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1. Introduction

The notion of quasi-Lie bialgebroid was introduced in [19]. It is a structure
on a pair (A, A*) of vector bundles, in duality, over a differentiable manifold
M that is defined by a Lie algebroid structure on A*, a skew-symmetric
bracket on the space of smooth sections of A and a bundle mapa: A — TM,
satisfying some compatibility conditions. These conditions are expressed in
terms of a section ¢ of A® A*, which turns to be an obstruction to the Lie
bialgebroid structure on (A, A*). A quasi-Lie bialgebroid will be denoted
by (A, A*, ). In the case where A is a Lie algebroid and its dual vector
bundle A* is equipped with a skew-symmetric bracket on its space of smooth
sections and a bundle map a, : A* — T'M and the compatibility conditions
are expressed in terms of a section () of /\3 A, the triple (A, A*, Q) is called
a Lie-quasi bialgebroid [9]. When ¢ = 0 and @ = 0, quasi-Lie and Lie-quasi
bialgebroids are just Lie bialgebroids. We note that, while the dual of a
Lie bialgebroid is itself a Lie bialgebroid, the dual of a quasi-Lie bialgebroid
is a Lie-quasi bialgebroid, and conversely [9]. The quasi-Lie and Lie-quasi
bialgebroids are particular cases of proto-bialgebroids [9]. As in the case
of a Lie bialgebroid, the doubles A ® A* of a quasi-Lie and of a Lie-quasi
bialgebroid are endowed with a Courant algebroid structure [19], [9].

It was shown in [20] that the theory of quasi-Lie bialgebroids is the natural
framework in which we can treat twisted Poisson manifolds. These struc-
tures were introduced in [21], under the name of Poisson manifolds with a
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closed 3-form background, motivated by problems of string theory [18] and
of topological field theory [8], and since then deserved a lot of interest (see
c.g [9], [11).

The notion of Jacobi bialgebroid and the equivalent one of generalized Lie
bialgebroid were introduced, respectively, in [3] and [5], in such a way that
a Jacobi manifold has a Jacobi bialgebroid canonically associated and con-
versely. A Jacobi bialgebroid over M is a pair ((A, ¢), (A*, W)) of Lie alge-
broids over M, in duality, endowed with 1-cocycles ¢ € I'(A*) and W € T'(A)
in their Lie algebroid cohomology complex with trivial coefficients, respec-
tively, that satisfies a compatibility condition. Also, its double (A®A*, p+W)
is endowed with a Courant-Jacobi algebroid structure [4], [15].

In order to adapt to the framework of Jacobi manifolds the concepts of
twisted Poisson manifold and quasi-Lie bialgebroid, we have recently intro-
duced in [16] the notions of twisted Jacobi manifold and quasi-Jacobi bialge-
broid. The purpose of the present paper is to develop the theory of quasi-
Jacobi bialgebroids, as well as of its dual concept of Jacobi-quasi bialgebroids,
and to establish a very close relationship between quasi-Jacobi and quasi-Lie
bialgebroids.

The paper contains four sections, besides the Introduction, and one Ap-
pendix (section 5). In section 2 we recall the definition of quasi-Jacobi bial-
gebroid, we present some basic results established in [16], we develop the
examples of quasi-Jacobi and Jacobi-quasi bialgebroids associated to twisted
Jacobi manifolds and to quasi Jacobi manifolds, and, finally, we study the
triangular quasi-Jacobi bialgebroids. Section 3 is devoted to the study of
the structures induced on the base manifolds of quasi-Jacobi and Jacobi-
quasi bialgebroids. Several examples are presented. In section 4 we establish
an one to one correspondence between quasi-Jacobi bialgebroids structures
((A, ), (A", W), ¢) over a manifold M and quasi-Lie bialgebroids structures
(A A*, @) over M = M x R. Also, we prove that the structure induced on
M = M x R by (A, A*, ) is the "quasi Poissonization” of the structure
induced on M by ((4, @), (A*, W), ). The dual version of these results is
also presented. Finally, in the Appendix, we define the concept of action of a
Lie algebroid with 1-cocycle on a differentiable manifold that is used in this

paper.

Notation: If (A, ¢) is a Lie algebroid with 1-cocycle ¢, we denote by d?
the differential operator d of A modified by ¢, i.e., d®a = da + ¢ A «, for
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any o € T(A" A*). Moreover, we denote by & the usual de Rham differ-
ential operator on a manifold M and by d the differential operator of the
Lie algebroid TM x R, d(a,3) = (6o, —60), for (a,3) € T(N(T*M x
R)) = D(A"T*M) x D(A" ' T*M). We also consider the identification
DA (TM x R)) = D(N*TM) x D(N*'TM). For the Schouten bracket
and the interior product of a form with a multi-vector field, we use the con-
vention of sign indicated by Koszul [12].

