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1. Introduction

Dynamical systems were first introduced in order to study systems of dif-
ferential equations used to model physical phenomena. When discretizing
both time and space, the physical system becomes a “symbolic” dynamical
system that yields information on the real one. Symbolics dynamics is a very
active area that borrows its methods from various fields such as combina-
torics, algebra, automata theory, probabilities, etc, and has applications in
coding theory, data storage and transmission, linear algebra...

The symbolic dynamical systems or subshifts, are sets of bi-infinite words,
topologically closed and invariant under a shift operation. When trying to
classify these systems, there happens to be a natural notion of equivalence
between them, called conjugacy. Despite a rich litterature on the subject,
the decidability of conjugacy remains wide open, namely for the class of
finite type subshifts, the most studied subclass of sofic subshifts. To try
to cope with this major difficulty, some weaker notions of equivalence of
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subshifts were introduced: see [18, 6]. The shift equivalence has been the most
important of them; it is decidable, although the algorithm is quite intricate.
In this paper, we focus on weak equivalence, defined by Béal and Perrin in [6],
which relies on inverse images of sliding block codes (the morphisms between
subshifts). We deduce an algebraic invariant for the weak equivalence of
sofic subshifts. Moreover, we exhibit a pair of two sofic subshifts for which
that invariant is used to easily prove that they are not weak equivalent,
while various robust invariants fail to detect that they are not conjugate.
The significance of this example is more appreciated once we realize that the
weak equivalence relation really deserves its name, in the sense that there are
very general sufficient conditions for two subshifts to be weak equivalent [6].

We briefly sketch the nature of our algebraic invariant. There is a natural
bijection between subshifts and factorial prolongable languages. The sofic
subshifts are precisely those whose corresponding language is rational. A
well established method of classification of rational languages is by grouping
them in varieties of rational languages. By the well known Eilenberg’s Cor-
respondence Theorem, varieties of languages are in a natural correspondence
with pseudovarieties of finite semigroups. In this way a pseudovariety of finite
semigroups defines naturally a class of sofic subshifts. In [12] it was deter-
mined which of these classes are closed under taking conjugate subshifts. It
was also proved that such classes are closed under shift equivalence. In this
paper we prove they are also closed under weak equivalence. The arguments
used in [12] are based in the equational description of a pseudovariety using
pseudoidentities. These arguments are somewhat heavy and it seems diffi-
cult to adapt them for the weak equivalence case, hence here we use different
approaches.

The paper is organized as follows. Preliminary definitions and results are
made in Section 2. Division between subshifts and weak equivalence are
introduced in Section 3. After a preparatory section about transducers, we
arrive to Section 5, dealing with the perspective of the first author Master’s
Thesis [11] of seeing finite ζ-semigroups (a generalization of ω-semigroups)
as recognition structures for sofic subshifts. From a Theorem of [11] about
how the operation of taking the inverse image of a subshift by a sliding
block is reflected in the corresponding syntactic ζ-semigroups, we deduce a
similar result concerning syntactic semigroups in the usual sense. With this
result, we obtain in Section 6 our algebraic invariant, and using it we list
some important classes of sofic subshifts closed under taking weak equivalent
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subshifts. The dynamic significance of this algebraic invariant is evaluated
in Section 7. The content from Section 6 is recovered in Section 8 with
results about relatively free profinite semigroups, with great proof economy.
This approach complements the one using ζ-semigroups, which demanded a
longer and heavier preparation, but produced more intermediate results, of
a more precise nature. Another advantage of ζ-semigroups is that with a
little additional effort one can use this approach to generalize results about
semigroups to results about ordered semigroups : this is done in Section 9.

As general references for symbolic dynamics see [3, 18]. For semigroup
theory, rational languages and finite automata see [21, 1, 2].

2. Preliminaries

2.1. Subshifts and codes. Let A be an alphabet. All alphabets in this
paper are assumed to be finite. Let AZ be the set of sequences of letters of
A indexed by Z. A factor of an element (xi)i∈Z of AZ is a finite sequence
xkxk+1 · · ·xk+n−1xk+n, denoted by x[k,k+n], where k ∈ Z and n ≥ 0. We

endow AZ with the product topology with respect to the discrete topology of
A. Recall that the topology of AZ is characterized by the fact that a sequence
(x(n))n of elements of AZ converges to x if and only if for every positive integer
k there is pk such that n ≥ pk implies (x(n))[−k,k] = x[−k,k]. Note that AZ is
a compact Hausdorff space. From here on, compact will mean both compact
and Hausdorff.

Denote by Aω̃ (respectively Aω) the set of sequences of letters of A indexed
by the set of negative integers (respectively non-negative integers). The map
ϕ : x 7→ (. . . x−3x−2x−1, x0x1x2 . . .) is an homeomorphism fromAZ toAω̃×Aω.
The sequence ϕ−1(z, t) is usually denoted by z.t. Given an element u of A+,
we denote by uω the element of Aω given by the right-infinite concatenation
uuu . . .. Dually, uω̃ = . . . uuuu. Finally, uζ denotes the element uω̃ ·uω of AZ.
We denote by A<n (respectively A≤n) the set of elements of A∗ with length
less (respectively less or equal) than n.

The shift in AZ is the bijective function σA (or just σ) from AZ to AZ

defined by σA((xi)i∈Z) = (xi+1)i∈Z. A shift dynamical system or subshift of
AZ is a closed subset X of AZ such that σA(X ) ⊆ X and σ−1

A (X ) ⊆ X .
If X is a subshift of AZ then we denote by L(X ) the set of finite factors of

elements of X . There is a subset F of A+ such that L(X ) = A+ \A∗FA∗; a
set F in such conditions is called a set of forbidden words for X . A subshift
is of finite type if it has a finite set of forbidden words. An element x of AZ
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belongs to X if and only if every finite factor of x belongs to L(X ). The
correspondence X 7→ L(X ) is a bijection between the set of subshifts of AZ

and the set of factorial prolongable languages of A+.
A sliding block code (or more briefly, a code) F between the subshifts X of

AZ and Y of BZ is a function F : X → Y for which there are integers k, l ≥ 0
and a function f : Ak+l+1 → B such that F (x) = (f(x[i−k,i+l]))i∈Z. If we can
choose f such that k + l + 1 = n then we say that F has window size n.
We say that f is a block map of F with memory k and anticipation l. The
sliding block code F depends only on the restriction of f to Ak+l+1 ∩ L(X ).

