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EXPONENTIABLE FUNCTORS
BETWEEN QUANTALOID-ENRICHED CATEGORIES

MARIA MANUEL CLEMENTINO, DIRK HOFMANN AND ISAR STUBBE

Abstract: Exponentiable functors between quantaloid-enriched categories are char-
acterized in elementary terms. The proof goes as follows: the elementary conditions
on a given functor translate into existence statements for certain adjoints that obey
some lax commutativity; this, in turn, is precisely what is needed to prove the ex-
istence of partial products with that functor; so that the functor’s exponentiability
follows from the works of Niefield [1980] and Dyckhoff and Tholen [1987].

1. Introduction

The study of exponentiable morphisms in a category C, in particular of
exponentiable functors between (small) categories (i.e. Conduché fibrations),
has a long history; see [Niefield, 2001] for a short account. Recently M.
M. Clementino and D. Hofmann [2006] found simple necessary-and-sufficient
conditions for the exponentiability of a functor between V-enriched catego-
ries, where V is a symmetric quantale which has its top element as unit for its
multiplication and whose underlying sup-lattice is a locale. Our aim here is
to prove the following characterization of the exponentiable functors between
Q-enriched categories, where now Q is any (small) quantaloid, thus consid-
erably generalizing the aforementioned result of [Clementino and Hofmann,
2006].

Theorem 1.1. A functor F : A // B between Q-enriched categories is expo-
nentiable, i.e. the functor “product with F”

−× F : Cat(Q)/B
// Cat(Q)/B

admits a right adjoint, if and only if the following two conditions hold:

(1) for every a, a′ ∈ A and
∨

i fi ≤ B(Fa′, Fa),
(∨

i

fi

)
∧ A(a′, a) =

∨

i

(
fi ∧ A(a′, a)

)
,
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(2) for every a, a′′ ∈ A, b′ ∈ B, f ≤ B(b′, Fa) and g ≤ B(Fa′′, b′),

(g ◦ f) ∧ A(a′′, a) =
∨

a′∈F−1b′

(
(g ∧ A(a′′, a′)) ◦ (f ∧ A(a′, a))

)
.

These conditions are “elementary” in the sense that they are simply equal-
ities (of infima, suprema and compositions) of morphisms in the base quan-
taloid Q. The second condition is precisely what [Clementino and Hofmann,
2006] had too, albeit in their more restrictive setting; but they did not dis-
cover the first condition an sich: because it is obviously always true if the
base category is a locale.

The proof of our theorem goes as follows. In section 3 we first translate con-
ditions 1.1–1 and 1.1–2 into existence statements for certain adjoints obeying
some lax commutativity. Next, in section 4, we show that these latter ad-
joints are precisely what is needed to prove the existence of partial products
in Cat(Q) over F : A // B. The result then follows from R. Dyckhoff and W.
Tholen’s [1987] observation, complementary to S. Niefield’s [1982] work, that
a morphism f : A // B in a category C with finite limits is exponentiable if
and only if C admits partial products over f .

Acknowledgement. This work was done when Isar Stubbe was a post-
doctoral researcher at the Centre for Mathematics of the University of Coim-
bra.

2. Preliminaries

For the basics on Q-enriched categories we refer to [Stubbe, 2005]; all our
notations are as in that paper. Here we shall just observe that Cat(Q) has
pullbacks and a terminal – and therefore all finite limits [Borceux, 1994,
Proposition 2.8.2] – and fix some notations.

The terminal object in Cat(Q), write it as T, has:

- objects: T0 = Q0, with types tX = X,
- hom-arrows: T(Y, X) = ⊤X,Y = the top element of Q(X, Y ).

For two functors F : A // C and G : B // C with common codomain, their
pullback A×C B has:

- objects: (A ×C B)0 = {(a, b) ∈ A0 × B0) | Fa = Gb} with t(a, b) =
ta = tb,

- hom-arrows: (A×C B)((a′, b′), (a, b)) = A(a′, a) ∧ B(b′, b),
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Ab
//

��

A

F

��

∗tb
[b]

// B

Figure 1. a specific pullback

and comes with the obvious projections. All verifications are entirely straight-
forward.