2. Quasi-Jacobi bialgebroids and Jacobi-quasi bialgebroids

Let ((A, ¢), (A*,W)) be a pair of dual vector bundles over a differentiable
manifold M, each one endowed with a 1-form ¢ and W, respectively, and ¢
a 3-form of A.

Definition 2.1. A quasi-Jacobi bialgebroid structure on ((A, @), (A*, W), ¢)
consists of a Lie algebroid structure with 1-cocycle ([-,-|«,ax, W) on A*, a
bundle map a : A — TM and a skew-symmetric operation |-,-] on I'(A) sat-
isfying, for all X,Y,Z € T'(A) and f € C*(M, IR), the following conditions:

D) [X, fY] = fIX, Y]+ (a(X) )Y

) ([X Y]) [ (X),CL(Y)] —CLA@O(X,Y,-));
8) [X.1.2] +-c. = ~d¥ (o(X. V. 2)) = (1000007 2) + )
4) dp—p(W, -, ) = 0, where d is the quasi-differential operator on I'( ]\ A*)
determmed by the structure ([-,-],a) on A;
5) d°p = 0, where d® is given, for any 3 € F(/\k A%), by d*(B) = dp +
QS /\ /67.
6) dV[P,Q]* = [dY P,Ql° + (—1)P"[P,d Q)°, with P € T(A\"A) and
QeT(ANA).

As in the case of quasi-Lie and Lie-quasi bialgebroids, by interchanging the
roles of (A, ¢) and (A*, W) in the above definition, we obtain the notion of
Jacobi-quasi bialgebroid over a differentiable manifold M.

Definition 2.2. A Jacobi-quasi bialgebroid structure on ((A, @), (A*, W), Q),
A and A* being dual vector bundles over a differentiable manifold M and () a
section of /\3 A, consists of a Lie algebroid structure with 1-cocycle ([-, -], a, @)
on A, a bundle map a, : A* — TM, a skew-symmetric operation [-,-]. on
['(A*) and a section W € T'(A), satisfying the conditions 1)-6) of Definition
2.1 in their dual versions.

Hence, we can easily conclude:
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Proposition 2.3. If ((A, ¢), (A", W), p) is a quasi-Jacobi bialgebroid over a
differentiable manifold M, then ((A*, W), (A, @), ) is a Jacobi-quasi bialge-
broid over M, and conversely.

In the case where both 1-cocycles ¢ and W are zero, we recover, from
Definitions 2.1 and 2.2, the notions of quasi-Lie and Lie-quasi bialgebroid,
respectively. On the other hand, if ¢ = 0 in Defintion 2.1 (resp. @ = 0
in Definition 2.2), then ((4,¢),(A*,W),0) = ((A, ¢), (A*,W)) is a Jacobi
bialgebroid over M.

Remark 2.4. In [16], we proved that the double of a quasi-Jacobi bialgebroid
is a Courant-Jacobi algebroid ([4], [15]). By a similar computation, we may
conclude that the double of a Jacobi-quasi bialgebroid is also a Courant-
Jacobi algebroid.

The rest of this section is devoted to some important examples of quasi-
Jacobi and Jacobi-quasi bialgebroids.

2.1. Quasi-Jacobi and Jacobi-quasi bialgebras. A quasi-Jacobi bialge-
bra is a quasi-Jacobi bialgebroid over a point, that is a triple ((G, ¢), (G*, W), ¢),
where (G*, [-,-]«, W) is a real Lie algebra of finite dimension with 1-cocycle
W € G in its Chevalley-Eilenberg cohomology, (G, ¢) is the dual space of G*
endowed with a bilinear skew-symmetric bracket [-, -] and an element ¢ € G*
and ¢ € A*G*, such that conditions 3)-6) of Definition 2.1 are satisfied.

By dualizing the above notion, we get a Jacobi-quasi bialgebra, that is a
Jacobi-quasi bialgebroid over a point.

In the particular case where ¢ = 0, we recover the concept of Jacobi
bialgebra [5]. When ¢ = 0 and W = 0, we recover the notion of quasi-Lie
bialgebra due to Drinfeld [2].

We postpone the study of quasi-Jacobi bialgebras to a future paper, in
preparation. We believe that they can be considered as the infinitesimal
invariants of Lie groups endowed with a certain type of twisted Jacobi struc-
tures that can be constructed from the solutions of a twisted Yang-Baxter
equation.