It is well known [16] that a map F : X ⊆ AZ → Y ⊆ BZ between subshifts
is a code if and only if it is a continuous function such that F ◦ σA = σB ◦
F . The identity transformation of a subshift is a code, the composition
of two codes is a code and the inverse of a bijective code is a code. A
bijective code is called a conjugacy. Two subshifts are conjugate if there is
a conjugacy between them. A conjugacy invariant is a property of subshifts
that is preserved for taking conjugate subshifts. See [18] for information
about ordinary conjugacy invariants like the zeta function.

Two codes ϕ1 : X1 → Y1 and ϕ2 : X2 → Y2 are said to be conjugate if there
are conjugacies f : X1 → X2 and g : Y1 → Y2 such that ϕ2 ◦ f = g ◦ ϕ1. We
say that the pair (f, g) is a conjugacy between ϕ1 and ϕ2.

Given an alphabet A and k ≥ 1, consider the alphabet Ak. To avoid
ambiguities, we represent an element w1 . . . wn of (Ak)+ (with wi ∈ Ak) by
〈w1, . . . , wn〉. For k ≥ 0 let Φk be the function from A+ to (Ak+1)∗ defined
by

Φk(a1 . . . an) =

{

1 if n ≤ k,

〈a[1,k+1], a[2,k+2], . . . a[n−k−1,n−1], a[n−k,n]〉 if n > k,

where ai ∈ A and a[i,j] = aiai+1 . . . aj−1aj. For a map f : Ak → B, let f̂ be

the unique monoid homomorphism from (Ak)∗ to B∗ extending f . Let f̄ be

f̂ ◦ Φk−1. Our interest in f̄ relies on the fact that if F : AZ → BZ is a code
with memory k and anticipation l then F (x)[i,j] = f̄(x[i−k,i+l]).

By graph we mean an oriented graph. A labeled graph (G, π) is a pair
such that G is a graph and π is a function mapping edges of G into letters
of an alphabet A. We consider (G, π) as an automaton such that all states
are initial and final, recognizing the words that are labels of paths of G
through the map π. We say that a labeled graph presents the subshift X
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if it recognizes L(X ). A (labeled) graph is essential if all vertices lie in a
bi-infinite path on the graph. A subshift X is sofic if L(X ) is rational. Note
that finite type subshifts are sofic. One can see that X is sofic if and only if
L(X ) is recognized by an essential finite labeled graph. For a finite graph G,
let E be the set of its edges. The subset XG of EZ whose finite factors are
paths of G is a finite type subshift of EZ. Given a subshift Y presented by
a labeled graph (G, π), let π∗ the map from XG to Y that maps a sequence
(ei)i∈Z into (π(ei))i∈Z. Then π∗ is an onto code with window size zero. We
call π∗ the cover associated with (G, π).

A subshift X of AZ is irreducible if for all u, v ∈ L(X ) there is w ∈ A∗

such that uwv ∈ L(X ). A sofic subshift is irreducible if and only if it is
presented by a strongly connected finite labeled graph [15]. We consider now
a stronger property. A subshift X of AZ is mixing if for all u, v ∈ L(X ) there
is an integer N such that for all n ≥ N there is w ∈ A∗ with length n such
that uwv ∈ L(X ). Being irreducible or mixing is a property preserved for
taking images under codes.

A state v of the minimal automaton of L(X ) is a K-state if there is x ∈ X
such that the set of words labeling a path from the initial state to v contains
infinitely many words of the form x−nx−(n−1) . . . x−1, with n ≥ 1. The Krieger
cover of a sofic subshift X is the cover associated with the essential labeled
graph obtained from the minimal automaton of L(X ) by deleting all the
states that are not K-states [19, Section 5]. Krieger proved that two sofic
subshifts are conjugate if and only if their Krieger covers are conjugate [17].
If the sofic subshift X is irreducible then the labeled graph representing its
Krieger cover has a unique terminal strongly connected component which is
an essential labeled graph presenting X [7]. The corresponding cover is the
Fischer cover of X . Two irreducible sofic subshifts are conjugate if and only
if their Fischer covers are conjugate.

2.2. Semigroups. Recall that an element e of a semigroup S is idempotent
if e2 = e. If S is finite then for every s ∈ S the set of the powers sn (with n
positive integer) has a unique idempotent of S.

A semigroup S divides a semigroup T if S is a homomorphic image of
subsemigroup of T . We also say that S is a divisor of T . This situation is
denoted by S ≺ T . A pseudovariety of semigroups is a class of finite semi-
groups closed under taking divisors and finite direct products. The following
classes are pseudovarieties of semigroups:
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(1) the class Com of finite commutative semigroups;
(2) the class Sl of finite commutative idempotent semigroups;
(3) the class N of finite nilpotent semigroups, that is, finite semigroups

with a zero as sole idempotent;
(4) the class Inv of finite semigroups whose idempotents commute;
(5) the class A of finite aperiodic semigroups, that is, finite semigroups

whose subgroups are trivial;
(6) the class Dk of finite semigroups satisfying the identity xy1 · · · yk =

y1 · · · yk;
(7) the class D of finite semigroups whose idempotents are right zeros;

one has D =
⋃

k≥1 Dk;
(8) for every pseudovariety V of semigroups, the class LV of semigroups

whose subsemigroups that are monoids belong to V.

Let L be a language ofA+. The context of a word u of A+ relatively to L is the
set CL(u) = {(x, y) ∈ A∗×A∗ |xuy ∈ L}. The syntactic semigroup of L is the
quotient of A+ by the congruence ≡L defined by u ≡L v ⇔ CL(u) = CL(v).

A language L of A+ is recognized by a semigroup homomorphism ϕ : A+ →
S if there exists a subset I of S such that L = ϕ−1(I). We say that L
is recognized by S if there is a semigroup homomorphism ϕ : A+ → S
recognizing L. The syntactic semigroup of L recognizes L and divides all
semigroups recognizing L. A recognizable or rational language is a language
recognized by a finite semigroup. It is well known that a language L is
rational if and only if L is recognized by a finite automaton, if and only if
its syntactic semigroup is finite. Consider a pseudovariety of semigroups V.
A V-recognizable language of A+ is a language recognized by a semigroup
from V. A language is V-recognizable if and only if its syntactic semigroup
belongs to V.

Let S and T be semigroups. The set ST of maps from T to S, viewed as
a direct product of copies of S, is a semigroup; the product fg between two
elements f and g of ST is defined by the rule fg(t) = f(t)g(t).