For an X ∈ Q, the one-object Q-category with hom-arrow 1X is written
as ∗X . There is an obvious bijection between the objects of type X in some
Q-category B and the functors from ∗X to B. Thus, let [b] : ∗tb // B stand
for the functor “pointing at” b ∈ B. Given a functor F : A // B and an object
b ∈ B in its codomain, we shall write Ab for the pullback in figure 1. That is
to say, Ab has

- objects: (Ab)0 = F−1b = {a ∈ A | b = Fa}, all of type tb,
- hom-arrows: Ab(a

′, a) = 1tb ∧ A(a′, a).

Note that Ab = ∅ if and only if b 6∈ F (A).

3. Adjoints obeying a lax commutativity

In this section we shall translate the elementary conditions in 1.1 into exis-
tence statements of certain adjoints obeying some lax commutative diagrams.

Lemma 3.1. For a functor F : A // B between Q-categories, the following
are equivalent conditions:

(1) condition 1.1–1 holds,
(2) for every a, a′ ∈ A, the order-preserving map

↓ B(Fa′, Fa) //Q(ta, ta′) : f 7→ f ∧ A(a′, a) (1)

has a right adjoint,
(3) for every b, b′ ∈ F (A), the order-preserving map

↓ B(b′, b) // Matr(Q)(Ab, Ab′) : f 7→
(
f ∧ A(a′, a)

)

(a,a′)∈Ab×Ab′

(2)

has a right adjoint.
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(4) for every b, b′ ∈ F (A), the order-preserving map

↓ B(b′, b) // Dist(Q)(Ab, Ab′) : f 7→
(
f ∧ A(a′, a)

)

(a,a′)∈Ab×Ab′

(3)

has a right adjoint.
(5) for every b, b′ ∈ B, the order-preserving map in (3) has a right adjoint.

Proof : The equivalence of the first two statements is trivial: an order-
preserving map between complete lattices has a right adjoint if and only if
it preserves arbitrary suprema.

Next, if we use g 7→ gF as generic notation for the right adjoints to the
maps in (1), then

M 7→MF :=
∧
{M(a′, a)F | (a, a′) ∈ Ab × Ab′}

is the right adjoint to the map in (2). Conversely, if M 7→ MF is the right
adjoint to the map in (2), then for any a, a′ ∈ A

g 7→ gF :=
(
T (a,a′)(g)

)F

is the right adjoint to the map in (1), with T (a,a′)(g) standing for the Q-
matrix from AFa to AFa′ all of whose elements are set to the top element in
Q(ta, ta′) except for the element indexed by (a, a′) which is set to g.

The equivalence of 3 and 4 follows straightforwardly from two facts: First,
the matrix

f̂ :=
(
f ∧ A(a′, a)

)

a∈Ab,a′∈Ab′

is always a distributor from Ab to Ab′: because for any a, a1 ∈ Ab and a′, a′1 ∈
Ab′ it is automatic that

f̂(a′, a1) ◦ Ab(a1, a) =
(
f ∧ A(a′, a1)

)
◦

(
1ta ∧ A(a1, a)

)

≤
(
f ◦ 1ta

)
∧

(
A(a′, a1) ◦ A(a1, a)

)

≤ f ∧ A(a′, a)

= f̂(a′, a)

and similarly Ab′(a
′
1, a
′) ◦ f̂(a′, a) ≤ f̂(a′, a). And second, the inclusion

Dist(Q)(Ab′, Ab) // Matr(Q)(Ab′, Ab) : Φ 7→ Φ

has both a left and a right adjoint; namely, its left adjoint is M 7→ Ab′ ◦
M ◦Ab and its right adjoint is M 7→ [Ab′, {Ab, M}]. (In both expressions, Ab′
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↓ B(b′, b)

f 7→ f̂

}}

f 7→ f̂

!!

Matr(Q)(Ab, Ab′)
M 7→ Ab′ ◦M ◦ Ab

// Dist(Q)(Ab, Ab′)
Φ ←p Φ

oo

Figure 2. a diagram for the proof of 3.1

and Ab are viewed as monads in the quantaloid Matr(Q), and we compute
composition, resp. lifting and extension, of matrices.) Hence both triangles
in figure 2 commute and both solid arrows are left adjoints, so it follows that
one dashed arrow is a left adjoint if and only if the other one is.

