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1. Introduction

The notion of quasi-Lie bialgebroid was introduced in [19]. It is a structure
on a pair (A,A∗) of vector bundles, in duality, over a differentiable manifold
M that is defined by a Lie algebroid structure on A∗, a skew-symmetric
bracket on the space of smooth sections of A and a bundle map a : A→ TM ,
satisfying some compatibility conditions. These conditions are expressed in
terms of a section ϕ of

∧3
A∗, which turns to be an obstruction to the Lie

bialgebroid structure on (A,A∗). A quasi-Lie bialgebroid will be denoted
by (A,A∗, ϕ). In the case where A is a Lie algebroid and its dual vector
bundle A∗ is equipped with a skew-symmetric bracket on its space of smooth
sections and a bundle map a∗ : A∗ → TM and the compatibility conditions
are expressed in terms of a section Q of

∧3
A, the triple (A,A∗, Q) is called

a Lie-quasi bialgebroid [9]. When ϕ = 0 and Q = 0, quasi-Lie and Lie-quasi
bialgebroids are just Lie bialgebroids. We note that, while the dual of a
Lie bialgebroid is itself a Lie bialgebroid, the dual of a quasi-Lie bialgebroid
is a Lie-quasi bialgebroid, and conversely [9]. The quasi-Lie and Lie-quasi
bialgebroids are particular cases of proto-bialgebroids [9]. As in the case
of a Lie bialgebroid, the doubles A ⊕ A∗ of a quasi-Lie and of a Lie-quasi
bialgebroid are endowed with a Courant algebroid structure [19], [9].

It was shown in [20] that the theory of quasi-Lie bialgebroids is the natural
framework in which we can treat twisted Poisson manifolds. These struc-
tures were introduced in [21], under the name of Poisson manifolds with a
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closed 3-form background, motivated by problems of string theory [18] and
of topological field theory [8], and since then deserved a lot of interest (see
e.g [9], [11]).

The notion of Jacobi bialgebroid and the equivalent one of generalized Lie
bialgebroid were introduced, respectively, in [3] and [5], in such a way that
a Jacobi manifold has a Jacobi bialgebroid canonically associated and con-
versely. A Jacobi bialgebroid over M is a pair ((A, φ), (A∗,W )) of Lie alge-
broids over M , in duality, endowed with 1-cocycles φ ∈ Γ(A∗) and W ∈ Γ(A)
in their Lie algebroid cohomology complex with trivial coefficients, respec-
tively, that satisfies a compatibility condition. Also, its double (A⊕A∗, φ+W )
is endowed with a Courant-Jacobi algebroid structure [4], [15].

In order to adapt to the framework of Jacobi manifolds the concepts of
twisted Poisson manifold and quasi-Lie bialgebroid, we have recently intro-
duced in [16] the notions of twisted Jacobi manifold and quasi-Jacobi bialge-
broid. The purpose of the present paper is to develop the theory of quasi-
Jacobi bialgebroids, as well as of its dual concept of Jacobi-quasi bialgebroids,
and to establish a very close relationship between quasi-Jacobi and quasi-Lie
bialgebroids.

The paper contains four sections, besides the Introduction, and one Ap-
pendix (section 5). In section 2 we recall the definition of quasi-Jacobi bial-
gebroid, we present some basic results established in [16], we develop the
examples of quasi-Jacobi and Jacobi-quasi bialgebroids associated to twisted
Jacobi manifolds and to quasi Jacobi manifolds, and, finally, we study the
triangular quasi-Jacobi bialgebroids. Section 3 is devoted to the study of
the structures induced on the base manifolds of quasi-Jacobi and Jacobi-
quasi bialgebroids. Several examples are presented. In section 4 we establish
an one to one correspondence between quasi-Jacobi bialgebroids structures
((A, φ), (A∗,W ), ϕ) over a manifold M and quasi-Lie bialgebroids structures
(Ã, Ã∗, ϕ̃) over M̃ = M × IR. Also, we prove that the structure induced on
M̃ = M × IR by (Ã, Ã∗, ϕ̃) is the ”quasi Poissonization” of the structure
induced on M by ((A, φ), (A∗,W ), ϕ). The dual version of these results is
also presented. Finally, in the Appendix, we define the concept of action of a
Lie algebroid with 1-cocycle on a differentiable manifold that is used in this
paper.

Notation: If (A, φ) is a Lie algebroid with 1-cocycle φ, we denote by dφ

the differential operator d of A modified by φ, i.e., dφα = dα + φ ∧ α, for
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any α ∈ Γ(
∧k

A∗). Moreover, we denote by δ the usual de Rham differ-
ential operator on a manifold M and by d the differential operator of the
Lie algebroid TM × IR, d(α, β) = (δα,−δβ), for (α, β) ∈ Γ(

∧k(T ∗M ×

IR)) ≡ Γ(
∧k

T ∗M) × Γ(
∧k−1

T ∗M). We also consider the identification

Γ(
∧k(TM × IR)) ≡ Γ(

∧k
TM) × Γ(

∧k−1
TM). For the Schouten bracket

and the interior product of a form with a multi-vector field, we use the con-
vention of sign indicated by Koszul [12].

2. Quasi-Jacobi bialgebroids and Jacobi-quasi bialgebroids

Let ((A, φ), (A∗,W )) be a pair of dual vector bundles over a differentiable
manifold M , each one endowed with a 1-form φ and W , respectively, and ϕ

a 3-form of A.