For a semigroup T , denote by T 1 the monoid that equals T if T is a monoid,
and if not then T 1 = T ∪ {1} for some extra element 1, with the semigroup
operation of T 1 extending that of T and 1 being the neutral element of T 1.

For this paragraph, see [1, Chapter 10] or [14]. Given semigroups S and

T , let t0 ∈ T 1 and f ∈ ST
1

. Denote by t0f the element of ST
1

given by the
correspondence t 7→ f(tt0). The wreath product of S and T , denoted by S◦T ,
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is the semigroup with underlying set ST
1

× T and the following operation:

(f1, t1) · (f2, t2) = (f1 ·
t1f2, t1 · t2).

The semidirect product of two pseudovarieties V and W, denoted by V ∗ W,
is the class of divisors of semigroups of the form S ◦ T , with S ∈ V and
T ∈ W. The class V ∗ W is also a pseudovariety. The semidirect product of
pseudovarieties is an associative operation. One has D ∗ D ⊆ D, V ∗ D ⊆ LV

and LV = LV ∗ D. Also, LSl = Sl ∗ D.

3. Weak equivalence

Confronted with the difficulty of deciding conjugacy, some other equiva-
lence relations between subshifts were introduced such as the weak equiva-
lence defined by M.-P. Béal and D. Perrin in [6]. Let A,B be two alphabets,
let $ be a symbol that does not belong to B and let B$ = B ∪ {$}. We say
that a subshift X of AZ divides a subshift Y of BZ if there exists a sliding
block code F : AZ → B$

Z such that X = F−1(Y); we also say X is a divisor
of Y , and use the notation X ≺ Y . The division of subshifts is reflexive and
transitive. Two subshifts X and Y are weak equivalent if X ≺ Y and Y ≺ X .

The reason why an extra letter like $ is needed in the definition of division
is that otherwise this notion produces a dependency on the involved alpha-
bets that prevents conjugate subshifts of being weak equivalent. Let us see
an example that illustrates what we are saying. Let A be the three-letter
alphabet A = {a, b, c} and let B = {a, b}. Consider an arbitrary subshift X
of BZ containing aζ and bζ . Let F be any sliding block code from AZ to BZ.
Then F (cζ) ∈ {aζ , bζ}, thus X 6= F−1(X ). Hence, the definition of division
without the extra symbol $ implies that X as a subshift of AZ does not divide
X as a subshift of BZ; therefore, such alternative definition is inadequate. On
the other hand, the definition of division we adopted is adequate for studying
subshifts up to conjugacy, as it is stated in the following theorem. Its proof,
although unpublished, was put forward to us by M.-P. Bal.

Theorem 3.1. Two conjugate subshifts are weak equivalent.

Proof : Before proceeding, first recall that the topology of AZ is generated by
the following metric:

d(x, y) = 2−r(x,y) where:

if x 6= y then r(x, y) = min{n ≥ 0 |x[−n,n] 6= y[−n,n]}, and r(x, x) = 0.
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Let X ⊆ AZ and Y ⊆ BZ be two conjugate subshifts and let G : X → Y
be a conjugacy. There exists an integer k and a block map g : Ak → B
corresponding to G, with memory r and anticipation s. Clearly, we can
extend G into a sliding block code Ĝ : AZ → BZ built on the block map
g. Denote by F(X ) and F(Y) the sets of forbidden words that respectively
define X and Y . For each integer n, let Fn(X ) be the set F(X ) ∩ A≤n, and
denote by Xn the subshift of finite type defined by the set of forbidden words
Fn(X ). Note that X ⊆ Xn.

We claim that there is n such that the restriction of Ĝ to Xn is injective.
Indeed, suppose that for each integer n, there exists a pair (x(n), y(n)) of

distinct elements of Xn such that Ĝ(x(n)) = Ĝ(y(n)). Since the sets Xn are
closed under the shift operation, one can choose x(n) and y(n) such that they
do not have the same letter of index 0. Then d(x(n), y(n)) = 1. Since AZ is
compact, the sequences (x(n))n and (y(n))n admit sub-sequences converging
to elements x and y of AZ, respectively. Even if it means considering sub-
sequences, we may assume that (x(n))n converges to x and y(n) to y. Let en be
the greatest even number less than n. The central factor (x(n))[−en/2,en/2] of

length en+1 belongs to L(X ) since x(n) is in Xn. Therefore, there exists x̃(n) in
X such that d(x̃(n), x(n)) < 2−en/2. Since X is compact, taking subsequences
if necessary, one may suppose that x̃(n) converges to an element x̃ of X . Since
the metric d is continuous, we have

d(x̃, x) = lim
n→+∞

d(x̃(n), x(n)) ≤ lim
n→+∞

2−en/2 = 0,

thus x̃ = x. Hence x ∈ X , and similarly y ∈ X . Since Ĝ is continu-
ous, we have G(x) = G(y). On the other hand, since for every n we have
d(x(n), y(n)) = 1, we also have d(x, y) = 1, thus x 6= y. This is a contradiction
with the hypothesis that G is a conjugacy, which proves the claim.

Now let n0 be such that the restriction of Ĝ to Xn0
is injective. We define

a block map h : Ak → B$ by

{

h(u) = g(u), if u 6∈ Fn0
(X ),

h(u) = $, if u ∈ Fn0
(X ).

Then, define the corresponding sliding block code H : AZ → B$
Z with mem-

ory r and anticipation s. We claim that X = H−1(Y). Clearly, H(X ) =

Ĝ(X ) = Y , thus X ⊆ H−1(Y). Conversely, let x ∈ H−1(Y). Since $ /∈ L(Y),
all factors of x with length n0 do not belong to Fn0

(X ), thus x ∈ Xn0
. Hence

H(x) = Ĝ(x). On the other hand, since Y = Ĝ(X ), there is x′ ∈ X such



A NEW ALGEBRAIC INVARIANT FOR WEAK EQUIVALENCE OF SOFIC SUBSHIFTS 9

that Ĝ(x) = Ĝ(x′). Since the restriction of Ĝ to Xn0
is injective, we have

x = x′. Therefore X = H−1(Y), thus X ≺ Y . By symmetry, we get that X
and Y are weak equivalent.

The properties of beeing mixing or irreducible are not weak equivalence
invariants [6]. On the other hand, all finite type subshifts with a constant
sequence are weak equivalent [6, Proposition 4].