Finally, the only difference between the fourth and the fifth statement is
that in the latter it may be that Ab or Ab′ is empty; but then Dist(Q)(Ab, Ab′)
is a singleton (containing the empty distributor) in which case the right
adjoint to (3) always exists. 2

In the statement of the next lemma we shall write

↓ B(b′, b) ⊥

f 7→ f̂
**

ΦF←p Φ

jj Dist(Q)(Ab, Ab′) (4)

for the adjunctions (one for each pair (b, b′) of objects of B) that 3.1–5 alludes
to.

Lemma 3.2. For a functor F : A // B between Q-categories for which the
equivalent conditions in 3.1 hold, the following are equivalent conditions:

(1) condition 1.1–2 holds,
(2) for every a, a′′ ∈ A and b′ ∈ B, the diagram in figure 3, in which the

horizontal arrows are given by composition (in Dist(Q), resp. Q), the
left vertical arrow is

(f, g) 7→
(

(f ∧ A(a′, a))a′∈Ab′
, (g ∧ A(a′′, a′))a′∈Ab′

)
(5)

and the right vertical arrow is as in (1), is lax commutative as indi-
cated,
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↓ B(b′, Fa)× ↓ B(Fa′′, b′)

OO

− ◦ −
//

Dist(Q)(∗ta, Ab′)× Dist(Q)(Ab′, ∗ta′′)
−⊗−

//

↓ B(Fa′′, Fa)

OO
Q(ta, ta′′)

Dist(Q)(∗ta, ∗ta′′)

≥

Figure 3. the diagram for 3.2–2

↓ B(b′, b)× ↓ B(b′′, b′)

(−̂)× (−̂)

OO

− ◦ −
//

Dist(Q)(Ab, Ab′)× Dist(Q)(Ab′, Ab′′)
−⊗−

//

↓ B(b′′, b)

(−̂)

OO
Dist(Q)(Ab, Ab′′)

≥

Figure 4. the diagram for 3.2–3 and 3.2–4

(3) for every b, b′′ ∈ F (A) and b′ ∈ B, the diagram in figure 4 is lax
commutative as indicated,

(4) for every b, b′, b′′ ∈ B, the diagram in figure 4 is lax commutative as
indicated,

(5) for every b, b′, b′′ ∈ B, the diagram in figure 5 is lax commutative as
indicated.

Proof : First it is easily verified, in an analogous manner as in the previ-
ous proof, that the map in (5) is well-defined, i.e. that we indeed defined
distributors

(f ∧ A(a′, a))a′∈Ab′
, resp. (g ∧ A(a′′, a′))a′∈Ab′

from ∗ta to Ab′, resp. from Ab′ to ∗ta′′. Now the equivalence of the first two
statements is immediate; the “oplax commutativity” of the diagram in figure
3 is always true, thus explaining why in 1.1–2 there is an equality instead of
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Dist(Q)(Ab, Ab′)× Dist(Q)(Ab′, Ab′′)

(−)F × (−)F

��

−⊗−
// Dist(Q)(Ab, Ab′′)

(−)F

��

↓ B(b′, b)× ↓ B(b′′, b′)
− ◦ −

// ↓ B(b′′, b)

≤

Figure 5. the diagram for 3.2–5

an inequality. That the second and the third statement are equivalent, is be-
cause all order-theoretic operations on a distributor are done “elementwise”;
and the third and fourth are equivalent because in case Ab or Ab′′ is empty,
Dist(Q)(Ab, Ab′′) is a singleton, hence all is trivial. Finally, the equivalence
of the two last statements follows from the respective vertical arrows being
adjoint. 2

4. Partial products

In this section we link the conditions in 3.1 and 3.2 on a functor F : A // B

to the existence of so-called partial products in Cat(Q) with F : this completes
the proof of 1.1.

