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NUMERICAL EXPERIMENTS FOR SEGMENTING
MEDICAL IMAGES USING LEVEL SETS

A. ARAÚJO, D. M. G. COMISSIONG AND G. STADLER

Abstract: Image segmentation is the process by which objects are separated from
background information. Structural segmentation from 2D and 3D images is an im-
portant step in the analysis of medical image data. In this technical report, we
utilize level set algorithms and active contours without edges to segment two and
three-dimensional image data. Besides synthetical data, we also use magnetic reso-
nance images of the human brain provided by the Institute of Biomedical Research
in Light and Images of the University of Coimbra (IBILI).
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1. Introduction
Image segmentation refers to the process of separating objects in images

from background information. Among others, it of great interest for medi-
cal practitioners, for example for surgery planning or tumor treatment. In
this context, often magnetic resonance (MR), computer tomography (CT),
position emission tomography (PET) or single photon emission computed
tomography (SPECT) images are used.

When segmenting a medical image, the actual surfaces of identified ob-
jects are often blurred as a result of background noise generated by signal
interference with surrounding tissues. Thus, efficient computational segmen-
tation algorithms are required to accurately detect the outline of the regions
of interest.

The level set method for capturing moving fronts was introduced by Osher
and Sethian in 1988 [OS88]. This Eulerian-type method utilizes a fixed mesh
of grid points, and matches the evolving interface implicitly with the zero-
level contour of a signed-distance function. The resulting initial value partial
differential equation is essentially a Hamilton-Jacobi equation. It is then
possible to utilize entropy-satisfying schemes developed for the numerical
solution of hyperbolic conservation laws.
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The success of level set methods is due to their efficiency and flexibility to
deal with geometrical objects such as free boundaries and surfaces. Among
its advantages, we mention the following: (i) Curvatures and normals are
easily evaluated; (ii) Topological changes occur naturally; (iii) The technique
is easily extended to three (or even more) dimensions. Moreover, level set
theory is to a large amount based on the theory of partial differential equa-
tions (PDEs) and benefits from many of the results and techniques developed
for such systems. A good introduction to the level set method and its use in
image segmentation can be found in the texts by Osher and Fedkiw [OF03]
and Sethian [Set99].

In this work we explain the basic ideas behind level set-based image seg-
mentation and report on some numerical tests for both 2D and 3D data. To
date, there is no universally accepted segmentation technique that works for
all images. For our purposes, we have chosen to use active contour methods
without edges.

2. Active Contours
The main idea behind algorithms for detecting active contours in image

segmentation is easily explained. The user provides an initial guess for the
contour. This guess is subsequently moved by image-driven forces to the
boundaries of the desired objects. In such models, internal and external forces
are considered. The internal forces defined within the curve are designed to
keep the model smooth during the deformation process. External forces
computed from the underlying image data are defined to move the model
toward an object boundary or other desired features within the image.

2.1. The classical models. Let Ω be a bounded open set of R
2, with ∂Ω

its boundary. Let u0 : Ω −→ R be a given image and C : [0, 1] −→ R
2 be a

parameterized curve.
The main method used here is, that the curve C is evolved towards the

object boundary under a force, until it stops at the boundary. To stop the
process, an edge-detector is used, depending on the gradient of u0.

In the so-called snake model, we intend to find C⋆ such that E(C⋆) =
infC E(C), where

E(C) =

∫ 1

0

(

α|C ′(s)|2 + β|C ′′(s)|2 − λ|∇u0(C(s))|2
)

ds, α, β, λ ∈ R
+.
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The first two terms of the energy functional E(C) control the smoothness
of the curve and the third one intends to attract the curve to the object
boundary, where the image gradients are large. By minimizing the energy in
this way, we are trying to locate the curve at the points of maximal |∇u0|
(thus providing an edge-detector) while maintaining the smoothness of the
evolving curve.

An edge-detector is a positive decreasing function g, depending on ∇u0,
such that limz→0 g(z) = 0. One possible choice is

g(∇u0(x, y)) =
1

1 + |∇Gσ(x, y) ⋆ u0(x, y)|p
with p ≥ 1, (1)

where Gσ ⋆ u0 is a smoother version of u0. For example, one can use the
convolution of the image u0 with Gσ, a Gaussian of variance σ. Note that
g(∇u0) is positive and approximately one in homogeneous regions, and close
to zero near the edges.