It is important to notice that the relation of division between subshifts
cannot be reduced to a similar relation between the corresponding languages
of finite factors. Let us be more precise. Let X and Y be subshifts of AZ and
BZ, respectively. Write X ⊳Y if there is an integer n and a map f : An → B$

such that L(X ) \ A<n = f̄−1(L(Y)). Then we have the following result:

Proposition 3.2. Let X and Y be the following irreducible sofic subshifts:

c d

a
b

e

b

b c

a

c d

a
b

b

b

b c

a

Then X and Y are conjugate but X ⋪ Y.

Proof : Let A = {a, b, c, d, e} and B = A \ {e}. Consider the block map
h : A→ B that maps e to b and leaves the remaining letters unchanged. Let
H be the code between X and Y having h as block map with memory and
anticipation zero. We prove that H is a conjugacy. It is clearly an onto map.
Suppose it is not one-to-one. Then there are z, t ∈ X such that z0 6= t0 and
H(z) = H(t). Then h(z0) = h(t0), thus {z0, t0} = {b, e}. Suppose z0 = b and
t0 = e. The only word of L(X ) with length four having e as the first letter
is ebcd, thus t[0,3] = ebcd. Then,

H(z) = H(t) ⇒ h̄(z[0,3]) = h̄(t[0,3]) ⇒ h̄(z[0,3]) = bbcd⇒ z[0,3] ∈ {bbcd, becd}.

But {bbcd, becd} ∩ L(X ) = ∅.
Suppose there is n ≥ 1 and f : An → B$ such that L(X ) \ A<n =

f̄−1(L(Y)). Consider the letters α = f̄(abn−1), γ = f̄(bn−1c) and β = f̄(bn).
Then f̄(b2n) = βn+1. Since b2n ∈ L(X ), we have βn+1 ∈ L(Y). This im-
plies β = b.

Let N ≥ n. Then αb = f̄(abn), bγ = f̄(bnc) and f̄(abNc) = αbN−(n−1)γ.
Since abn, bnc ∈ L(X ), we have αb, bγ ∈ L(Y), which implies α ∈ {a, b} and
γ ∈ {b, c}. Then αbiγ ∈ L(Y) for every i ≥ 2, and so abNc ∈ f̄−1(L(Y)) for
every N ≥ n. Since f̄−1(L(Y)) ⊆ L(X ), we reach the absurd conclusion that
there is an odd integer N such that abNc ∈ L(X ).
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4. The transducer of a block map

Consider an alphabet A and a non-negative integer k. Given u ∈ A+ define
tk(u) as follows: if the length of u is less than k then tk(u) = u, otherwise
tk(u) is the unique word v of length k such that u = wv for some w ∈ A∗. The
De Bruijn automaton Tk(A) is the complete deterministic automaton over A
whose states are the words of A≤k and whose action δ : A≤k × A+ → A≤k is
given by δ(w, u) = tk(wu). We shall use the more familiar notation w · u for
δ(w, u), but note that in general w·u is not the same as the concatenationwu.
We will consider also the sub-automaton T̃k(A) built from Tk(A) by deleting
states corresponding to words of A<k. The restriction of δ to A≤k×A≤k gives
to A≤k a semigroup structure. Denote this semigroup by Dk.

Lemma 4.1. The transition semigroups of Tk(A) and T̃k(A) are isomorphic
to Dk.

Proof : We only prove the lemma for T̃k(A), the other case being even more
easy. Let µ be the transition map of T̃k(A). Clearly if |u| ≥ k then µ(u) =
µ(tk(u)). If u ∈ Dk, then the image of µ(u) is the set Ak−|u|u, and if v ∈ A∗

and l ≥ 0 are such that Alv = Ak−|u|u then l = k− |u| and v = u. Therefore
the restriction of µ to Dk is an isomorphism between Dk and T̃k(A).

Note that Dk ∈ Dk and that the idempotents of Dk are the words of
length k.

By a transducer with input alphabet A and output alphabet B we mean
an automaton A over the alphabet A×B. Usually in this context an element
(u, v) of A∗ × B∗ is represented by u/v. If in the transition edges of A we
replace the letter a/b by a (resp. b) the resulting automaton is called the input
automaton of A (resp. output automaton). Consider a map f : Ak → B. In
the De Bruijn automaton Tk−1(A) replace an edge from u to v labeled a by the
pair (a, f̄(ua)). Then the resulting automaton T (f) over the alphabet A×B
is a transducer having Tk−1(A) as input automaton. With the sub-automaton
T̃k−1(A) define in a similar way the transducer T̃ (f). See Figure 1.

Consider a transducer A whose input automaton over the alphabet A has
a complete and deterministic action · of A over its states (for example, the
transducer T (f)). Then, if u ∈ A+ and q is a state of A, we denote by q ∗ u
the label in the output automaton of the unique path p in A from q to q · u;
we say that u and q ∗ u are the input and output label of p, respectively.
For example, given a map f : Ak → B, on the transducer T (f) we have
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1

a

b

aa

ab

ba

bb

a/1

b/1

b/f(aab)

a/f(bba)

a/1

b/1

a/1

b/1

a/f(aba)b/f(bab)

a/f(baa)

b/f(abb)

a/f(aaa)

b/f(bbb)

T̃ (f)T (f)

Figure 1. Transducer of a block map f : A3 → B.

f̄(u) = 1 ∗ u. A function ϕ : A+ → B∗ for which there is some transducer
and some state q such that ϕ(u) = q ∗u for all u ∈ A+ is a called a sequential
function. The following theorem is a particular instance of a general result
about sequential functions [14, Chapter IX, Proposition 1.1].

Theorem 4.2. For alphabets A and B and a positive integer k, consider
a map f : Ak → B. Let Y be a rational language of B+ with syntactic
semigroup S. Then the syntactic semigroup of f̄−1(Y ) divides S ◦ Dk−1.

5. ζ-semigroups

5.1. Motivation and definitions. Let X be a subshift of AZ. For the sake
of conciseness, the syntactic semigroup of L(X ) will be called the syntactic
semigroup of X . When we consider the inverse image by a sliding block
code of a sofic subshift do we have a result similar to Theorem 4.2? In this
section we prove the answer is yes. As a consequence of Proposition 3.2 we
know it is not possible to do an immediate reduction to Theorem 4.2. The
passage from finite sequences to bi-infinite sequences suggests trying a similar
passage at the syntactic semigroup level. This motivates the introduction of
ζ-semigroups, a generalization of ω-semigroups.