Definition 2.1. A quasi-Jacobi bialgebroid structure on ((A, φ), (A∗,W ), ϕ)
consists of a Lie algebroid structure with 1-cocycle ([·, ·]∗, a∗,W ) on A∗, a
bundle map a : A → TM and a skew-symmetric operation [·, ·] on Γ(A) sat-
isfying, for all X, Y, Z ∈ Γ(A) and f ∈ C∞(M, IR), the following conditions:

1) [X, fY ] = f [X, Y ] + (a(X)f)Y ;
2) a([X, Y ]) = [a(X), a(Y )] − a∗(ϕ(X, Y, ·));
3) [[X, Y ], Z] + c.p. = −dW∗ (ϕ(X, Y, Z)) − ((iϕ(X,Y,·)d

W
∗ Z) + c.p.);

4) dφ−ϕ(W, ·, ·) = 0, where d is the quasi-differential operator on Γ(
∧
A∗)

determined by the structure ([·, ·], a) on A;

5) dφϕ = 0, where dφ is given, for any β ∈ Γ(
∧k

A∗), by dφ(β) = dβ +
φ ∧ β;

6) dW∗ [P,Q]φ = [dW∗ P,Q]φ + (−1)p+1[P, dW∗ Q]φ, with P ∈ Γ(
∧p

A) and
Q ∈ Γ(

∧
A).

As in the case of quasi-Lie and Lie-quasi bialgebroids, by interchanging the
roles of (A, φ) and (A∗,W ) in the above definition, we obtain the notion of
Jacobi-quasi bialgebroid over a differentiable manifold M .

Definition 2.2. A Jacobi-quasi bialgebroid structure on ((A, φ), (A∗,W ), Q),
A and A∗ being dual vector bundles over a differentiable manifold M and Q a
section of

∧3
A, consists of a Lie algebroid structure with 1-cocycle ([·, ·], a, φ)

on A, a bundle map a∗ : A∗ → TM , a skew-symmetric operation [·, ·]∗ on
Γ(A∗) and a section W ∈ Γ(A), satisfying the conditions 1)-6) of Definition
2.1 in their dual versions.

Hence, we can easily conclude:
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Proposition 2.3. If ((A, φ), (A∗,W ), ϕ) is a quasi-Jacobi bialgebroid over a
differentiable manifold M , then ((A∗,W ), (A, φ), ϕ) is a Jacobi-quasi bialge-
broid over M , and conversely.

In the case where both 1-cocycles φ and W are zero, we recover, from
Definitions 2.1 and 2.2, the notions of quasi-Lie and Lie-quasi bialgebroid,
respectively. On the other hand, if ϕ = 0 in Defintion 2.1 (resp. Q = 0
in Definition 2.2), then ((A, φ), (A∗,W ), 0) ≡ ((A, φ), (A∗,W )) is a Jacobi
bialgebroid over M .

Remark 2.4. In [16], we proved that the double of a quasi-Jacobi bialgebroid
is a Courant-Jacobi algebroid ([4], [15]). By a similar computation, we may
conclude that the double of a Jacobi-quasi bialgebroid is also a Courant-
Jacobi algebroid.

The rest of this section is devoted to some important examples of quasi-
Jacobi and Jacobi-quasi bialgebroids.

2.1. Quasi-Jacobi and Jacobi-quasi bialgebras. A quasi-Jacobi bialge-
bra is a quasi-Jacobi bialgebroid over a point, that is a triple ((G, φ), (G∗,W ), ϕ),
where (G∗, [·, ·]∗,W ) is a real Lie algebra of finite dimension with 1-cocycle
W ∈ G in its Chevalley-Eilenberg cohomology, (G, φ) is the dual space of G∗

endowed with a bilinear skew-symmetric bracket [·, ·] and an element φ ∈ G∗

and ϕ ∈
∧3 G∗, such that conditions 3)-6) of Definition 2.1 are satisfied.

By dualizing the above notion, we get a Jacobi-quasi bialgebra, that is a
Jacobi-quasi bialgebroid over a point.

In the particular case where ϕ = 0, we recover the concept of Jacobi
bialgebra [5]. When φ = 0 and W = 0, we recover the notion of quasi-Lie
bialgebra due to Drinfeld [2].

We postpone the study of quasi-Jacobi bialgebras to a future paper, in
preparation. We believe that they can be considered as the infinitesimal
invariants of Lie groups endowed with a certain type of twisted Jacobi struc-
tures that can be constructed from the solutions of a twisted Yang-Baxter
equation.

2.2. The quasi-Jacobi and the Jacobi-quasi bialgebroids of a twisted

Jacobi manifold. We recall that a twisted Jacobi manifold [16] is a differ-
entiable manifold M equipped with a section (Λ, E) of

∧2(TM × IR) and a
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2-form ω such that

1

2
[(Λ, E), (Λ, E)](0,1) = (Λ, E)#(δω, ω), ∗ (1)

where [·, ·](0,1) denotes the Schouten bracket of the Lie algebroid (TM ×
IR, [·, ·], π) modified by the 1-cocycle (0, 1), π : TM × IR → TM is the
projection on the first factor and (Λ, E)# is the natural extension of the
homomorphism of C∞(M, IR)-modules (Λ, E)# : Γ(T ∗M × IR) → Γ(TM ×
IR), (Λ, E)#(α, f) = (Λ#(α) + fE,−〈α,E〉), (α, f) ∈ Γ(T ∗M × IR), to a

homomorphism from
∧k(T ∗M × IR) to

∧k(TM × IR), k ∈ IN, given, for all

f ∈ C∞(M, IR), by (Λ, E)#(f) = f , and, for any (η, ξ) ∈ Γ(
∧k(T ∗M × IR))

and (α1, f1), . . . , (αk, fk) ∈ Γ(T ∗M × IR), by

(Λ, E)#(η, ξ)((α1, f1), . . . , (αk, fk))

= (−1)k(η, ξ)((Λ, E)#(α1, f1), · · · , (Λ, E)#(αk, fk)).

In [16], we presented several examples of twisted Jacobi manifolds such
as twisted exact Poisson manifolds and twisted locally conformal symplectic
manifolds. In a very recent Note [17], where we discuss the characteristic
foliation of a twisted Jacobi manifold, we introduced the notion of twisted
contact Jacobi manifold which produces another example of twisted Jacobi
manifold. Next, we recall this last example and present a new one.

Examples 2.5.