The use of the level set method, and in particular the motion by mean
curvature of Osher and Sethian [OS88] is in this context specially justified
due to its ability to naturally execute topological changes. With this method,
the curve is represented implicitly via a Lipschitz function φ by the zero level
set

C = {(x, y) : φ(x, y) = 0},

and the evolution of C is given by the zero-level curve at time t of the function
φ(x, y, t).

If we want the curve C to evolve in normal direction with speed a, we need
to solve the partial differential equation

∂φ

∂t
= a|∇φ|, φ(x, y, 0) = φ0(x, y)

with suitable boundary conditions. Here, the initial contour is given by the
points (x, y) that satisfy φ0(x, y) = 0. Using motion by mean curvature, we
have a = k, where k is the curvature of the level curve passing through (x, y),
i.e.,

k = div

(

∇φ(x, y)

|∇φ(x, y)|

)

.



4 A. ARAÚJO, D. M. G. COMISSIONG AND G. STADLER

A geometric active contour model based on the mean curvature motion is
given by [CCCD93]

{

∂φ
∂t

= g(∇u0)|∇φ|(k + η), t ∈ R
+, (x, y) ∈ R

2,

φ(x, y, 0) = φ0(x, y), (x, y) ∈ R
2,

where g(∇u0) is the edge function (1) with p = 2, η is a non-negative constant
and φ0 is the initial level set function. The zero level set curve moves in
normal direction with speed g(∇u0)(k+η) and stops at the desired boundary,
where g vanishes. The constant η is a correction term such that k+η remains
positive. In this case, η is a force pushing the curve towards the object, when
k ≤ 0. Also, η ≥ 0 is a constraint on the area inside the curve, increasing
the speed of propagation.

Another approach is the variational formulation of Zhao et al. [ZCMO96]

∂φ

∂t
= |∇φ|g(∇u0)k + ∇g(∇u0)

T∇φ.

The first term corresponds to the motion in normal direction with velocity
g(∇u0)k and the second one is a convective term in the direction of ∇g(∇u0).
Note that, if g(∇u0) vanishes, motion in normal direction stops and for con-
stant g(∇u0), the convection term vanishes.

In practice, the edge-detector is never zero on the edges and therefore the
evolving curve may not stop after having reached the desired contour. In
[CV01], Chan and Vese propose a different active contour model without
edges by using an edge-detector function that depends on the gradient ∇u0.
The stopping term is based on the so-called Munford-Shah segmentation
technique.

2.2. Active contours without edges. Let us consider an open subset
ω ⊂ Ω, such that C = ∂ω. We will use the notation inside (C) := ω and
outside (C) := Ω\ω. Assume that the image u0 is formed by two regions of
approximately piecewise-constant intensities of distinct values ui

0 (the object
to be detected) and uo

0. Let us denote by C0 the boundary of ui
0. Then we

have

u0 ≈

{

ui
0, inside (C0),

uo
0, outside (C0).

Let us now consider the following “fitting term”
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Figure 1. Test image.

F1(C)+F2(C) =

∫

inside (C)

|u0(x, y)−c1|
2dx dy+

∫

outside (C)

|u0(x, y)−c2|
2dx dy,

where C is any curve and c1, c2 depend on C and are the averages of u0 inside
C and outside C, respectively. Obviously, C0 – boundary of the object – is
the minimizer of the fitting term, i.e.,

inf
C

(F1(C) + F2(C)) ≈ 0 ≈ F1(C0) + F2(C0).

In fact (see Figure 2), if C is: outside the object, then F1(C) > 0 and
F2(C) ≈ 0; inside the object, then F1(C) ≈ 0 and F2(C) > 0; both inside
and outside the object, then F1(C) > 0 and F2(C) > 0; on the boundary of
the object, then F1(C) ≈ 0 and F2(C) ≈ 0.

Our goal is to minimize the above fitting term plus some regularizing terms
such as the length of the curve C and/or the area of the region inside C. Let
us introduce the energy functional F (c1, c2, C), defined by

F (c1, c2, C) = µLength (C) + η Area (C) + λ1F1(C) + λ2F2(C), (2)

where µ ≥ 0, η ≥ 0, λi > 0, i = 1, 2, are fixed parameters. Then, we are
interested in solving the minimization problem

min
c1,c2,C

F (c1, c2, C).