We quickly review here basic definitions about ω-semigroups. For an ex-
haustive overview, see [20]. An ω-semigroup is a two-component algebra
S = (S+, Sω) equipped with a binary product on S+, a map S+ × Sω → Sω
called the mixt product, and a map π : Sω+ → Sω called the infinite product,
and such that the following conditions are satisfied:

(1) the set S+ equipped with its product is a semigroup,
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(2) for each s, t in S+ and u in Sω, s(tu) = (st)u,
(3) for each non-decreasing sequence (in)n>0 of N and each sequence (sn)n∈N

of Sω+, π(s0s1 · · · s(i1−1), si1 · · · s(i2−1), · · · ) = π(s0, s1, s2, · · · ).
(4) for all s in S+ and for each sequence (sn)n∈N of Sω+, s π(s0, s1, s2, · · · ) =

π(s, s0, s1, s2, · · · ).

An ω-semigroup morphism from S = (S+, Sω) into T = (T+, Tω) is a pair ϕ =
(ϕ+, ϕω) such that ϕ+ : S+ → T+ is a semigroup morphism and ϕω : Sω →
Tω preserves both infinite product and mixt product. The ω̃-semigroups
and ω̃-semigroup morphisms are similarly defined, all products operating on
the left.

Theorem 5.1 ([20, Chapter II, Theorem 5.1] and [10, Lemma 4]). Let S+ be
a finite semigroup and Sω a finite set. Suppose there are maps S+Sω → Sω
and S+ → Sω, denoted respectively (s, t) 7→ st and s 7→ sω, satisfying the
following conditions:

s(tu) = (st)u for every s, t ∈ S+ and every u ∈ Sω, (5.1)

(sn)ω = sω for every s ∈ S+ and every n > 0, (5.2)

s(ts)ω = (st)ω for every s, t ∈ S+ such that st and ts are idempotents.
(5.3)

Then the pair S = (S+, Sω) can be equipped, in a unique way, with a structure
of ω-semigroup such that for every s ∈ S+ the product sss · · · is equal to sω.

A ζ-semigroup is a four-component algebra S = (S+, Sω, Sω̃, Sζ) such that
(S+, Sω) is an ω-semigroup, (S+, Sω̃) is an ω̃-semigroup, and with a mapping
ρ : Sω̃ × Sω → Sζ such that if s ∈ Sω̃, t ∈ S+, and u ∈ Sω then ρ(s, tu) =
ρ(st, u). A ζ-semigroup is finite if all its four components are finite.

Example 5.2. Denote by Aζ the quotient of AZ under the equivalence rela-
tion:

u ∼σ v ⇔ ∃n ∈ Z | u = σn(v).

The algebra A∞ = (A+, Aω, Aω̃, Aζ) equipped with the usual concatenation is
then a ζ-semigroup, called the free ζ-semigroup on A.

Let S and T be ζ-semigroups. A ζ-semigroup morphism from S into T is
a quadruplet ϕ = (ϕ+, ϕω, ϕω̃, ϕζ) such that (ϕ+, ϕω) (resp. (ϕ+, ϕω̃)) is an
ω-semigroup morphism (resp. ω̃-semigroup morphism), and ϕζ is a map from
Sζ into Tζ such that for every s in Sω̃ and t in Sω one has ϕζ(st) = ϕω̃(s)ϕω(t).
Note that ϕ is entirely determined by ϕ+.
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A subset P of Aζ is recognized by a ζ-semigroup homomorphism ϕ : Aζ →
S if there is a subset I of Sζ such that P = ϕ−1

ζ (I). We say that P is
recognized by a ζ-semigroup S if there is a ζ-semigroup homomorphism ϕ :
Aζ → S recognizing P .

5.2. The syntactic ζ-semigroup. Let u ∈ A+. In absence of confusion
the ∼σ-class of uζ is also denote by uζ. Consider a subset P of Aζ . The
syntactic congruence on P is the 4-tuple of equivalence relations (∼+,∼ω

,∼ω̃,∼ζ) defined by

(1) ∀s, t ∈ A+, s ∼+ t⇐⇒















∀x ∈ Aω̃, ∀y ∈ Aω, xsy ∈ P ⇔ xty ∈ P
∀x ∈ Aω̃, ∀y ∈ A+, x(sy)ω ∈ P ⇔ x(ty)ω ∈ P
∀x ∈ A+, ∀y ∈ Aω, (xs)ω̃y ∈ P ⇔ (xt)ω̃y ∈ P
∀x ∈ A+, (xs)ζ ∈ P ⇔ (xt)ζ ∈ P

(2) ∀s, t ∈ Aω, s ∼ω t ⇐⇒
[

∀x ∈ Aω̃, xs ∈ P ⇔ xt ∈ P
]

(3) ∀s, t ∈ Aω̃, s ∼ω̃ t ⇐⇒
[

∀x ∈ Aω, xs ∈ P ⇔ xt ∈ P
]

(4) ∀s, t ∈ Aζ , s ∼ζ t ⇐⇒
[

s ∈ P ⇔ t ∈ P
]

.

The proof of the following lemma consists on mere routines.

Lemma 5.3. For any subset P of A∞ we have the following:

(1) ∼+ is a semigroup congruence;
(2) if u ∼+ v then uω ∼ω v

ω and uω̃ ∼ω̃ v
ω̃, for all u, v ∈ A+;

(3) if u ∼+ v and s ∼ω t then us ∼ω vt, for all s, t ∈ Aω, u, v ∈ A+;
(4) if u ∼+ v and s ∼ω̃ t then su ∼ω̃ tv, for all s, t ∈ Aω̃, u, v ∈ A+;
(5) if s ∼ω̃ t and s′ ∼ω t

′ then ss′ ∼ζ tt
′, for all s, t ∈ Aω̃, s′, t′ ∈ Aω.

Denote by S(P ) the 4-tuple (A+/∼+, A
ω/∼ω, A

ω̃/∼ω̃, A
ζ/∼ζ) of quotient

sets. Denote by πP the quotient map from A∞ to S(P ), defined as 4-tuple
of quotient maps in the obvious way.

Proposition 5.4. If S(P ) is finite then, in a unique way, πP defines in S(P )
a structure of ζ-semigroup for which πP is a homomorphism of ζ-semigroups.
Moreover, πP recognizes P .