1) Twisted contact Jacobi manifolds: A twisted contact Jacobi manifold is
a (2n + 1)-dimensional differentiable manifold M equipped with a 1-form ϑ

and a 2-form ω such that ϑ ∧ (δϑ+ ω)n 6= 0, everywhere in M . We consider
on M the vector field E, given by

iEϑ = 1 and iE(δϑ+ ω) = 0,

and the bivector field Λ whose associated morphism Λ# : Γ(T ∗M) → Γ(TM)
is defined, for any α ∈ Γ(T ∗M), by

Λ#(ϑ) = 0 and iΛ#(α)(δϑ+ ω) = −(α− (iEα)ϑ).

Then, the triple (M, (Λ, E), ω) is a twisted Jacobi manifold.

∗Since, for any (ϕ, ω) ∈ Γ(
∧3(T ∗M × IR)), d(0,1)(ϕ, ω) = (δϕ, ϕ− δω) and d(0,1)(ϕ, ω) = (0, 0) ⇔

ϕ = δω, equation (1) means that 1
2 [(Λ, E), (Λ, E)](0,1) is the image by (Λ, E)# of a d(0,1)-closed

3-form of TM × IR.



6 J. M. NUNES DA COSTA AND F. PETALIDOU

2) Twisted conformal Jacobi structures: Let (M, (Λ, E), ω) be a twisted Ja-
cobi manifold and f a function on M that never vanishes. We can define
a new twisted Jacobi structure ((Λf , Ef), ωf) on M , which is said to be
f -conformal to ((Λ, E), ω), by setting

Λf = fΛ ; Ef = Λ#(δf) + fE ; ωf =
1

f
ω.

In the sequel, let (M, (Λ, E), ω) be a twisted Jacobi manifold and (T ∗M ×
IR, [·, ·]ω(Λ,E), π◦(Λ, E)#, (−E, 0)) its canonically associated Lie algebroid with

1-cocycle, [16]. The Lie bracket [·, ·]ω(Λ,E) on Γ(T ∗M × IR) is given, for all

(α, f), (β, g) ∈ Γ(T ∗M × IR), by

[(α, f), (β, g)]ω(Λ,E) = [(α, f), (β, g)](Λ,E)

+ (δω, ω)((Λ, E)#(α, f), (Λ, E)#(β, g), ·),

where [·, ·](Λ,E) is the usual bracket on Γ(T ∗M × IR) associated to a section

(Λ, E) of
∧2(TM × IR) ([7], [5]):

[(α, f), (β, g)](Λ,E) = L
(0,1)

(Λ,E)#(α,f)
(β, g) − L

(0,1)

(Λ,E)#(β,g)
(α, f)

− d(0,1)((Λ, E)((α, f), (β, g))). (2)

We consider, on the vector bundle TM×IR → IR, the Lie algebroid structure
overM with 1-cocycle ([·, ·], π, (0, 1)) and also a new bracket [·, ·]′ on the space
of its smooth sections given, for all (X, f), (Y, g) ∈ Γ(TM × IR), by

[(X, f), (Y, g)]′ = [(X, f), (Y, g)] − (Λ, E)#((δω, ω)((X, f), (Y, g), ·)).

We have shown in [16]:

Theorem 2.6. The triple ((TM × IR, [·, ·]′, π, (0, 1)), (T ∗M × IR, [·, ·]ω(Λ,E), π ◦

(Λ, E)#, (−E, 0)), (δω, ω)) is a quasi-Jacobi bialgebroid over M .

Furthermore, we have:

Theorem 2.7. The triple ((TM × IR, [·, ·], π, (0, 1)), (T ∗M × IR, [·, ·](Λ,E), π ◦

(Λ, E)#, (−E, 0)), (Λ, E)#(δω, ω)) is a Jacobi-quasi bialgebroid over M .

Proof : It suffices to check that all conditions of Definition 2.2 are satisfied.
Condition 1) can be checked directly, using the definition (2) of the bracket
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[·, ·](Λ,E). For 2), we take into account that ((Λ, E), ω) is a twisted Jacobi
structure, hence (1) holds, and we apply the general formula

(Λ, E)#([(α, f), (β, g)](Λ,E)) = [(Λ, E)#(α, f), (Λ, E)#(β, g)]

−
1

2
[(Λ, E), (Λ, E)](0,1)((α, f), (β, g), ·).

By projection, we obtain 2). Condition 3) can be checked directly, after a
long computation. In order to prove 4), we remark that the quasi-differential
operator d∗ determined by ([·, ·](Λ,E), π ◦ (Λ, E)#) is given [5], for all (R, S) ∈

Γ(
∧k(TM × IR)), by

d∗(R, S) = ([Λ, R] + kE ∧R + Λ ∧ S,−[Λ, R] + (1 − k)E ∧ S + [E,R]).

So, d∗(−E, 0) = ([E,Λ], 0), and since (M, (Λ, E), ω) is a twisted Jacobi man-
ifold, we may write (see Proposition 3.1 of [16])

d∗(−E, 0) = ((Λ# ⊗ 1)(δω)(E) − (((Λ# ⊗ 1)(ω)(E)) ∧ E), 0)

= ((Λ, E)#(δω, ω))((0, 1), ·, ·),

where (Λ#⊗1)(ω)(E) is given, for any 1-form α onM , by (Λ#⊗1)(ω)(E)(α) =

ω(Λ#(α), E). On the other hand, since d
(−E,0)
∗ (R, S) = [(Λ, E), (R, S)](0,1),

we have

d(−E,0)
∗ ((Λ, E)#(δω, ω)) = [(Λ, E), (Λ, E)#(δω, ω)](0,1)

=
1

2
[(Λ, E), [(Λ, E), (Λ, E)](0,1)](0,1) = 0,

whence we get condition 5). Finally, 6) can be established, as in the proof of
Theorem 8.2 in [16], by a straightforward but long computation.

Remark 2.8. In the case of twisted Poisson manifolds the above results were
treated in [20] and [9].