2.2. The quasi-Jacobi and the Jacobi-quasi bialgebroids of a twisted
Jacobi manifold. We recall that a twisted Jacobi manifold [16] is a differ-
entiable manifold M equipped with a section (A, E) of A*(TM x R) and a
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2-form w such that

S0 B), (A BOD = (A, Y (3w, ), (1)
where [-,-]®Y denotes the Schouten bracket of the Lie algebroid (T'M x
R, [, ], 7) modified by the 1-cocycle (0,1), m : TM x R — TM is the
projection on the first factor and (A, E)# is the natural extension of the
homomorphism of C*(M, R)-modules (A, E)# : T'(T*M x R) — I'(TM x
R), (A, E)*(a. f) = (A (a) + fE, (o, E)), (o, f) € T(T"M x R), to a
homomorphism from A*(T*M x R) to A"(TM x R), k € IN, given, for all
f e C®(M,R), by (A, EY*(f) = f, and, for any (1,¢) € T(AN"(T*M x R))
and (011, f1)7 SRR (Oék:fk) < F(T*M X R)? by

(A7 E)#O% S)((O‘b fl)a cet (Oék, fk‘))
= (=1)"(n, ) (A, EY (an, fr), -+ (A, E)T (s fi)-

In [16], we presented several examples of twisted Jacobi manifolds such
as twisted exact Poisson manifolds and twisted locally conformal symplectic
manifolds. In a very recent Note [17], where we discuss the characteristic
foliation of a twisted Jacobi manifold, we introduced the notion of twisted
contact Jacobi manifold which produces another example of twisted Jacobi
manifold. Next, we recall this last example and present a new one.

Examples 2.5.

1) Twisted contact Jacobi manifolds: A twisted contact Jacobi manifold is
a (2n + 1)-dimensional differentiable manifold M equipped with a 1-form ¢
and a 2-form w such that ¥ A (09 + w)" # 0, everywhere in M. We consider
on M the vector field F, given by

Z'Eﬁ: 1 and ZE((519—|-CU) :O,

and the bivector field A whose associated morphism A* : I'(T*M) — T'(T M)
is defined, for any o € I'(T*M), by

A*(9) =0 and izt () (00 +w) = —(a — (ipa)?).
Then, the triple (M, (A, F),w) is a twisted Jacobi manifold.

*Since, for any (¢,w) € D(A*(T*M x R)), dOV (o, w) = (5p, ¢ — dw) and dOD(p, w) = (0,0) <
¢ = dw, equation (1) means that 3[(A, E), (A, E)](®V is the image by (A, E)* of a d(®V-closed
3-form of TM x RR.
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2) Twisted conformal Jacobi structures: Let (M, (A, E),w) be a twisted Ja-
cobi manifold and f a function on M that never vanishes. We can define
a new twisted Jacobi structure ((A/, ET),w/) on M, which is said to be
f-conformal to ((A, E),w), by setting
1
AN =fA; Ef=Af)+fE; o = 7

In the sequel, let (M, (A, F),w) be a twisted Jacobi manifold and (7%*M x
R, [, 1ty gy mo (A, E)# (—E,0)) its canonically associated Lie algebroid with

1-cocycle, [16]. The Lie bracket [-,-]f) 5y on I'(T"M x R) is given, for all
(@, ), (8, 9) € T(T"M x R), by
(e, 1), (B, D ey = (e f): (B, 9)lw.e
+ (6w, w) (A, B)* (o, f), (A, E)F (B, 9),-),
where [-,-](s p) is the usual bracket on I'(T*M x IR) associated to a section

(A, E) of N*(TM x R) ([7], [5]):

(0 1), (B D)) = Ly pysan(3:9) = LI s £)

_ d(o’l)((AvE)((Oév f)7(57 ))) (2)
We consider, on the vector bundle 7'M X IR — IR, the Lie algebroid structure
over M with 1-cocycle ([-, -], 7, (0,1)) and also a new bracket |-, -] on the space

of its smooth sections given, for all (X, f),(Y,g) € ['(TM x R), by
(X, ), (Vo)) = [(X, f), (Y, 9)] = (A, B)*((dw,w) (X, f), (Y. 9).-)).
We have shown in [16]:

Theorem 2.6. The triple (TM x R, [-,-]', 7, (0,1)),(T*M x IR, [, ]°("A £y O
(A, EY*,(—FE,0)), (dw,w)) is a quasi-Jacobi bialgebroid over M.

Furthermore, we have:

Theorem 2.7. The triple (TM x R, [-,-],7,(0,1)),(T*M x IR, [-,-]a,p), T ©
(A, E)*,(—=E,0)), (A, E)*(dw,w)) is a Jacobi-quasi bialgebroid over M.

Proof: It suffices to check that all conditions of Definition 2.2 are satisfied.
Condition 1) can be checked directly, using the definition (2) of the bracket
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[, ]a,p)- For 2), we take into account that ((A, E),w) is a twisted Jacobi
structure, hence (1) holds, and we apply the general formula

(A B ([, £), (B, 9)lam) = [( E)(a, f), (A, E)* (8, 9)]

