j,£+1/2
J=pe
pet e Tjt1/2
= - Z ke/ (T, Yor1/2)Ua (T, Yey1/2) dx(éfﬁH)j7g+1/2'
j=pe

The functional

Ag) = g(%) - /019(5) 3

is bounded in W?1(0,1) and vanishes for ¢ = 1 and €. Thus the Bramble-
Hilbert Lemma (see e.g. [5]) gives the existence of a positive constant C' such
that

A9 < Cllg" 10,
From the last estimate applied to g = w, where

w(€) = alz;, yo + ) / U (gt ek de €€ [0,1),

Tj-1/2
follows
PeANe oy pajige
g = s — Z/ / Eje(6:0m) 041 o0
j=pe Yt Tj—1/2
with
fotos) [ wte
Ei | < Ck ’a:z: (. x‘ -
‘ jvé‘ 14 J 2512 W2 ((ye,yes1))
Let

pe+Np—1

J=pe



18 S. BARBEIRO

which can be written in the form

pet+Ne—1
1 _
Sy = S; ) 4 Z Fi 0051720012,
J=pe
where
PetNe=l oy pain
1 _
Sé ) = Z / (aug)q(7,y) do dy Vj+1/2,041/2

j=pe Y i

and

Ye+1 TG40
Fj,ﬁ = (MHRGH (au:c)x>j+1/27g+1/2 - / / (aua:)x(xv y) dz dy.
Ye Zj

Fj, can be bounded with the aid of the Bramble-Hilbert Lemma. Let the
function w be defined by

w(&,m) = (aug)o(z; + &y ye +nke),  (§,m) € (0,1) x (0, 1).

Then

F = hjkg<w(0’0)+w(1’0)l_w(0’1)+w(1’1>—/Ol/olw(&??)dfdﬁ>-

The functional

WP ICUETCORYIUD RIS R o PSP

g € W*((0,1) x (0,1)), is bounded and vanishes for g = 1, £ and 7. Again,
by Bramble-Hilbert Lemma the estimate

[A(g)] < C‘ngll((O,l)x(O,l))

holds and we obtain the bound
|F.1ja€‘ < C<h?“(@Ux)mxHLl((a:j,a:jﬂ)x(yz,yzﬂ))

Fheeh (@t )yl 2y 00 <)) + 2 (aux)xyyHLl((w.j,wm)x(ye,yeH))) -
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Let us finally consider the difference Sil) - S;l). For S;l) we have

(1) PetNe=l oy g )
S = Z <<aufl?)(xj+17 y) — (aux)(xj,y)> dyv;11/2,041/2
j=pe Y
PetNe oy
- Z hj—1/2(aux)($jyy) dy(5xl7ﬂ)j,£+1/2
j=pe VYt
pH—Ne

Tjt1/2

Yeo+1
_ / / (aws) (5, ) d dy (5,00 1412

j—1/2

and then
S8 —(Ty + o) /2 + Ts + T,
with
petNe Yer1 i
T1 = — Z / [ (ux<xj—17y) +u$(xj7y)> _/ ux(:z:,y)dx]
j=pe+1* Yt o
X <a(xj_1, Y) (008 ) j-1,041/2 + alx;, ?J)(Csﬂ_’ﬂ)jafﬂ/?) dy,
pe+Np Ty
T2 = — Z [ J 1<ux(x],y) - ux(xj—lay))
J=pe+17 Yt

«Tj—1/2 Zj
+/ ux(x,y)dx—/ ux(x,y)dx]
X1 Tj-1/2

X<a($j7y)(5x5H)j,é+1/2— a(zj-1,y)(0:0m) ;- 1£+1/2> dy,

Yertrh Lpy _
T3 := — / {p#ux(xpu y) o / ux(xa y)dx} a(xpw y) dy(éfCUH)pfag"‘l/Q’
Ye 1/2