First recall R. Dyckhoff and W. Tholen’s [1987] definition (which they
gave for any morphism f : A // B and any object C in any category C with
finite limits, but here it is for Q-categories): the partial product of a functor
F : A // B with a Q-category C is a Q-category P together with functors
P : P // B, E : P×BA // C such that, for any otherQ-category P′ and functors
P ′ : P′ // B, E ′ : P′×BA // C there exists a unique functor K : P′ // P satisfying
P ◦ K = P ′ and E ◦ (K ×B 1A) = E ′ (see figure 6). This is really just the
explicit description of the coreflection of C along the functor “pullback with
F”

−×B A : Cat(Q)/B
// Cat(Q).

Hence Cat(Q) admits all partial products with F : A // B if and only if this
functor has a right adjoint. S. Niefield [1982] proved that this in turn is
equivalent to the functor “product with F”

−× F : Cat(Q)/B
// Cat(Q)/B



8 M. M. CLEMENTINO, D. HOFMANN AND I. STUBBE

C P×B A
E

oo //

��

A

F

��

P′ ×B A

33hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

��

E ′

ccG
G
G
G
G
G
G
G
G
G
G
G

K ×B 1A

99

P
P

// B

P
′

P ′

33gggggggggggggggggggggggggggggggggggg

K
88

Figure 6. the definition of a partial product

having a right adjoint, i.e. to the exponentiability of F .
Suppose now that F : A // B and C are given, and that we want to construct

their partial product (P, P, E). Putting P′ = ∗X in the diagram in figure 6
and letting X range over all objects of Q, the universal property of the
partial product dictates at once what the object-set P0 and the object-maps
P : P0

// C0 and E : (P×B A)0
// C0 must be:

- P0 = {(b, H) | b ∈ B and H : Ab
// C is a functor}, with types t(b, H) =

tb,
- for (b, H) ∈ P0, P (b, H) = b,
- for ((b, H), a) ∈ (P×B A)0, E((b, H), a) = Ha.

Thus we are left to find a Q-enrichment of the object-set P0, making it a
Q-category P and making P and E functors with the required universal
property; the next lemma tells us how to do this.

Lemma 4.1. If F : A // B satisfies 3.1–5 and 3.2–5, then Cat(Q) admits
partial products over F : A // B.

Proof : Assuming 3.1–5 it makes sense to define

P((b′, H ′), (b, H)) := C(H ′−, H−)F

= the outcome of applying the right adjoint to the map

in (3) on the distributor C(H ′−, H−) : Ab
c // Ab′.
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Whereas the identity inequality

1t(b,H) ≤ P((b, H), (b, H))

reduces to the fact that H : Ab
// C is a functor, it is the assumed 3.2–5

together with the composition inequality in the Q-category C that assures
the composition inequality:

P((b′′, H ′′), (b′, H ′)) ◦ P((b′, H ′), (b, H)) ≤ P((b′′, H ′′), (b, H)).

This construction clearly makes P and E functorial. As for the universal
property of (P, P, E), given a Q-category P′ and functors P ′ : P′ // B and
E ′ : P′ ×B A // C, it is straightforward to verify that

K : P
′ // P : x 7→ K(x) :=

(
P ′x, E ′(x,−) : AP ′x

// C : a 7→ E ′(x, a)
)

is the required unique factorization. 2

Finally we shall show that conditions 3.1–5 and 3.2–5 are not only suffi-
cient but also necessary for Cat(Q) to admit partial products over F : A // B.
Thereto we shall use an auxiliary construction concerning distributors be-
tween Q-categories that we better recall beforehand: given a distributor
Φ: X c // Y, we shall say that a co-span of functors like

X
S

// C Y
T

oo

represents Φ when Φ = C(T−, S−). Any Φ admits at least one such repre-
senting co-span: let C0 = X0 ⊎ Y0 and for all a, a′ ∈ X0 and b, b′ ∈ Y0 put
C(a′, a) = X(a′, a), C(b′, b) = Y(b′, b), C(b, a) = Φ(b, a), C(a, b) = 0tb,ta, so
that the co-span of full embeddings

X
SX

// C Y
SY

oo

surely represents Φ. (This latter co-span is universal amongst all representing
co-spans for Φ; M. Grandis and R. Paré [1999] speak, in the context of double
colimits in double categories, of the cotabulator (or gluing, or collage) of Φ.
This is however not important for us here; on the contrary, further on it is
crucial to consider non-universal representing co-spans.)