T _[(A E) (A7 E)](()’l)((aa f)7 (ﬂ)g)v )
By projection, we obtain 2). Condition 3) can be checked directly, after a

long computation. In order to prove 4), we remark that the quasi-differential
operator d. determined by ([-,|(a.g), 7o (A, E)*) is given [5], for all (R, S) €
T(A"(TM x R)), by

do(R,S) = ([A,R] +EEANR+ANS, —

So, d.(—FE,0) = ([E, A],0), and since (M

—[A,R]|+ (1 —Kk)ENS+ [E,R]).
(
1fold we may write (see Proposition 3.1 of

A, F),w) is a twisted Jacobi man-
1 6])
d.(~E,0) = (A" @ 1)(0w)(E) - (A" @ 1)(w)(E)) A E), 0)
= (A B)*(dw,w))((0,1),-,-),
where (A*®1)(w)(FE) is given, for any 1- formcvonM by (A*®1)(w)(E)(a)
w(A#(a), E). On the other hand, since d\~ (R S) = [(A, B), (R, S)]©

we have

dCEO(A, B (bw,w)) = [(A, E), (A, EB)# (6w, w)] OV
= LA E) (A B) (A, BV =,

o),

whence we get condition 5). Finally, 6) can be established, as in the proof of
Theorem 8.2 in [16], by a straightforward but long computation. [

Remark 2.8. In the case of twisted Poisson manifolds the above results were
treated in [20] and [9)].

2.3. The Jacobi-quasi bialgebroid of a quasi Jacobi manifold. Let
(G, [, ]) be a Lie algebra, ¢ a 1-cocycle in its Chevalley-Eilenberg cohomology
and (-,-) a nondegenerate symmetric bilinear form on G. We denote by
¢ the canonical 3-form on G defined by ¥(X,Y,Z) = 3(X,[Y, Z]), for all
X,)Y,Z € G, and by Q4 € /\39 its dual trivector that is given, for all
u,v,§ € G, by

sz(ﬂ: v, f) = ¢(X,MXV,X§),
where X, X, X¢ are, respectively, dual to p, v, € via (-, -).
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A (G, ¢)-manifold M is a differentiable manifold on which (G, ¢) acts infin-
itesimally by a® : G — TM x R, a®(X) = a(X) + (¢, X), for all X € G (see
Appendix). We keep the same notation a? for the induced maps on exterior
algebras.

A natural generalization of the notion of quasi Poisson manifold, given
in [1], is the concept of (G, @)-quasi Jacobi manifold, that we introduce as
follows.

Definition 2.9. A (G, ¢)-quasi Jacobi manifold is a (G, ¢)-manifold M equip-
ped with a section (A, E) € T(AN*(TM x IR)) such that

S0 B), (A, B) OV = a¥(Qy).

Theorem 2.10. Let (M,A,E) be a (G, p)-quasi Jacobi manifold. Then,
((TM X R? ['7 ']77T7 (07 1)) (T*M X R [ a'] (AE), T O (A7 E) 7( E7 )),CL¢(Q¢))
18 a Jacobi-quasi bialgebroid over M.

Proof: We can check, without any difficulty, that all conditions of Defini-
tion 2.2 are satisfied (see also the proof of Theorem 2.7). Only, in order to
establish 4), we note that

d.(=E.0) = ([E,A]0) = %[(A, E), (A, E)|®V((0,1),-,)
- a¢(Q¢)((O7 1)7'7')'

Remark 2.11. In the case where M is a G-manifold equipped with a quasi
Poisson structure, i.e a bivector field A on M such that [A, A] = 2a(Qy), a
similar result holds: The triple ((T'M, [-,-],id), (T*M, [-,-]a, A"),a(Qy)) is a
Lie-quasi bialgebroid over M, where [-,-]5 is the Koszul bracket associated

to A.

2.4. Triangular quasi-Jacobi and Jacobi-quasi bialgebroids. Let
(A, [, ], a, ¢) be a Lie algebroid with 1-cocycle over a differentiable manifold
M, 11 a section of A® A and Q a trivector on A such that

! b _

We shall discuss what happens on the dual vector bundle A* of A when we
consider the vector bundle map a, : A* — TM, a, = ao H# [I# . A* > A
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being the bundle map associated to II, and the Koszul bracket [-, |7 on the
space ['(A*) of its smooth sections given, for all o, 5 € I'(A*), by

[047 ﬁ]H = E%#(a)ﬁ - Lﬁ#(g)a - d(b(H(@a 5)) (3)
Let us set W = —II#(¢). Taking into account that, for all «, 3,y € I'(A*),
([, B, Y] + e.p. = —d®(Q(a, B3, 7)) — ((z’Q(aﬂ,)d%) + c.p),

we can directly prove that

Proposition 2.12. The triple (A, [-,-],a, ®), (A" [, |, as, W), Q) is a Jacobi-
quast bialgebroid over M.

Respecting the tradition, we shall call to the Jacobi-quasi bialgebroid con-
structed above, a triangular Jacobi-quasi bialgebroid. Clearly, the Lie-quasi
bialgebroid associated to a twisted Poisson manifold [20] and the Jacobi-
quasi bialgebroid associated to a twisted Jacobi manifold (see Theorem 2.7)
are special cases of triangular Jacobi-quasi bialgebroids. Another important
type of triangular quasi-Jacobi bialgebroid is the triangular quasi-Jacobi bial-
gebra, where II is a solution of a Yang-Baxter’s type equation.