Yer1 p N Pt Np+1/2
T, = — / {Mu:v(xpﬁ-Nw y) - / ux(xa y)dx} a(xpé+Né? y) dy
Ye

Tpy+Ny

X (02VH ) ppr Npt1/2-
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The sum in T contains the errors of the trapezoidal rule that can be bounded
with the aid of the Bramble-Hilbert Lemma by

pe+Np

T < C > Wl g% e D 1 22 g0 e )

j=pet1
X (\(5x?7ﬂ)j—1,e+1/2\ + |(5:v77H)j,€+1/2|)-
For T, we have only the first order bound but the factor
a(@j, ) (020m) j o172 — (-1, Y) (0aVn) j-1,041/2
allows to estimate Ty with the same order as 77. We have
a(xj,Y)(020m)jor1/2 — a(xj—1,9) (020m) j—1,041/2
= a(rj_1/2,Y) ((5171_)H)j,£+1/2 — (5171_)H)j—1,£+1/2)
+(a($j—1/2, y) — a(wj-1, y)) (0201)j-1,041/2
+(alws,9) = alw;10,9) ) 0aTm) 011
= hjaa(_1)2,Y)(670m) -1 /204172
P ) B) o 12+ 0 ) B 02
for some 1y € [wj_1,7j_1/2), M2 € [¥j_1/2, 7;], and then

pe+Ng

2
o) < C Y B Nty o) < e @A (@ )% )
J=pe+1

X (\(5;%?7H)j—1/2,£+1/2| + 1(02VH ) j—1,041/2] + \(5x?7H)j,e+1/2\)-

For T35 and T we have

Yo+1
-1 _
T3] < / s e (o N2y, 1@ (T 9) Y| (B20) 51 2]
Ye

and

Yeot+1 th_Ng
|T4‘ < 3 Huwfv(v y) HLl((xp€+Ng7$pE+Nl+1/2)) ‘CL(CCP@-FN@’ y)l dy
Ye

X[ (00 pyt Npy1/2] -
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Considering the equality

(5 pe,f+1/2 - Z h 2—1—1/2 €—|—1/2 (5561_}H)j+1,€+1/27

1=py

j=p£,-..,pg+Ng—1, follows

pe+Np— pe+Np—
E h H)pot+1/2 = E h (E hi(020m z+1/2£+1/2>
J=pe J=ps i=py
pe+No—
+ E h H)j41,64+1/25
J=De¢
and then
De+Ng—
(0208 ) pper172] < E h| VH ) j41/2,041/2|
J=pe
pe+Ng—1
L — E hil(02UH ) j41,0412]-
Lp,+N, — =pe

For T35 we have
hpfz—l

T3] <

Hum\lu (/250 % e ) [ @(es M| ()

pe+Nyg— pe+Np—

21

( Z h | ]—|—1/2€+1/2‘ L - Z h; | J+1,€+1/2|>7

N, —
J=pe Pe+INg De J=pe

and in the same way for T we obtain
h

+N,
Ty < %HuxxHLl((‘rpg-i-NgaxngrNngl/Q)X(yéayé-i-l Ha(SUPHNe’ ')HLOO (ye:yes1))

pe+Ne—1 pe+Nop—

X( Z hil(020m) 41 201 )2l + ———— Z h| J+1,€+1/2|>-

; N,
j=pe Tpet-Ne Pe j=p,

Using the Schwarz inequality we obtain (28).
The proof of (29) is analogous.
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Lemma 12. Let u € H3(Q)). Then the following estimates hold

(M (dogu),vr) ,;, — (MuRe, (dus), ve) |
1/2
< o (302 + k2w 320,y ey ) 0l
Qg
(30)

and

\(My(e5yu), UH)H — (MHRGH(euy), UH)H\

1/2
< Cllellwaoeio (32 (02 + kD) g 32y ey omarany ) N0l
Qy

(31)

for all vy EV?/&Z(Q)

Proof: Let us consider the terms in (Mx(d5xu), UH)H and (MHRGH(dux), UH)
which have the factor v; /2¢11/2, for some j, with £ given. We obtain for
(Mx(déxu),vH)H and (MHRGH(dux), UH)

H

> respectively,

pe+Ne—1

Z kch; (MI<d5$u))j+1/2,£+1/2@j+1/274+1/2

J=n¢
pe+Ng—

- Z ’W[Zh d5u z+1/2,€+1/2

J=pe 1=p¢

N Z h o(ddu) z+1/2 é+1/2} Uj+1/2,6+1/2

1=ps
petNe  j—1
= - Z k€ Z h; (Ma:(d(sxu))i+1/2’€+1/2(z_}j+1/2,€+1/2 - 17]'—1/2,[—1—1/2)
J=De¢ 1=py
pet+Ny Jj—1