2.3. The Jacobi-quasi bialgebroid of a quasi Jacobi manifold. Let
(G, [·, ·]) be a Lie algebra, φ a 1-cocycle in its Chevalley-Eilenberg cohomology
and (·, ·) a nondegenerate symmetric bilinear form on G. We denote by
ψ the canonical 3-form on G defined by ψ(X, Y, Z) = 1

2(X, [Y, Z]), for all

X, Y, Z ∈ G, and by Qψ ∈
∧3 G its dual trivector that is given, for all

µ, ν, ξ ∈ G∗, by
Qψ(µ, ν, ξ) = ψ(Xµ, Xν, Xξ),

where Xµ, Xν, Xξ are, respectively, dual to µ, ν, ξ via (·, ·).
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A (G, φ)-manifold M is a differentiable manifold on which (G, φ) acts infin-
itesimally by aφ : G → TM × IR, aφ(X) = a(X) + 〈φ,X〉, for all X ∈ G (see
Appendix). We keep the same notation aφ for the induced maps on exterior
algebras.

A natural generalization of the notion of quasi Poisson manifold, given
in [1], is the concept of (G, φ)-quasi Jacobi manifold, that we introduce as
follows.

Definition 2.9. A (G, φ)-quasi Jacobi manifold is a (G, φ)-manifold M equip-
ped with a section (Λ, E) ∈ Γ(

∧2(TM × IR)) such that

1

2
[(Λ, E), (Λ, E)](0,1) = aφ(Qψ).

Theorem 2.10. Let (M,Λ, E) be a (G, φ)-quasi Jacobi manifold. Then,
((TM × IR, [·, ·], π, (0, 1)), (T ∗M × IR, [·, ·](Λ,E), π ◦ (Λ, E)#, (−E, 0)), aφ(Qψ))
is a Jacobi-quasi bialgebroid over M .

Proof : We can check, without any difficulty, that all conditions of Defini-
tion 2.2 are satisfied (see also the proof of Theorem 2.7). Only, in order to
establish 4), we note that

d∗(−E, 0) = ([E,Λ], 0) =
1

2
[(Λ, E), (Λ, E)](0,1)((0, 1), ·, ·)

= aφ(Qψ)((0, 1), ·, ·).

Remark 2.11. In the case where M is a G-manifold equipped with a quasi
Poisson structure, i.e a bivector field Λ on M such that [Λ,Λ] = 2a(Qψ), a
similar result holds: The triple ((TM, [·, ·], id), (T ∗M, [·, ·]Λ,Λ

#), a(Qψ)) is a
Lie-quasi bialgebroid over M , where [·, ·]Λ is the Koszul bracket associated
to Λ.

2.4. Triangular quasi-Jacobi and Jacobi-quasi bialgebroids. Let
(A, [·, ·], a, φ) be a Lie algebroid with 1-cocycle over a differentiable manifold
M , Π a section of

∧2
A and Q a trivector on A such that

1

2
[Π,Π]φ = Q.

We shall discuss what happens on the dual vector bundle A∗ of A when we
consider the vector bundle map a∗ : A∗ → TM , a∗ = a ◦ Π#, Π# : A∗ → A
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being the bundle map associated to Π, and the Koszul bracket [·, ·]Π on the
space Γ(A∗) of its smooth sections given, for all α, β ∈ Γ(A∗), by

[α, β]Π = Lφ
Π#(α)

β − Lφ
Π#(β)

α− dφ(Π(α, β)). (3)

Let us set W = −Π#(φ). Taking into account that, for all α, β, γ ∈ Γ(A∗),

[[α, β]Π, γ]Π + c.p. = −dφ(Q(α, β, γ)) − ((iQ(α,β,·)d
φγ) + c.p),

we can directly prove that

Proposition 2.12. The triple ((A, [·, ·], a, φ), (A∗, [·, ·]Π, a∗,W ), Q) is a Jacobi-
quasi bialgebroid over M .

Respecting the tradition, we shall call to the Jacobi-quasi bialgebroid con-
structed above, a triangular Jacobi-quasi bialgebroid. Clearly, the Lie-quasi
bialgebroid associated to a twisted Poisson manifold [20] and the Jacobi-
quasi bialgebroid associated to a twisted Jacobi manifold (see Theorem 2.7)
are special cases of triangular Jacobi-quasi bialgebroids. Another important
type of triangular quasi-Jacobi bialgebroid is the triangular quasi-Jacobi bial-
gebra, where Π is a solution of a Yang-Baxter’s type equation.

Now, we consider the particular case where Q is the image by Π# of a
dφ-closed 3-form ϕ of A, i.e.

1

2
[Π,Π]φ = Π#(ϕ), (4)

and the spaces of smooth sections of A∗ and A are equipped, respectively,
with the brackets

[α, β]ϕΠ = [α, β]Π + ϕ(Π#(α),Π#(β), ·), for all α, β ∈ Γ(A∗),

[·, ·]Π being the Koszul bracket (3), and

[X, Y ]′ = [X, Y ] − Π#(ϕ(X, Y, ·)), for all X, Y ∈ Γ(A).

Under the above assumptions, by a straightforward calculation, we get:

Proposition 2.13. The vector bundle A∗ → M endowed with the structure
([·, ·]ϕΠ, a∗) is a Lie algebroid over M with 1-cocycle W = −Π#(φ).

Also, we have:

Theorem 2.14. The triple ((A, [·, ·]′, a, φ), (A∗, [·, ·]ϕΠ, a∗,W ), ϕ) is a triangu-
lar quasi-Jacobi bialgebroid over M .
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Proof : The proof is analogous to that of Theorem 8.2 in [16] and so it is
omitted.

Remark 2.15. Obviously, if A is TM × IR equipped with the usual Lie alge-
broid structure with 1-cocycle, ([·, ·], π, (0, 1)), and Π = (Λ, E) ∈ Γ(

∧2(TM×
IR)) satisfies (4), then the manifoldM is endowed with a twisted Jacobi struc-
ture. The Lie algebroid structure on A∗ = T ∗M × IR given by Proposition
2.13, is the Lie algebroid structure canonically associated with the twisted
Jacobi structure on M .