Now, we consider the particular case where () is the image by II* of a
d?-closed 3-form ¢ of A, i.e.

I T = TT#(g), (1

and the spaces of smooth sections of A* and A are equipped, respectively,
with the brackets
o, Bt = [av, B + @(IT%(a), ITF(B), ), forall a, B € T(A"),
-, ] being the Koszul bracket (3), and
[(X,Y] = [X,Y] - O#(p(X,Y,-), forall X,Y € T(A).
Under the above assumptions, by a straightforward calculation, we get:

Proposition 2.13. The vector bundle A* — M endowed with the structure
([, -J5, as) is a Lie algebroid over M with 1-cocycle W = —1I1# ().

Also, we have:

Theorem 2.14. The triple ((A,[-,-]', a, ®), (A*, [-,"]f1, ax, W), @) is a triangu-
lar quasi-Jacobi bialgebroid over M.
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Proof: The proof is analogous to that of Theorem 8.2 in [16] and so it is
omitted. m

Remark 2.15. Obviously, if A is T'M x IR equipped with the usual Lie alge-
broid structure with 1-cocycle, ([-, -], m, (0,1)), and I = (A, E) € T(A*(TM x
IR)) satisfies (4), then the manifold M is endowed with a twisted Jacobi struc-
ture. The Lie algebroid structure on A* = T*M x IR given by Proposition
2.13, is the Lie algebroid structure canonically associated with the twisted
Jacobi structure on M.

3. The structure induced on the base manifold of a quasi-
Jacobi bialgebroid

In this section we will investigate the structure induced on the base man-
ifold of a quasi-Jacobi bialgebroid. Similar results hold for a Jacobi-quasi
bialgebroid.

Let ((A, ), (A*,WW), ) be a quasi-Jacobi bialgebroid over M. In [16],
we have already considered the bracket {-,-} on C*°(M,IR) defined, for all
f,g € C*(M,R), by

{f,9} = (d°f.d g). (5)
We have proved that it is IR-bilinear, skew-symmetric and a first order differ-
ential operator on each argument [16]. For the quasi differential operator d on
['(A\ A*) determined by (a, |-, -]), we have that it is a derivation with respect
to the usual product of functions. Therefore, the map (f,g) — (df,d.g) is

a derivation on each argument and so, there exists a bivector field A on M
such that, for all f,g € C*°(M,R),

A(5f7 69) - <df7 d*g> - _<dgad*f>'

If £ is the vector field a.(¢) = —a(W) on M then, from (5) and because
(¢, W) = 0 holds [16], we get

{f.9} = (a%Yg, (A, EYF (@™ )] (6)

Since, for all [ € C(M, ), d*f = (a®)* (A" f) and d¥ = (al')*(dO0 )
[16], where (a?)* and (a!')* denote, respectively, the transpose of a® and a!V,
we obtain

(A, B)* = —a® o (aV)* = al¥ o (a?)". (7)

*

TWe note that the contraction between sections of TM x R and T*M x R is given, for any
(a, f) e D(T"M x R) and (X, g) € D(TM x R), by (e, f), (X, 9)) = (o, X) + fg.
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It is well known ([13], [5]) that any bracket of type (6) satisfies the following
relation:

(A9 hh} + e = I B), (A, B)JOVOD £, 4009, d00h). (3)

Therefore, for the bracket defined by (5), in general, the Jacobi identity does
not hold.

Proposition 3.1. Let ((A, ¢), (A", W), @) be a quasi-Jacobi bialgebroid over
M. Then, the bracket (5) satisfies, for all f,g,h € C*(M, IR), the following
wdentity:

{f:4g. 13} + ep. = ol (9)(AOV f,dMg,dO D). (9)
In (9), iV denotes the natural extension of a’ : T'(A*) — T'(TM x IR) to
bundle map from T(N\* A*) to T(N\*(TM x R)).

Proof: Let f, g and h be any three functions on C*(M, R). Since dV {f, g} =
[dY g, dV f] (see [16]), we compute

{h.Af, 93} = (d°n, [dY g, dY f]) = (A OV h,a?[(al") (AN g), (aZV)*(d(O’”f)D
= (d%Vn, [a® o (a')*(d"Mg),a? o (a! )( AV —al (e(d g, d f,-))
= (dOYn, [—(A, E)*(d"Vg), (A, E)#(d" )f)]>—90(de,de,dWh)
= (d%Vn, (A, EY* (" ]{g, /1) + S[(A E), (A, E)] V(@O g, a0V f )
+o(dY f,d) g, d)h)
= {{g./}. 1} - %[(A, E), (A, B) D@V f,d™g,dDn)
+a () (A f,d Vg, dODn).
Consequently,