= — Z kgh]_l/QZhl(Mx(d(qu)) +1/2€+1/2(5 )jg+1/2
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and
pe+Ng—1
Z keh, (MHRGH(duw))j+1/2,£+1/2@j+1/2=f+1/2
J=pe
pe+Ng
- Z kel WZh o(dus)) z+1/2£+1/2(5 H)je41/2
J=De¢ =Dy
Pe+No—
+ Z ( y)je+1/2 + (B )]+1e+1/2) Dj1/2,041/2;
J=n¢
where
(du:c) 0 + (dux) j,0+1
(Ey)j,£+1/2 = . AR (dux)j,£+1/2-

2
Let w(&) := (duy)(xj, ye + Eke), € € [0,1]. Then

w(0) +w(l) w(l)

(Ey)j,“‘l/Q - 2 2)"

The functional

Ag) = g9(0) +g(1) (1)

2 I\

23

is bounded in W*1(0, 1) and vanishes for ¢ = 1 and £. Again by the Bramble-

Hilbert Lemma the estimate
A9 < Cllg"zr01), g€ W>'(0,1),

holds and we obtain the bound

pe+Ng—1 R
Z ?]kﬁ‘(Ey)j,@rlﬂ + (Ey)js1041/2] V412,001 2]
J=n¢

pe+Np—1

< > %k (H((dtw) o) (s Mzrcay + 1((duta)ae) (251, M)

J=pe

X |Uj+1/2,£+1/2\-

(32)
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We have

Zh { £(d0,u )z+1/2,é+1/2 - (Mx(dux))i+1/2,£+1/2}

1=pe
j—1
Z Ri—1jodi r172((00t)i 5172 — e (@i, Yor1/2))
1=pp+1
hj_1
+de,€+1/2((5xu)j,€+1/2 — Uy (2, y£+1/2))
h
+%dpg,€+1/2((5wu)pz,€+1/2 — Uy (T, y£+1/2))-
Using (32) we obtain the bound (30). The proof of (31) is analogous.
=
Lemma 13. Let w € H*(Q2). Then
‘(RHUJ, UH)H - (MHRGHUJ, UH)H‘
1/2
< O + P10l e,y petwinny)  Iollon (33
Qg
for all vy Elo;fl(Q)
Proof: We can write
(MuReuw) g parn = Wisyzerryz T (Ba)jrrjoe + (Bo)jaijoen
+(Ey) j+1/2,641/2;
where w40 w
' ' +1/2,0
(Ea)jr1/2,0 = 2T T
4 2
and w + w
+1/2,0 +1/2,041
(Ey)j+1/2,£+1/2 = — / 5 tAst — Wjt1/2,041/2-
Using the Bramble-Hilbert Lemma as before we obtain (33).
-

Let us consider in (33) w = fu. We obtain
‘(fu7vH)H - (MHRGH(fu)al)H)H‘

1/2
< COflflweio) W(Znuum wytaey) Ionllos (34)
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for all vy EZO;EI(Q)

The next convergence theorem follows from Theorem 2 and from the bounds
(28), (29), (30), (31) and (34).

Theorem 3. Let Q2 be a union of rectangles. Assume that the solution u of
(1)-(2) lies in H*(Y). Then for H € A, with H,, small enough, the discrete
problem (3)—(4) has a unique solution uy which satisfies

1/2
HRHU — UHHO,H < C(Z(fﬁ + kl%)2HuH%4((Ijaxj+1)x(ylayl+l)))
Qg

< CH. o llullmey.

5. Numerical results

We present numerical results for the problem

—Au=f on Q=(0,1)x(0,1),
u=10 on 0f),

which has the solution u(z,y) = [z(x — 1)y(y — 1)]*.

Figure 2 shows the numerical solution on 500 random meshes (N —1x M —1
points placed in §2 at random), where N and M ranges from 10 to 110. The
logarithm of the norm of the error, log(||Ryu —um|o.m), is plotted versus the
logarithm of the maximum step-size. The straight line is the least-squares fit
to the points and has the slope 2.1721, which confirms the estimates given
in Theorem 3.
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FIGURE 2. log(||Rgu — ugl|o.m) versus log(hmas)-
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