Proof : We want to apply Theorem 5.1. By Lemma 5.3, (A+/∼+) is a semi-
group, the map (A+/∼+) × (Aω/∼ω) → (Aω/∼ω) given by πP (u) · πP (s) =
πP (us) (where u ∈ A+ and s ∈ Aω) is well defined and satisfies condition (5.1)
in Theorem 5.1, and we can define πP (u)ω as being πP (uω) (where u ∈ A+).
Then clearly (πP (u)n)ω = πP (u)ω and πP (u)(πP (v)πP (u))ω = πP (uv)ω for all
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u, v ∈ A+. Hence (A+/∼+, A
ω/∼ω) is an ω-semigroup. Dually, (A+/∼+

, Aω̃/∼ω̃) is an ω̃-semigroup.
Let ρP : (Aω/∼ω)×(Aω̃/∼ω̃) → Aζ/∼ζ be the map defined by ρP (πP (u), πP (v)) =

πP (uv), where u ∈ Aω̃, v ∈ Aω. This map is well defined, by Lemma 5.3 (5).
Moreover, for all s ∈ Aω̃, t ∈ A+ and u ∈ Aω, we have

ρP (πP (s) πP (t), πP (u)) = πP (stu) = ρP (πP (s), πP (t) πP (u)).

Hence S(P ) has a structure of ζ-semigroup for which πP is a homomorphism
of ζ-semigroups. Since πP is onto, such structure is unique. Finally, it is
obvious that π−1

P (πP (P )) = P .

We call S(P ) the syntactic ζ-semigroup of P , if S(P ) is finite.
Let X be a subshift of AZ. Since X is saturated by the relation ∼σ, we do

not lose information if we identify X with X /∼σ. For this reason and for the
sake of conciseness, we indistinctly consider X as a subset of both AZ and
Aζ.

Next we proceed to establish a relationship between the syntactic ζ-semigroup
of a sofic subshift and its classical syntactic semigroup. For a subshift X of
AZ and a word u of A+, the set {(x, y) ∈ Aω̃ × Aω |x.uy ∈ X} is denoted
by CX (u).

Lemma 5.5. Consider a subshift X of AZ. For all u, v ∈ A+, we have
CL(X )(u) ⊆ CL(X )(v) if and only if CX (u) ⊆ CX (v).

Proof : Consider the set Xu of the elements of Aω̃
$ ×A

ω
$ of the form ($ω̃r, s$ω),

with (r, s) ∈ CL(X )(u). We are going to prove the following equality:

Xu ∩A
ω̃ × Aω = CX (u). (5.4)

Let (x, y) ∈ Xu∩(Aω̃×Aω), and consider a sequence ($ω̃xn, yn$
ω)n of elements

of Xu converging to (x, y). Let zn = $ω̃xn.uyn$
ω. Then (zn)n converges to

x.uy. Consider a positive integer k. Since $ does not occur in x.uy, for
sufficiently large n the lenghts of xn and uyn are greater than k. Then, for
sufficently large n, the word z[−k,k] is a factor of xnuyn, thus z[−k,k] ∈ L(X ).
Since k is arbitrary, we conclude that z ∈ X , thus (x, y) ∈ CL(X )(u).

Conversely, if (x, y) ∈ CX (u) then (x[−n,−1], x[0,n]) ∈ CL(X )(u) for all n.
Then ($ω̃x[−n,−1], x[0,n]$

ω)n is a sequence of elements of Xu converging to (x, y),

thus (x, y) ∈ Xu ∩ (Aω̃ × Aω). This finishes the proof of (5.4).
If CL(X )(u) ⊆ CL(X )(v) then Xu ⊆ Xv, thus CX (u) ⊆ CX (v) by (5.4). Con-

versely, suppose that CL(X )(u) * CL(X )(v). Let (x, y) ∈ CL(X )(u) \ CL(X )(v).
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Then, since x.uy ∈ L(X ), there are p ∈ Aω̃ and q ∈ Aω such that px.uyq ∈ X .
Moreover, px.vyq /∈ X because x.vy /∈ L(X ). Therefore (px, yq) ∈ CX (u) \
CX (v).

Proposition 5.6. Let X be a subshift of AZ. Then the syntactic semigroup
of X is S(X )+. Moreover, X is sofic if and only if S(X ) is finite.

Proof : Let ≡ be the syntactic congruence of L(X ). Let u, v ∈ A+. Suppose
u ∼+ v. By the first condition defining ∼+, one has CX (u) = CX (v). Then
u ≡ v by Lemma 5.5.

Conversely, suppose u ≡ v. Then CX (u) = CX (v), by Lemma 5.5. Let
x ∈ Aω̃ and y ∈ A+. Then (uy)n ≡ (vy)n for all positive integer n. Hence,

x(uy)ω ∈ X ⇔ [∀n > 0, x[−n,−1](uy)
n ∈ L(X )]

⇔ [∀n > 0, x[−n,−1](vy)
n ∈ L(X )]

⇔ x(vy)ω ∈ X .

Analogously, for every x ∈ A+ and y ∈ Aω we have

(xu)ω̃y ∈ X ⇔ (xv)ω̃y ∈ X .

And since for every x ∈ A+ and y ∈ A+ we have (xu)n ≡ (xv)n and

(xu)ζ ∈ X ⇔ [∀n > 0, (xu)n ∈ L(X )],

we also conclude that (xu)ζ ∈ X ⇔ (xv)ζ ∈ X . Therefore u ∼+ v. This
concludes the proof that the syntactic semigroup of X is S(X )+.

Independently of X being sofic, it is always true that S(X )ζ has at most two
elements. The subshift X is sofic if and only if its syntactic semigroup (which
is S(X )+) is finite. In particular, if S(X ) is finite then X is sofic. Moreover,
it is also known ([17]; see also [18, Exercise 3.2.8]) that the number of ∼ω-
classes is finite if and only if X is sofic (that number is the number of states
of the graph defining the left Krieger cover [17]); the same result holds for
the ∼ω̃-classes.

5.3. Wreath product. The set of idempotents of a semigroup T is denoted
by E(T ). Note that if T ∈ D then E(T ) is a subsemigroup of T .

Definition 5.7. Let S be a finite ζ-semigroup, and T a semigroup from D.

Denote by S ◦ T the 4-tuple
(

S
E(T )
+ × T, S

E(T )
ω , Sω̃ × E(T ), Sζ

)

endowed with
the following structure:
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(1) S
E(T )
+ × T is the semigroup defined by (f1, t1) · (f2, t2) = (f, t1t2) with
f(e) = f1(e)f2(et1);

(2) for all (f, t) ∈ S
E(T )
+ × T and for all g ∈ S

E(T )
ω we have

(a) (f, t) · g = h, with h(e) = f(e)g(et),
(b) (f, t)ω = h, with h(e) = f ′(e)(f ′(t′)

)ω
, where (f ′, t′) is the idem-

potent power of (f, t);

(3) for all (s, e) ∈ Sω̃ × E(T ) and for all (f, t) ∈ S
E(T )
+ × T

(a) (s, e) · (f, t) = (sf(e), et),
(b) (f, t)ω̃ =

(

f ′(t′)ω̃, t′
)

, where (f ′, t′) is the idempotent power of
(f, t);

(4) for all (s, e) ∈ Sω̃×E(T ) and for all g ∈ S
E(T )
ω we have (s, e)·g = sg(e).