1
S B), (A B)J OV f,d00g, a0V ) = ol () (0D f,d0Dg, a0V ).

(10)
Hence, from (8) and (10), we obtain (9). |

l\')l»—l”

Looking at equation (10), we remark that the obstruction for (M, A, E) to
be a Jacobi manifold, i.e. to have [(A, E), (A, E)]®Y = (0,0), is the image by
" of the element ¢ in T(A” A*). This obstruction can also be viewed as the
image of ¢ under the infinitesimal action of the Lie algebroid with 1-cocycle
(A*, W) on M (see Appendix). Thus, inspired by the analogous terms of
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quasi Poisson G-manifold ([1], [9]) and of (G, ¢)-quasi Jacobi manifold (see
Section 2.3), we say that the pair (A, E) defines on M a (A*, W)-quasi Jacobi
structure.

Thus, we have proved:

Theorem 3.2. Let ((A, @), (A", W), ) be a quasi-Jacobi bialgebroid over M.
Then, the bracket {-,-} : C*(M, IR) x C*(M, IR) — C>*(M, IR) given by

{f,9} =(d°f,dYg), for f,g € C*(M,R),
defines a (A*, W)-quasi Jacobi structure on M.

Remark 3.3. In the case where ((A4, ¢), (A*, W), Q) is a Jacobi-quasi bial-
gebroid over M, then, we can easily prove that the Jacobi identity of the
bracket defined by (5) is violated by the image of @ under a?. For this
reason, we shall call to the structure (A, F) induced on M, an (A, ¢)-quasi

Jacobi structure. We note that, for the proof of this result, we use the relation
[d°f,d?g. = d*{f, g}, f,g € C®(M,IR), which leads to

(A, E)* = a0 (a!V)* = —al¥ o (a?)". (11)

* *

Examples 3.4.

1) A*-Quasi Poisson structures: If ((A, ¢), (A*, W), ) is a quasi-Lie bialge-
broid over M, i.e. both 1-cocycles ¢ and W are zero, Theorem 3.2 establishes
the existence of a structure on M, defined by the bracket

{f,g9} =(df,d.g), f,9€C*(M,R),

on C*°(M,IR), which is associated to a bivector filed A on M satisfying
[A,A] = 2a.(p). In our terminology, A endows M with a A*-quasi Pois-
son structure. We remark that this result was obtained in [6] by different
techniques.

2) Jacobi structures: When ¢ = 0, i.e. ((4,¢),(A*,W)) is a Jacobi bialge-
broid over M, the structure (A, F) on M determined by Theorem 3.2 is a
Jacobi structure, and we recover the well known result of [5].

3) Twisted Jacobi structures: When ¢ is the image of an element (o7, war) €
T'(A*(T*M x R)) by the transpose map (a?)* : D(A*(T*M xR)) — T(A\* A%)
of a?, i.e. ¢ = (a®)*(par, war), then,

S B), (0, B = ¥ () = ¥ (@) (ar, o) Z (A, BV (par, onr).
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Also, we have

d’((a”) (oar, war) = 0 & (a®)* (A" (par, wnr)) = 0,

~"

=¢

which means that (57, wy) is d®V-closed on the distribution Im(a?). This
distribution is not, in general, involutive due to condition 2) of Definition 2.1.
However, when I'm(a®) is involutive, as in the case where a? is surjective,
(A, B),wyr) defines a twisted Jacobi structure on the leaves of Im(a?).

4) The case of the quasi-Jacobi bialgebroid associated to a twisted Jacobi
manifold: Let (M, (A1, E1),w) be a twisted Jacobi manifold and let ((T'M x
R, ['7 '],7 T, (07 1))7 (T*MXR7 ['7 ']C(UA17E1)7 7TO(A1, El)#7 (_El, 0)), (50}, w)) be its
associated quasi-Jacobi bialgebroid. Then, the (T*M xR, (—E1,0))-quasi Ja-
cobi structure induced on M coincides with the initial structure (A, £7). In
fact, for any f,g € C*(M,R) and taking into account that d'®V f = d(O £
where d’ is the quasi-differential of TM x R determined by the structure
([,-]',7), and that (¢)=F0g = —(Ay, E))#(d%Vg), we have

{f.g} = (dOVf, (@) g) = (dOV f, — (A, E)#(AYg)) = {f. g},

where {-,-}; denotes the bracket associated to (A1, F1).