We now rewrite the original model (2) in the level set formulation. Let the
evolving curve C be

C = ∂ω = {(x, y) ∈ Ω : φ(x, y) = 0},
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Figure 2. All possible cases in the position of the curve.

assuming that

{

inside (C) = ω = {(x, y) ∈ Ω : φ(x, y) > 0},

outside (C) = Ω\ω = {(x, y) ∈ Ω : φ(x, y) < 0},

where ω ∈ Ω is open.
For the level set formulation of our active contour model, we replace C by

the unknown variable φ. Using the Heaviside function

H(z) =

{

1, if z ≥ 0,
0, if z < 0,
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and the Dirac delta function δ(z) = d
dz

H(z) (in the sense of distributions),
we can rewrite the energy functional in the following way:

Length (C) = Length (φ = 0) =

∫

Ω

|∇H(φ(x, y))|dxdy

=

∫

Ω

δ0(φ(x, y))|∇φ(x, y)|dxdy;

Area (C) = Area (φ ≥ 0) =

∫

Ω

H(φ(x, y))dxdy;

F1(C) =

∫

φ>0

|u0(x, y) − c1|
2dx dy =

∫

Ω

|u0(x, y) − c1|
2H(φ(x, y))dx dy;

F2(C) =

∫

φ<0

|u0(x, y)− c1|
2dx dy =

∫

Ω

|u0(x, y)− c1|
2(1− H(φ(x, y)))dx dy.

Thus,

F (c1, c2, C) = µ

∫

Ω

δ0(φ(x, y))|∇φ(x, y)|dxdy + η

∫

Ω

H(φ(x, y))dxdy

+λ1

∫

Ω

|u0(x, y) − c1|
2H(φ(x, y))dx dy

+λ2

∫

Ω

|u0(x, y) − c1|
2(1 − H(φ(x, y)))dx dy.

Let now

u =

{

average (u0) inside C,
average (u0) outside C.

Then,

u(x, y) = c1H(φ(x, y)) + c2(1 − H(φ(x, y))), (x, y) ∈ Ω.

Fixing φ and minimizing F (c1, c2, C) with respect to c1 and c2, it is easy to
express these constant functions of φ by

c1(φ) =

∫

Ω u0(x, y)H(φ(x, y))dx dy
∫

Ω H(φ(x, y))dx dy
if

∫

Ω

H(φ(x, y))dx dy > 0,

c2(φ) =

∫

Ω u0(x, y)(1− H(φ(x, y)))dx dy
∫

Ω(1 − H(φ(x, y)))dx dy
if

∫

Ω

(1 − H(φ(x, y)))dx dy > 0.
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In the degenerate case
∫

Ω H(φ(x, y))dx dy =
∫

Ω(1−H(φ(x, y)))dx dy = 0, we
obtain

{

c1(φ) = average (u0) in {φ ≥ 0},

c2(φ) = average (u0) in {φ < 0}.

In order to compute the Euler-Lagrange equations, we use the variational
level set approach and we arrive at

∂φ

∂t
= |∇φ|

[

µk − η − λ1(u0 − c2
1 + λ2(u0 − c2)

2
]

, in (0, +∞)× Ω,

and φ(x, y, 0) = φ0(x, y) in Ω, where k is the curvature.

3. Numerical Experiments
In this section, we report on our numerical testing for the active contour

algorithm without edges. By means of Example 1, basic properties of the
algorithm are explained. The next example is a two dimensional medical
image, in which we intend to segment parts of the spine. Finally, we apply
the method to three-dimensional magnetic resonance data. Our numerical
implementation is based on the MATLAB level set toolbox [MT05].

3.1. Example 1 (CMUC logo). For our first tests, we use the images
shown in Figure 3, where the left image is the original image and the right one
contains 10% of white Gaussian noise. Note that the left image in Figure 3 is
not a binary image (i.e., it does not only contain black and white pixels), since
the letters are drawn in different gray values. Both images have a resolution
of 120 × 120 pixels. We use the working domain Ω = [−1, 1] × [−1, 1], the
parameters µ = 2, λ1 = λ2 = 1 and the final time tf = 0.06. This implies a
mesh with mesh size h = 1/60 for the space discretization. We remark that,
in [CV02] the scaling h = 1 is used, which results in Ω = [−60, 60]2 and in
different scalings for the parameters µ, λ1, λ2 and for Ω.

In Figure 4, the initial and final contours as well as seven intermediate steps
of the time evolution for segmenting the CMUC logo with noise (Figure 3,
left) are shown. As initial contour a circle is chosen, and as the time increases,
this contour approaches the contour of the original image. Note that the
topological changes needed to segment the different letters do not represent
any problem for the algorithm.