Proposition 5.8. If S is a finite ζ-semigroup and T ∈ D then S ◦ T is
a ζ-semigroup.

We call S ◦ T the wreath product of S and T . This construction is inspired
by a similar one by O. Carton on ω-semigroups [10]. Note that the semigroup
(S ◦T )+ is the homomorphic image of S+ ◦T by the homomorphism (f, t) 7→
(f|E(T ), t).

of Proposition 5.8: Conditions 1 and 2 of Definition 5.7 endow the pair
(

S
E(T )
+ ×

T, S
E(T )
ω

)

with the structure of ω-semigroup: the proof of this fact is entirely
analogous to the proof in [10] of the consistency of the definition of wreath
product of a finite ω-semigroup and a finite semigroup ∗.

We claim that Conditions 1 and 3 of Definition 5.7 endow
(

S
E(T )
+ ×T, Sω̃×

E(T )
)

with the structure of ω̃-semigroup. To prove the claim, we use the
dual of Theorem 5.1. From Conditions 1 and 3 one almost immediately
deduce identities (5.1) and (5.2). Let (f1, t1) and (f2, t2) be elements of

S
E(T )
+ × T such that (f1, t1)(f2, t2) and (f2, t2)(f1, t1) are idempotents. Let

(i, j) ∈ {(1, 2), (2, 1)}. Then tjti ∈ E(T ). Hence titjti = tjti, because T ∈ D.
Moreover, by Condition 3b we have:

(

(fi, ti) · (fj, tj)
)ω̃

=
(

(fi(titj)fj(titjti))
ω̃, titj

)

=
(

(fi(titj)fj(tjti))
ω̃, titj

)

.

∗In fact, according to that definition,
(

S
E(T )
+ × T, S

E(T )
ω

)

is a homomorphic image of the wreath

product of (S+, Sω) and T .
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Then, by the late equality and Condition 3a, we have

(

(f1, t1) · (f2, t2)
)ω̃

· (f1, t1) =
(

(f1(t1t2)f2(t2t1))
ω̃, t1t2

)

· (f1, t1)

=
(

(f1(t1t2)f2(t2t1))
ω̃f1(t1t2), t1t2t1

)

=
(

(f2(t2t1)f1(t1t2))
ω̃, t2t1

)

=
(

(f2, t2) · (f1, t1)
)ω̃

Hence the identity (5.3) is proved, and the claim holds.

Finally, let (s, e) ∈ Sω̃ ×E(T ), (f, t) ∈ SE(T ) × T and g ∈ S
E(T )
ω . Then

(

(s, e) · (f, t)
)

· g = (sf(e), et) · g = sf(e)g(et).

On the other hand, let h be the map (f, t) · g. Then

(s, e) ·
(

(f, t) · g
)

= (s, e) · h = sh(e) = sf(e)g(et).

Hence
(

(s, e) · (f, t)
)

· g = (s, e) ·
(

(f, t) · g
)

.

Lemma 5.9. Let P be a subset of Bζ recognized by a ζ-semigroup homomor-
phism ϕ : B∞ → Z, where Z is a finite ζ-semigroup. Consider the transducer
T̃ (f), where f is a map from Ak to B. Let ψ be the unique ζ-semigroup ho-
momorphism from A∞ to Z ◦ Dk−1 such that

ψ+(a) = (ga, a), where ga : e 7→ ϕ+(e ∗ a).

Then ψ has the following properties:

(1) if u ∈ A+ then ψ+(u) = (gu, tk−1(u)), where gu : e 7→ ϕ+(e ∗ u);
(2) if u ∈ Aω then ψω(u) = (e 7→ ϕω(e ∗ u));
(3) if u ∈ Aω̃ then ψω̃(u) = (ϕω̃(u ∗ q(u)), q(u)), where q(u) is the final

state of the unique left-infinite path in T̃ (f) with input label u, and
u ∗ q(u) is the corresponding output label.

Proof : The proof of the first two properties is entirely similar to the proofs
of Lemmas 7 and 8 in [10]. We prove the third property. By [20, Chapter
II, Theorem 2.2], there is a factorization u = · · ·u2u1u0 such that ψ+(ui) =
ψ+(u1) = ψ+(u1)

2 for all i > 0 and ψ+(u1)ψ+(u0) = ψ+(u0). Hence ψω̃(u) =
ψ+(u1)

ω̃ ψ+(u0). By the first part of the theorem we have ψ+(ui) = (gui
, tk−1(ui))
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for all i ≥ 0. Then, since ψ(u1) is idempotent, we use Condition 3 of Defini-
tion 5.7 deducing the following:

ψω̃(u) =
(

gu1
(tk−1(u1))

ω̃, tk−1(u1)
)

· (gu0
, tk−1(u0))

=
(

gu1
(tk−1(u1))

ω̃ · gu0
(tk−1(u1)), tk−1(u1u0)

)

=
(

(ϕ+(tk−1(u1) ∗ u1))
ω̃ · ϕ+(tk−1(u1) ∗ u0)

)

, tk−1(u1u0)
)

=
(

ϕω̃
[

(tk−1(u1) ∗ u1)
ω̃ · (tk−1(u1) ∗ u0)

]

, tk−1(u1u0)
)

. (5.5)

tk−1(u1) tk−1(u1u0)
u0/tk−1(u1) ∗ u0

u1/tk−1(u1) ∗ u1

Figure 2. A path in the transducer T̃ (f).

For all i > 0, since tk−1(u1) = tk−1(ui), we have tk−1(u1) ·u1 = tk−1(ui+1) ·ui
and tk−1(u1) ∗ u1 = tk−1(ui+1) ∗ ui. Hence (see Figure 2) we have q(u) =
tk−1(u1u0) and (tk−1(u1) ∗ u1)

ω̃ · (tk−1(u1) ∗ u0) = u ∗ q(u). The result now
follows from (5.5).

Let F : AZ → BZ be a sliding block code. Since F commutes with the
shift operation, one can define the function from Aζ to Bζ mapping x/∼σ

into F (x)/∼σ. We also denote such map by F , and call it (sliding block)
code. The following result appears in the first author Master’s thesis [11,
Theorem 2.7].