3. The structure induced on the base manifold of a quasi-

Jacobi bialgebroid

In this section we will investigate the structure induced on the base man-
ifold of a quasi-Jacobi bialgebroid. Similar results hold for a Jacobi-quasi
bialgebroid.

Let ((A, φ), (A∗,W ), ϕ) be a quasi-Jacobi bialgebroid over M . In [16],
we have already considered the bracket {·, ·} on C∞(M, IR) defined, for all
f, g ∈ C∞(M, IR), by

{f, g} = 〈dφf, dW∗ g〉. (5)

We have proved that it is IR-bilinear, skew-symmetric and a first order differ-
ential operator on each argument [16]. For the quasi differential operator d on
Γ(
∧
A∗) determined by (a, [·, ·]), we have that it is a derivation with respect

to the usual product of functions. Therefore, the map (f, g) 7→ 〈df, d∗g〉 is
a derivation on each argument and so, there exists a bivector field Λ on M

such that, for all f, g ∈ C∞(M, IR),

Λ(δf, δg) = 〈df, d∗g〉 = −〈dg, d∗f〉.

If E is the vector field a∗(φ) = −a(W ) on M then, from (5) and because
〈φ,W 〉 = 0 holds [16], we get

{f, g} = 〈d(0,1)g, (Λ, E)#(d(0,1)f)〉.† (6)

Since, for all f ∈ C∞(M, IR), dφf = (aφ)∗(d(0,1)f) and dW∗ f = (aW∗ )∗(d(0,1)f)
[16], where (aφ)∗ and (aW∗ )∗ denote, respectively, the transpose of aφ and aW∗ ,
we obtain

(Λ, E)# = −aφ ◦ (aW∗ )∗ = aW∗ ◦ (aφ)∗. (7)

†We note that the contraction between sections of TM × IR and T ∗M × IR is given, for any
(α, f) ∈ Γ(T ∗M × IR) and (X, g) ∈ Γ(TM × IR), by 〈(α, f), (X, g)〉 = 〈α,X〉 + fg.
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It is well known ([13], [5]) that any bracket of type (6) satisfies the following
relation:

{f, {g, h}} + c.p. =
1

2
[(Λ, E), (Λ, E)](0,1)(d(0,1)f, d(0,1)g, d(0,1)h). (8)

Therefore, for the bracket defined by (5), in general, the Jacobi identity does
not hold.

Proposition 3.1. Let ((A, φ), (A∗,W ), ϕ) be a quasi-Jacobi bialgebroid over
M . Then, the bracket (5) satisfies, for all f, g, h ∈ C∞(M, IR), the following
identity:

{f, {g, h}} + c.p. = aW∗ (ϕ)(d(0,1)f, d(0,1)g, d(0,1)h). (9)

In (9), aW∗ denotes the natural extension of aW∗ : Γ(A∗) → Γ(TM × IR) to a
bundle map from Γ(

∧3
A∗) to Γ(

∧3(TM × IR)).

Proof : Let f, g and h be any three functions on C∞(M, IR). Since dW∗ {f, g} =
[dW∗ g, d

W
∗ f ] (see [16]), we compute

{h, {f, g}} = 〈dφh, [dW∗ g, d
W
∗ f ]〉 = 〈d(0,1)h, aφ[(aW∗ )∗(d(0,1)g), (aW∗ )∗(d(0,1)f)]〉

= 〈d(0,1)h, [aφ ◦ (aW∗ )∗(d(0,1)g), aφ ◦ (aW∗ )∗(d(0,1)f)] − aW∗ (ϕ(dW∗ g, d
W
∗ f, ·))〉

= 〈d(0,1)h, [−(Λ, E)#(d(0,1)g),−(Λ, E)#(d(0,1)f)]〉 − ϕ(dW∗ g, d
W
∗ f, d

W
∗ h)

= 〈d(0,1)h, (Λ, E)#(d(0,1){g, f}) +
1

2
[(Λ, E), (Λ, E)](0,1)(d(0,1)g, d(0,1)f, ·)〉

+ϕ(dW∗ f, d
W
∗ g, d

W
∗ h)

= {{g, f}, h} −
1

2
[(Λ, E), (Λ, E)](0,1)(d(0,1)f, d(0,1)g, d(0,1)h)

+aW∗ (ϕ)(d(0,1)f, d(0,1)g, d(0,1)h).

Consequently,

1

2
[(Λ, E), (Λ, E)](0,1)(d(0,1)f, d(0,1)g, d(0,1)h) = aW∗ (ϕ)(d(0,1)f, d(0,1)g, d(0,1)h).

(10)
Hence, from (8) and (10), we obtain (9).

Looking at equation (10), we remark that the obstruction for (M,Λ, E) to
be a Jacobi manifold, i.e. to have [(Λ, E), (Λ, E)](0,1) = (0, 0), is the image by
aW∗ of the element ϕ in Γ(

∧3
A∗). This obstruction can also be viewed as the

image of ϕ under the infinitesimal action of the Lie algebroid with 1-cocycle
(A∗,W ) on M (see Appendix). Thus, inspired by the analogous terms of
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quasi Poisson G-manifold ([1], [9]) and of (G, φ)-quasi Jacobi manifold (see
Section 2.3), we say that the pair (Λ, E) defines on M a (A∗,W )-quasi Jacobi
structure.

Thus, we have proved:

Theorem 3.2. Let ((A, φ), (A∗,W ), ϕ) be a quasi-Jacobi bialgebroid over M .
Then, the bracket {·, ·} : C∞(M, IR) × C∞(M, IR) → C∞(M, IR) given by

{f, g} = 〈dφf, dW∗ g〉, for f, g ∈ C∞(M, IR),

defines a (A∗,W )-quasi Jacobi structure on M .