Another attractive feature of the active contour algorithm without edges
is that it also works in the presence of noise. This is essential when deal-
ing with medical images, in which a certain amount of noise is unavoidable
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Figure 3. Example 1: Original image (left) and image contain-
ing 10% of white Gaussian noise (right).

due to background interferences or other perturbations. Our result obtained
for the noisy image (Figure 3, right) can be seen in Figure 5. While noise
presents a serious problem for segmentation algorithms that use image gra-
dient information, the active contour method is stable with respect to noise
in the image data and robustly detects the image contours.

3.2. Example 2 (2D medical image). In the second example, we attempt
the segmentation of bones from the image shown on the left of Figure 6.
We use the image domain Ω = [−1, 1] × [−1, 1] and, for all tests, keep the
parameters λ1 = λ2 = 1, ν = 0 and the final time tf = 0.5 fixed. We study
the influence of µ, i.e., the weight for the term corresponding to motion in
normal direction.

In the left of Figure 6 we show the evolution of the zero level set for µ = 0.1.
In the left plot of Figure 7, the resulting contour for this value of µ can be
seen. In the middle and the right plot of Figure 7, the contour obtained
with larger values of µ, namely µ = 0.3 and µ = 0.5 is shown. Obviously,
the parameter µ allows to control the sensitivity of the contour in capturing
details. Obviously, larger values of µ lead to smoother contours; these might
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Figure 4. Example 1: Time evolution of level sets for the image
shown on the left of Figure 3.

Figure 5. Example 1: Segmentation obtained for the noisy im-
age shown on the right of Figure 3.
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Figure 6. Example 2: Medical image (left) and level set evolu-
tion (right).

Figure 7. Example 2: Contour found using µ = 0.1 (left), µ =
0.3 (middle), and µ = 0.5 (right).

be more stable with respect to noise in the image, but they possibly do not
have the ability to find small structures.

3.3. Segmenting brain regions in 3D. The data for this problem is
provided by the Institute of Biomedical Research in Light and Images of
the University of Coimbra (IBILI). The idea is to identify the form of the
putamen and caudate which are structures in the brain. The putamen is a
portion of the basal ganglia. The basal ganglia system was associated with
motor functions, as lesions of these areas would often result in disordered
movement in humans (Chorea, athetosis, Parkinson’s disease). If the PET
scan shows decreased dopamine activity in the basal ganglia this aids in
diagnosing Parkinson’s disease.
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Figure 8. Example 3: Slices of magnetic resonance image.

We use a part of size 41×41×41 of the original image. As before, the values
of the data are between 0 and 255 and correspond to the gray values in the
magnetic resonance image. We refer to Figure 8, where 9 two-dimensional
slices of this data are shown. For our segmentation algorithm, we use the
parameters λ1 = λ2 = 1, ν = 0, µ = 0.05 and the final time tf = 0.8. As
domain we choose Ω = [−1, 1]3 and as initial surface the cube [−0.2, 0.2]3 is
chosen. In our tests, we also used other initializations and obtained the same
segmentation. However, if the initial zero level set was too small, it vanishes
after the first steps of the iteration. The zero level sets for µ = 0.05 at times
t = 0.0, 0.1, . . . , 0.8 are shown in Figure 9. We compared the results for
various values of µ and observed a similar behavior as for the two-dimensional
examples: For µ = 0.001, the solution captures more details of the data and
the resulting surface is relatively rough (see the right plot in Figure 10).
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Figure 9. Example 3: Evolution of the zero level set in the
iteration for µ = 0.05.

For µ = 0.05, the zero level set upon convergence is slightly smaller and
smoother (see the left plot in Figure 10). For µ ≥ 0.2, independently from
the initialization the zero level shrinks and finally vanishes. This undesired
behavior happens if the weight µ for the term corresponding to motion in
normal direction becomes too large.

4. Conclusions and further work
In this paper, we report on our numerical experiments with the active

contour algorithm for image segmentation. Extensions of the present work
interesting for doctors focuse on the development of a low cost optical motion
correction system for a SPECT/PET restraint free (without anesthesia) small
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Figure 10. Example 3: Results of segmentation algorithm for
µ = 0.05 (left) and µ = 0.001 (right).

animals. The problem of the implementation of this system can be divided
in two major parts: motion detection and motion correction. One of the
possibilities for using level sets in this context is to obtain the 4D contour
(we must consider the time variable) of the animal.
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