Moreover, if we consider the Jacobi-quasi bialgebroid ((T'M x R, [, -], 7,
(0,1)), (T"M xR, [, Jay.50), mo (A1, EN)F, (—E1,0)), (A1, E1)# (0w, w)) associ-
ated to the twisted Jacobi manifold (M, (Ay, F1),w), we get that the (T'M x
IR, (0,1))-quasi Jacobi structure (A, E) induced on M is the opposite of
(A1, Ey). It suffices to remark that

(A, B W o0, ((mr o (Ay, By)¥) B0y

= 70, ((Aq, E1>#)* © (W(O’l))* = — (A4, El)#' (12)

5) The induced structure on a quasi Jacobi manifold: We consider the Jacobi-
quasi bialgebroid

((TMX]Rv ['7 ']7 T, (07 1))7 (T*MX]Ra ['7 '](A1,E1)7 WO(Alv El)#7 (_Eh O))? CL¢(Q¢)>

associated to a (G, ¢)-quasi Jacobi manifold (M, Ay, Eq). Then, repeat-
ing the computation (12), we conclude that, as in the previous case, the
(TM x IR, (0, 1))-quasi Jacobi structure (A, E) induced on M is the opposite
of (Al, El)
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6) The case of a triangular quasi-Jacobi bialgebroid: If we consider a tri-

angular quasi-Jacobi bialgebroid over M of type ((4,[, ], a, ), (A% [, 5,

a., W), ), presented in Theorem 2.14, then, for all f € C*(M,R),
A f = —I#(d’f) = =% o (a*)) @™V f).
So, the bracket (5) in C*°(M,R) is given by

{f,9} = (df.dV g) = (d™Vg, (a” o TI* o (a®)")d "V ).
On the other hand, considering the (A*, W)-quasi Jacobi structure (A, E') on
M, we also have
{f,9} = (Vg (A, EYF(d*V 1)),
Hence,
(A, B)* = a? o TI* o (a?)",

which means that (A, E) is the image by a? of II and that a? is a type of
“twisted Jacobi morphism” between (A, ¢,I1) and (TM x R, (0,1), (A, E)).

4. Quasi-Lie bialgebroids associated to quasi-Jacobi bial-
gebroids

Given a Lie algebroid (A, |-, -], a) over M, we can endow the vector bundle
A=AxR — M xR with a Lie algebroid structure over M x IR as follows.
The sections of A can be identified with the t-dependent sections of A, t being
the canonical coordinate on IR, i.e., for any X € T'(A) and (z,t) € M x R,
X(z,t) = X;(z), where X, € T'(A). This identification induces, in a natural
way, a Lie bracket on I'(4), also denoted by [-,-]:

X, V](2,t) = [X, Vi](z), X,V eD(A), (z,1) e M x R,

and a bundle map, also denoted by a, a : A—-TMxR)=TM& TR
with a(X) = a(X;), in such a way that (A, [-,-],a) becomes a Lie algebroid
over M x R. If ¢ is a 1-cocycle of the Lie algebroid A, we know from [5]

that A can be equipped with two other Lie algebroid structures over M x IR,
([-,-]%,a%) and ([-,-] ¢,a?) given, for all X,Y € I'(A), by

R = (%7 + (0,50 2 — (0.7 2 (13)
A9(X) = (%) + (0, X) o (1)
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and

ATt (3 .50y - 1) - ey - 0)s

a%(X) = e '(@%(X)). (16)

Let ((A,¢), (A", W), p) be a quasi-Jacobi bialgebroid over M. Then,
(A%, [, ]+, ax, W) is a Lie algebroid with 1-cocycle and we can consider on A*
the Lie algebroid structure ([-,-],",a}") defined by (15) and (16). Although

Ais not endowed with a Lie algebroid structure, we still can consider on T'(A)
a bracket [-,-] ? and a bundle map a? given by (13) and (14), respectively.

We set ¢ = elop.

Theorem 4.1. Under the above assumptions, we have:
1) The triple ((A, ¢), (A", W), ¢) is a quasi-Jacobi bialgebroid over M if
and only if (A, A*, p) is a quasi-Lie bialgebroid over M x IR.
2) If A is the induced A*-quasi Poisson structure on M x IR, then it is the

“quasi Poissonization” of the induced (A*, W)-quasi Jacobi structure
(A, E) on M.

Proof: 1) Let us suppose that ((A,¢), (A", W), ) is a quasi-Jacobi bialge-
broid over M and let X, Y and Z be three arbitrary sections in I'(A) and
feC®M x R,R). A straightforward computation gives

(X, Y]? = fIX,Y]? + @(X) /)Y (17)
Moreover,

AT = (% T+ (0.0 — (6.1 )

= (o0, ()] - au(p(Ke, Vi) + {6, (%0, Vi) o

Ho, ) (a(%—f) o, %—?%) —{6.¥) (a(%—f) e %—ﬁ%) .
But, since d¢p — (W, -,-) =0,
(9, [Xt, ﬁ]) = G(Xt)@, Y@ - Q(Yt)<¢; Xt> - @(Xt; f@, W).