Remark 3.3. In the case where ((A, φ), (A∗,W ), Q) is a Jacobi-quasi bial-
gebroid over M , then, we can easily prove that the Jacobi identity of the
bracket defined by (5) is violated by the image of Q under aφ. For this
reason, we shall call to the structure (Λ, E) induced on M , an (A, φ)-quasi
Jacobi structure. We note that, for the proof of this result, we use the relation
[dφf, dφg]∗ = dφ{f, g}, f, g ∈ C∞(M, IR), which leads to

(Λ, E)# = aφ ◦ (aW∗ )∗ = −aW∗ ◦ (aφ)∗. (11)

Examples 3.4.

1) A∗-Quasi Poisson structures: If ((A, φ), (A∗,W ), ϕ) is a quasi-Lie bialge-
broid over M , i.e. both 1-cocycles φ and W are zero, Theorem 3.2 establishes
the existence of a structure on M , defined by the bracket

{f, g} = 〈df, d∗g〉, f, g ∈ C∞(M, IR),

on C∞(M, IR), which is associated to a bivector filed Λ on M satisfying
[Λ,Λ] = 2a∗(ϕ). In our terminology, Λ endows M with a A∗-quasi Pois-
son structure. We remark that this result was obtained in [6] by different
techniques.

2) Jacobi structures: When ϕ = 0, i.e. ((A, φ), (A∗,W )) is a Jacobi bialge-
broid over M , the structure (Λ, E) on M determined by Theorem 3.2 is a
Jacobi structure, and we recover the well known result of [5].

3) Twisted Jacobi structures: When ϕ is the image of an element (ϕM , ωM) ∈
Γ(
∧3(T ∗M×IR)) by the transpose map (aφ)∗ : Γ(

∧3(T ∗M×IR)) → Γ(
∧3

A∗)
of aφ, i.e. ϕ = (aφ)∗(ϕM , ωM), then,

1

2
[(Λ, E), (Λ, E)](0,1) = aW∗ (ϕ) = aW∗ ((aφ)∗(ϕM , ωM))

(7)
= (Λ, E)#(ϕM , ωM).
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Also, we have

dφ((aφ)∗(ϕM , ωM)︸ ︷︷ ︸
=ϕ

) = 0 ⇔ (aφ)∗(d(0,1)(ϕM , ωM)) = 0,

which means that (ϕM , ωM) is d(0,1)-closed on the distribution Im(aφ). This
distribution is not, in general, involutive due to condition 2) of Definition 2.1.
However, when Im(aφ) is involutive, as in the case where aφ is surjective,
((Λ, E), ωM) defines a twisted Jacobi structure on the leaves of Im(aφ).

4) The case of the quasi-Jacobi bialgebroid associated to a twisted Jacobi
manifold: Let (M, (Λ1, E1), ω) be a twisted Jacobi manifold and let ((TM ×
IR, [·, ·]′, π, (0, 1)), (T ∗M×IR, [·, ·]ω(Λ1,E1)

, π◦(Λ1, E1)
#, (−E1, 0)), (δω, ω)) be its

associated quasi-Jacobi bialgebroid. Then, the (T ∗M×IR, (−E1, 0))-quasi Ja-
cobi structure induced on M coincides with the initial structure (Λ1, E1). In
fact, for any f, g ∈ C∞(M, IR) and taking into account that d′(0,1)f = d(0,1)f ,
where d′ is the quasi-differential of TM × IR determined by the structure
([·, ·]′, π), and that (dω∗ )

(−E1,0)g = −(Λ1, E1)
#(d(0,1)g), we have

{f, g} = 〈d′(0,1)f, (dω∗ )
(−E1,0)g〉 = 〈d(0,1)f,−(Λ1, E1)

#(d(0,1)g)〉 = {f, g}1,

where {·, ·}1 denotes the bracket associated to (Λ1, E1).
Moreover, if we consider the Jacobi-quasi bialgebroid ((TM × IR, [·, ·], π,

(0, 1)), (T ∗M×IR, [·, ·](Λ1,E1), π◦(Λ1, E1)
#, (−E1, 0)), (Λ1, E1)

#(δω, ω)) associ-
ated to the twisted Jacobi manifold (M, (Λ1, E1), ω), we get that the (TM ×
IR, (0, 1))-quasi Jacobi structure (Λ, E) induced on M is the opposite of
(Λ1, E1). It suffices to remark that

(Λ, E)# (11)
= π(0,1) ◦ ((π ◦ (Λ1, E1)

#)(−E1,0))∗

= π(0,1) ◦ ((Λ1, E1)
#)∗ ◦ (π(0,1))∗ = −(Λ1, E1)

#. (12)

5) The induced structure on a quasi Jacobi manifold: We consider the Jacobi-
quasi bialgebroid

((TM×IR, [·, ·], π, (0, 1)), (T ∗M×IR, [·, ·](Λ1,E1), π◦(Λ1, E1)
#, (−E1, 0)), aφ(Qψ))

associated to a (G, φ)-quasi Jacobi manifold (M,Λ1, E1). Then, repeat-
ing the computation (12), we conclude that, as in the previous case, the
(TM × IR, (0, 1))-quasi Jacobi structure (Λ, E) induced on M is the opposite
of (Λ1, E1).
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6) The case of a triangular quasi-Jacobi bialgebroid: If we consider a tri-
angular quasi-Jacobi bialgebroid over M of type ((A, [·, ·]′, a, φ), (A∗, [·, ·]ϕΠ,
a∗,W ), ϕ), presented in Theorem 2.14, then, for all f ∈ C∞(M, IR),

dW∗ f = −Π#(dφf) = −(Π# ◦ (aφ)∗)(d(0,1)f).

So, the bracket (5) in C∞(M, IR) is given by

{f, g} = 〈dφf, dW∗ g〉 = 〈d(0,1)g, (aφ ◦ Π# ◦ (aφ)∗)d(0,1)f〉.

On the other hand, considering the (A∗,W )-quasi Jacobi structure (Λ, E) on
M , we also have

{f, g} = 〈d(0,1)g, (Λ, E)#(d(0,1)f)〉.