Lemma 4.2. If Cat(Q) admits partial products over F : A // B, then F : A // B

satisfies 3.1–5 and 3.1–5.
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Proof : For b, b′ ∈ B and Φ: Ab
c // Ab′, choose a representing co-span

Ab
S

// C Ab′
T

oo .

Considering the partial product of F with C, say (P, P, E), it is a fact that
the hom-arrow P((b′, T ), (b, S)) is a Q-arrow smaller than B(b′, b). Now, any
Q-arrow f : X // Y determines a Q-category∗ Pf like so:

- objects: (Pf)0 = {X} ⊎ {Y } with tX = X ∈ Q and tY = Y ∈ Q,
- hom-arrows: Pf(Y, X) = f , Pf(X, X) = 1X , Pf(Y, Y ) = 1Y

and Pf(X, Y ) = 0Y,X .

The inequality f ≤ B(b′, b) holds if and only if

Pf : Pf
// B : X 7→ b, Y 7→ b′

is a functor; and similarly the collection of inequalities f ∧A(a′, a) ≤ Φ(a′, a)
(one for each a ∈ Ab, a

′ ∈ Ab′) is equivalent to

Ef : Pf ×B A // C : (X, a) 7→ a, (Y, a′) 7→ a′

being a functor. Using the universal property of the partial product (P, P, E)
one easily checks that Pf and Ef determine and are determined by the single
functor

K : Pf
// P : X 7→ (b, S), Y 7→ (b′, T ),

whose functoriality in turn is equivalent to the inequality f ≤ P((b′, T ), (b, S)).
The above argument is actually independent of the chosen representing

co-span for Φ: if another co-span

Ab
S ′

//
C′ Ab′

T ′
oo

also represents Φ, and (P′, P ′, E ′) denotes the partial product of F with C
′,

then the “same” argument shows that, for any Q-arrow f ≤ B(b′, b), the
collection of inequalities f ∧A(a′, a) ≤ Φ(a′, a) (one for each a ∈ Ab, a

′ ∈ Ab′)
is equivalent to the single inequality f ≤ P′((b′, T ′), (b, S ′)). Thus it follows
that

P((b′, T ), (b, S)) = P
′((b′, T ′), (b, S ′)).

As a result the map

Dist(Q)(Ab, Ab′) // ↓ B(b′, b) : Φ 7→ ΦF := P((b′, T ), (b, S)), (6)

∗This is actually an instance of the universal representing co-span, when viewing the Q-arrow
f : X // Y as a one-element distributor (f) : ∗X c // ∗Y between one-object Q-categories.
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where one computes ΦF with the aid of any chosen representing co-span
for Φ, is (well-defined and) the right adjoint in (4). We end by showing
that it satisfies the lax commutativity of the diagram in figure 5; thereto it
is important that, in the map prescription of (6), any chosen representing
co-span for a given distributor will do.

For b, b′, b′′ ∈ B, Φ: Ab
c // Ab′ and Ψ: Ab′

c // Ab′′, consider the Q-category C

like so:

- objects: C0 = (Ab)0 ⊎ (Ab′)0 ⊎ (Ab′′)0 with “inherited types”,
- hom-arrows: for all a, a1 ∈ Ab, a′, a′1 ∈ Ab′ and a′′, a′′1 ∈ Ab′′, put

C(a1, a) = Ab(a1, a), C(a′1, a
′) = Ab′(a

′
1, a
′), C(a′′1, a

′′) = Ab′′(a
′′
1, a
′′),

C(a′, a) = Φ(a′, a), C(a′′, a′) = Ψ(a′′, a′) and C(a′′, a) = (Ψ⊗Φ)(a′′, a),
all other hom-arrows are zero.

The co-spans of full embeddings

Ab
S

// C Ab′
T

oo , Ab′
T

// C Ab′′
U

oo , Ab
S

// C Ab′′
U

oo

represent respectively Φ, Ψ and Ψ ⊗ Φ. Writing (P, P, E) for the partial
product of F and C, the compostion-inequality

P((b′′, U), (b′, T )) ◦ P((b′, T ), (b, S)) ≤ P((b′′, U), (b, S))

says precisely that ΨF ◦ ΦF ≤ (Ψ⊗ Φ)F , as wanted. 2
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