16 J. M. NUNES DA COSTA AND F. PETALIDOU
Also,
azv(@()z7 i/a )) - a*(QO(Xt, }N/;fa )) + Sp(Xta ﬁa W)_
Hence, we get
5¢([X7 ?]~¢) - [a(b(X)a ’d’¢(}~/)] o aW(Sb(X) Y/v )) (18)
On the other hand,

. | ~ 07,

= —d" (XY, 7))~ (i (Xy)d*WZ—I—C.p.>, (19)

where d,"V denotes the differential operator of the Lie algebroid (A%, [, .7, a").
From d?p = 0, we deduce
d°@ =0, (20)

where d? is the quasi-differential operator determined by the structure ([, -] ¢, @)
on A. Finally, after a very long computation we obtain

dl[P.QI° = [d}"P.QI° + (-1 [P d} Q). (21)
for P e T(A’ A) and Q € T'(A\ A). From relations (17) to (21), we conclude
that (121, fl*, @) is a quasi-Lie bialgebroid over M x IR.

Now, let us suppose that (A, A*, $) is a quasi-Lie bialgebroid over M x R
and take three sections X, Y and Z of A and f € C*(M,R). These sections
can be viewed as sections of A that don’t depend on ¢, as well as the function
f can also be viewed as a function on C*(M x R,IR). Condition 1) of
Definition 2.1 is immediate from [X fY]~¢ = fIX,Y]? + (@a®(X)f)Y. The
condition a?([X,Y]?) = [a?(X),a?(Y)] —a¥ (4(X,Y,-)) is equivalent to

0

a([X,Y]) + (¢, [X, V]) - = [a(X), a(Y)] — a.(o(X, Y, )

ot
Ha(X)(,Y) —a(Y){d, X) + p(X. Y, W))gt

which gives conditions 2) and 4) of Definition 2.1. From d ¢g0 = 0 we deduce
d®¢p = 0. Finally, by similar computations, we obtain the two remaining
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conditions that lead to the conclusion that ((A,¢), (A*, W), ) is a quasi-
Jacobi bialgebroid over M.

2) Let /~\~be the A*-quasi Poisson structure induced by (A4, A*, ) on M x R.
For all f,g € C*(M x R, R), we have

{f.9} = A5/, 09)
and, on the other hand,
g ~

(F.0) = @°F.dY5) = e (4], d.3) + a.(6)(@) + La(W)(f)).

If (A, E) is the (A", W)-quasi Jacobi structure induced by ((A4, ¢), (A", W), »)
on M, since £ = a.(¢) = —a(W) and A(df,0g9) = (df,d.g), we get that
A=e'(A+ZAE). m

For the case of Jacobi-quasi bialgebroids we can prove a similar result. Let
((A,9), (A", W), Q) be a Jacobi-quasi bialgebroid over M. We consider on A
the Lie algebroid structure ([,-] ¢,a@%) defined by (15) and (16), on A* the

structure ([-,-],"V, @) defined by (13) and (14), and we set Q = €'Q.

Theorem 4.2. Under the above assumptions, we have:
1) The triple (A, ¢), (A", W), Q) is a Jacobi-quasi bialgebroid over M if

and only if (:Zl, A*,Q) is a Lie-quasi bialgebroid over M x IR.
2) If A is the A-quasi Poisson structure induced on M X IR, then it is

the “quasi Poissonization” of the (A, ¢)-quasi Jacobi structure (A, E)
induced on M.

5. Appendix: Actions of Lie algebroids with 1-cocycles

In this Appendix, we extend the definition of Lie algebroid action [14], [10],
to that of Lie algebroid with 1-cocycle action. We recall

Definition 5.1. ([10]) Let (A, [-,-],a) be a Lie algebroid on M and w : F —
M a fibered manifold with base M, i.e. w : F' — M is a surjective submersion
onto M. An infinitesimal action of A on F' is a IR-linear map ac : I'(A) —
I(TF) such that:

(1) for each X € T'(A), ac(X) is projectable to a(X),

(2) the map ac preserves brackets,

(3) the map ac is C>*(M, IR)-linear in the following sense: for each f €
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C>®(M, R) and each X € I'(A),
ac(fX) = (f ow)ac(X).
We extend the above concept as follows:

Definition 5.2. Let (A, ¢) be a Lie algebroid with 1-cocycle over a manifold
M, w : F — M a fibered manifold with base M, i1.e. w : F — M 1is a
surjective submersion onto M, and ac : I'(A) — T'(TF) an infinitesimal

action of A on F'. An infinitesimal action of (A, ¢) on F is a IR-linear map
ac? : ['(A) — I(TF x IR) given, for each X € T'(A), by

ac’(X) = ac(X) + (¢, X).

In the particular case where M is a point and therefore A is a Lie algebra,
we obtain, from Definition 5.2, the notion of infinitesimal action of a Lie
algebra with 1-cocycle on a manifold F', used on the definition of quasi Jacobi
structures, in section 2.3.

If, in the Definition 5.2, ' = M and @w : M — M is the identity, we get
the concept of infinitesimal action of (A, ¢) on the base manifold M that we
have used to characterize the structure induced on the base manifold of a
quasi-Jacobi bialgebroid.
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