Hence,

(Λ, E)# = aφ ◦ Π# ◦ (aφ)∗,

which means that (Λ, E) is the image by aφ of Π and that aφ is a type of
“twisted Jacobi morphism” between (A, φ,Π) and (TM × IR, (0, 1), (Λ, E)).

4. Quasi-Lie bialgebroids associated to quasi-Jacobi bial-

gebroids

Given a Lie algebroid (A, [·, ·], a) over M , we can endow the vector bundle
Ã = A× IR →M × IR with a Lie algebroid structure over M × IR as follows.
The sections of Ã can be identified with the t-dependent sections of A, t being
the canonical coordinate on IR, i.e., for any X̃ ∈ Γ(Ã) and (x, t) ∈ M × IR,
X̃(x, t) = X̃t(x), where X̃t ∈ Γ(A). This identification induces, in a natural
way, a Lie bracket on Γ(Ã), also denoted by [·, ·]:

[X̃, Ỹ ](x, t) = [X̃t, Ỹt](x), X̃, Ỹ ∈ Γ(Ã), (x, t) ∈M × IR,

and a bundle map, also denoted by a, a : Ã → T (M × IR) ≡ TM ⊕ T IR
with a(X̃) = a(X̃t), in such a way that (Ã, [·, ·], a) becomes a Lie algebroid
over M × IR. If φ is a 1-cocycle of the Lie algebroid A, we know from [5]
that Ã can be equipped with two other Lie algebroid structures over M × IR,
([·, ·]̃ φ, ãφ) and ([·, ·]̂ φ, âφ) given, for all X̃, Ỹ ∈ Γ(Ã), by

[X̃, Ỹ ]̃ φ = [X̃t, Ỹt] + 〈φ, X̃t〉
∂Ỹ

∂t
− 〈φ, Ỹt〉

∂X̃

∂t
; (13)

ãφ(X̃) = a(X̃t) + 〈φ, X̃〉
∂

∂t
; (14)
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and

[X̃, Ỹ ]̂ φ = e−t

(
[X̃t, Ỹt] + 〈φ, X̃t〉(

∂Ỹ

∂t
− Ỹ ) − 〈φ, Ỹt〉(

∂X̃

∂t
− X̃)

)
; (15)

âφ(X̃) = e−t(ãφ(X̃)). (16)

Let ((A, φ), (A∗,W ), ϕ) be a quasi-Jacobi bialgebroid over M . Then,
(A∗, [·, ·]∗, a∗,W ) is a Lie algebroid with 1-cocycle and we can consider on Ã∗

the Lie algebroid structure ([·, ·]̂ W∗ , âW∗ ) defined by (15) and (16). Although
A is not endowed with a Lie algebroid structure, we still can consider on Γ(Ã)
a bracket [·, ·]̃ φ and a bundle map ãφ given by (13) and (14), respectively.
We set ϕ̃ = etϕ.

Theorem 4.1. Under the above assumptions, we have:

1) The triple ((A, φ), (A∗,W ), ϕ) is a quasi-Jacobi bialgebroid over M if
and only if (Ã, Ã∗, ϕ̃) is a quasi-Lie bialgebroid over M × IR.

2) If Λ̃ is the induced Ã∗-quasi Poisson structure on M×IR, then it is the
“quasi Poissonization” of the induced (A∗,W )-quasi Jacobi structure
(Λ, E) on M .

Proof : 1) Let us suppose that ((A, φ), (A∗,W ), ϕ) is a quasi-Jacobi bialge-
broid over M and let X̃, Ỹ and Z̃ be three arbitrary sections in Γ(Ã) and
f̃ ∈ C∞(M × IR, IR). A straightforward computation gives

[X̃, f̃ Ỹ ]̃ φ = f̃ [X̃, Ỹ ]̃ φ + (ãφ(X̃)f̃)Ỹ . (17)

Moreover,

ãφ([X̃, Ỹ ]̃ φ) = ãφ([X̃t, Ỹt] + 〈φ, X̃〉
∂Ỹ

∂t
− 〈φ, Ỹ 〉

∂X̃

∂t
)

= [a(X̃t), a(Ỹt)] − a∗(ϕ(X̃t, Ỹt, ·)) + 〈φ, [X̃t, Ỹt]〉
∂

∂t

+〈φ, X̃〉

(
a(
∂Ỹ

∂t
) + 〈φ,

∂Ỹ

∂t
〉
∂

∂t

)
− 〈φ, Ỹ 〉

(
a(
∂X̃

∂t
) + 〈φ,

∂X̃

∂t
〉
∂

∂t

)
.

But, since dφ− ϕ(W, ·, ·) = 0,

〈φ, [X̃t, Ỹt]〉 = a(X̃t)〈φ, Ỹt〉 − a(Ỹt)〈φ, X̃t〉 − ϕ(X̃t, Ỹt,W ).
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Also,

âW∗ (ϕ̃(X̃, Ỹ , ·)) = a∗(ϕ(X̃t, Ỹt, ·)) + ϕ(X̃t, Ỹt,W )
∂

∂t
.

Hence, we get

ãφ([X̃, Ỹ ]̃ φ) = [ãφ(X̃), ãφ(Ỹ )] − âW∗ (ϕ̃(X̃, Ỹ , ·)). (18)

On the other hand,

[[X̃, Ỹ ]̃ φ, Z̃ ]̃ φ + c.p. =

(
[[X̃t, Ỹt], Z̃t] − dφ(X̃t, Ỹt)

∂Z̃t

∂t

)
+ c.p.

= −dW∗ (ϕ(X̃t, Ỹt, Z̃t)) −

((
iϕ(X̃t,Ỹt,·)

dW∗ Z̃t + ϕ(W, X̃t, Ỹt)
∂Z̃t

∂t

)
+ c.p.

)

= −d̂ W
∗ (ϕ̃(X̃, Ỹ , Z̃)) −

(
iϕ̃(X̃,Ỹ ,·)d̂

W
∗ Z̃ + c.p.

)
, (19)

where d̂ W
∗ denotes the differential operator of the Lie algebroid (Ã∗, [·, ·]̂ W∗ , âW∗ ).

From dφϕ = 0, we deduce

d̃φϕ̃ = 0, (20)

where d̃φ is the quasi-differential operator determined by the structure ([·, ·]̃ φ, ãφ)
on Ã. Finally, after a very long computation we obtain

d̂ W
∗ [P̃ , Q̃]̃ φ = [d̂ W

∗ P̃ , Q̃]̃ φ + (−1)p+1[P̃ , d̂ W
∗ Q̃]̃ φ, (21)

for P̃ ∈ Γ(
∧p

Ã) and Q̃ ∈ Γ(
∧
Ã). From relations (17) to (21), we conclude

that (Ã, Ã∗, ϕ̃) is a quasi-Lie bialgebroid over M × IR.
Now, let us suppose that (Ã, Ã∗, ϕ̃) is a quasi-Lie bialgebroid over M × IR

and take three sections X, Y and Z of A and f ∈ C∞(M, IR). These sections
can be viewed as sections of Ã that don’t depend on t, as well as the function
f can also be viewed as a function on C∞(M × IR, IR). Condition 1) of
Definition 2.1 is immediate from [X, fY ]̃ φ = f [X, Y ]̃ φ + (ãφ(X)f)Y . The
condition ãφ([X, Y ]̃ φ) = [ãφ(X), ãφ(Y )] − âW∗ (ϕ̃(X, Y, ·)) is equivalent to

a([X, Y ]) + 〈φ, [X, Y ]〉
∂

∂t
= [a(X), a(Y )] − a∗(ϕ(X, Y, ·))

+(a(X)〈φ, Y 〉 − a(Y )〈φ,X〉 + ϕ(X, Y,W ))
∂

∂t
,

which gives conditions 2) and 4) of Definition 2.1. From d̃φϕ̃ = 0 we deduce
dφϕ = 0. Finally, by similar computations, we obtain the two remaining
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conditions that lead to the conclusion that ((A, φ), (A∗,W ), ϕ) is a quasi-
Jacobi bialgebroid over M .

2) Let Λ̃ be the Ã∗-quasi Poisson structure induced by (Ã, Ã∗, ϕ̃) on M × IR.
For all f̃ , g̃ ∈ C∞(M × IR, IR), we have

{f̃ , g̃} = Λ̃(δf̃ , δg̃)

and, on the other hand,

{f̃ , g̃} = 〈d̃φf̃ , d̂W∗ g̃〉 = e−t(〈df̃ , d∗g̃〉 +
∂f̃

∂t
a∗(φ)(g̃) +

∂g̃

∂t
a(W )(f̃)).

If (Λ, E) is the (A∗,W )-quasi Jacobi structure induced by ((A, φ), (A∗,W ), ϕ)
on M , since E = a∗(φ) = −a(W ) and Λ(δf̃ , δg̃) = 〈df̃ , d∗g̃〉, we get that
Λ̃ = e−t(Λ + ∂

∂t
∧ E).

For the case of Jacobi-quasi bialgebroids we can prove a similar result. Let
((A, φ), (A∗,W ), Q) be a Jacobi-quasi bialgebroid over M . We consider on Ã
the Lie algebroid structure ([·, ·]̂ φ, âφ) defined by (15) and (16), on Ã∗ the
structure ([·, ·]̃ W∗ , ãW∗ ) defined by (13) and (14), and we set Q̃ = etQ.

Theorem 4.2. Under the above assumptions, we have:

1) The triple ((A, φ), (A∗,W ), Q) is a Jacobi-quasi bialgebroid over M if
and only if (Ã, Ã∗, Q̃) is a Lie-quasi bialgebroid over M × IR.

2) If Λ̃ is the Ã-quasi Poisson structure induced on M × IR, then it is
the “quasi Poissonization” of the (A, φ)-quasi Jacobi structure (Λ, E)
induced on M .

5. Appendix: Actions of Lie algebroids with 1-cocycles

In this Appendix, we extend the definition of Lie algebroid action [14], [10],
to that of Lie algebroid with 1-cocycle action. We recall

Definition 5.1. ([10]) Let (A, [·, ·], a) be a Lie algebroid on M and ̟ : F →
M a fibered manifold with base M , i.e. ̟ : F →M is a surjective submersion
onto M . An infinitesimal action of A on F is a IR-linear map ac : Γ(A) →
Γ(TF ) such that:
(1) for each X ∈ Γ(A), ac(X) is projectable to a(X),
(2) the map ac preserves brackets,
(3) the map ac is C∞(M, IR)-linear in the following sense: for each f ∈
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C∞(M, IR) and each X ∈ Γ(A),

ac(fX) = (f ◦̟)ac(X).

We extend the above concept as follows:

Definition 5.2. Let (A, φ) be a Lie algebroid with 1-cocycle over a manifold
M , ̟ : F → M a fibered manifold with base M , i.e. ̟ : F → M is a
surjective submersion onto M , and ac : Γ(A) → Γ(TF ) an infinitesimal
action of A on F . An infinitesimal action of (A, φ) on F is a IR-linear map
acφ : Γ(A) → Γ(TF × IR) given, for each X ∈ Γ(A), by

acφ(X) = ac(X) + 〈φ,X〉.

In the particular case where M is a point and therefore A is a Lie algebra,
we obtain, from Definition 5.2, the notion of infinitesimal action of a Lie
algebra with 1-cocycle on a manifold F , used on the definition of quasi Jacobi
structures, in section 2.3.

If, in the Definition 5.2, F = M and ̟ : M → M is the identity, we get
the concept of infinitesimal action of (A, φ) on the base manifold M that we
have used to characterize the structure induced on the base manifold of a
quasi-Jacobi bialgebroid.
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[13] Lichnerowicz, A.: Les variétés de Jacobi et leurs algèbres de Lie associées. J. Math. pures et
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