Theorem 5.10. Let F : Aζ → Bζ be a sliding block code with window size
k and let P be a subset of Bζ recognized by a finite ζ-semigroup Z. Then
F−1(P ) is recognized by Z ◦ Dk−1.

Proof : Consider a block map f : Ak → B for F . Let ϕ be a ζ-semigroup
homomorphism from B∞ to Z recognizing P , and let ψ be the ζ-semigroup
homomorphism from A∞ to Z ◦Dk−1 as defined in Lemma 5.9. We are going
to prove that for all u in Aζ we have ψζ(u) = ϕζ(F (u)). In fact, if u = st
with s ∈ Aω̃ and t ∈ Aω, then

ψζ(u) = ψω̃(s) · ψω(t)

=
(

ϕω̃(s ∗ q(s)), q(s)
)

· (e 7→ ϕω(e ∗ t))

= ϕω̃(s ∗ q(s)) · ϕω(q(s) ∗ t)

= ϕζ
(

(s ∗ q(s)) · (q(s) ∗ t)
)

.
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Hence ψζ(u) is the image by ϕζ of the output label of the unique bi-infinite

path with input label u. Since T̃ (f) realizes the map F , this output label
is precisely F (u) and ψζ(u) = ϕζ(F (u)). Let I be a subset of Zζ such
that P = ϕ−1

ζ (I). Then F−1(P ) = ψ−1
ζ (I), thus F−1(P ) is recognized by

Z ◦ Dk−1.

Lemma 5.11. Consider a subset P of Aζ and a ζ-semigroup homomorphism
ψ : A∞ → T . Suppose I is a subset of Tζ such that P = ψ−1

ζ (I). Consider
the sets

L(P ) = {u ∈ A+ | ∃x ∈ Aω̃ ∃y ∈ Aω : xuy ∈ P},

Iψ = {t ∈ T+ | ∃x ∈ Aω̃ ∃y ∈ Aω : ψω̃(x) t ψω(y) ∈ I}.

Then L(P ) = ψ−1
+ (Iψ).

Proof : u ∈ ψ−1
+ (Iψ) ⇔

[

∃x ∈ Aω̃ ∃y ∈ Aω : ψζ(xuy) ∈ I
]

⇔ u ∈ L(P ).

Theorem 5.12. Let F : AZ → BZ be a code with window size k and let
Y be a sofic subshift of BZ with syntactic semigroup S. Then the syntactic
semigroup of the subshift F−1(Y) divides S ◦ Dk−1.

Proof : Let Z be the syntactic ζ-semigroup of Y . By Theorem 5.10 the sub-
shift F−1(Y) is recognized by Z ◦ Dk−1. Then by Lemma 5.11 the language
L(F−1(Y)) is recognized by (Z ◦ Dk−1)+. Hence, if R is the syntactic semi-
group of F−1(Y) then R ≺ (Z ◦Dk−1)+. Since (Z ◦Dk−1)+ ≺ Z+ ◦Dk−1, and
the division between semigroups is transitive, we deduce R ≺ Z+ ◦Dk−1. By
Proposition 5.6 we have S = Z+.

6. Classes of sofic subshifts closed under taking divisors

A full shift is a subshift of the form AZ, for some alphabet A. The syn-
tactic semigroup of a language L of A+ may depend on the alphabet A. For
example, the syntactic semigroup of A+ as a language of A+ is the trivial
semigroup, while if A  B then the syntactic semigroup of A+ as language
of B+ is the unique monoid {0, 1} with the usual multiplication. The pseu-
dovariety Sl is the least pseudovariety containing this monoid. To avoid
ambiguities, we consider the syntactic semigroup of a full shift to be the triv-
ial semigroup. On the other hand, if X is a subshift of AZ different from a
full shift then the syntactic semigroup of L(X ) is independent of A, basically
because all elements of the non-empty set A+ \L(X ) are in the same class of
the syntactic congruence, which is a zero of the syntactic semigroup [8]. For
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a pseudovariety V, consider the class S (V) of subshifts X whose syntactic
semigroup belongs to V.

Theorem 6.1. Let V be pseudovariety of semigroups containing Sl. Then
the class S (V ∗ D) is closed under taking divisors.

Proof : Suppose Y is a subshift of AZ belonging to S (V ∗ D). Let X be
a subshift of BZ dividing Y . Then there is an integer k and a code F :
AZ → B$

Z with window size k such that X = F−1(Y). Since Sl ⊆ V the
syntactic semigroup of L(Y) as a language of (B$)

+ also belongs to V ∗ D.
By Theorem 5.12, we have X ∈ S ((V ∗D) ∗Dk−1). But V ∗D∗Dk−1 = V ∗D,
because D ∗ D ⊆ D.

Therefore, when V is a pseudovariety containing Sl, the class S (V ∗ D)
defines an algebraic invariant for weak equivalence. It is proved in [12] that
this class defines a shift equivalence invariant. Let SI(V) be the class of
irreducible subshifts in S (V). For every pseudovariety V of semigroups we
have LV = LV ∗ D, thus if Sl ⊆ V then SI(LV) is closed under taking weak
equivalent irreducible subshifts. There are infinitely many such classes [12].
Theorem 6.1 has the following converse:

Theorem 6.2 ([12]). Let V be pseudovariety of semigroups. Let O be any of
the operators S or SI. If O(V) is closed under taking conjugate subshifts
then LSl ⊆ V and O(V) = O(V ∗ D).

Theorem 6.1 can be used as a method of proving that a certain class of
subshifts is closed under division and therefore under weak equivalence. For
example, the class of sofic subshifts is the class S (S), where S is the pseudova-
riety of all finite semigroups. Hence, an immediate corollary of Theorem 6.1
is that the class of sofic subshifts is closed under divisions. The class of finite
type subshifts is also closed under division, but it is not of the form S (V);
on the other hand, the class of irreducible finite type subshifts is equal to
SI(LCom) [12].

Two elements x and y of AZ are right-asymptotic if there is an integer n
such that x[n,+∞[ = y[n,+∞[. A code ϕ : X → Y between two subshifts is left-
closing if distinct right-asymptotic elements of X have distinct images by ϕ.
For an algorithm to decide whether the cover associated to a labeled graph
is left-closing or not see [3]. Clearly one can consider the dual definition of
right-closing code. A code is bi-closing if it is simultaneously right-closing
and left-closing. An almost finite type subshift is the image of an irreducible
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finite type subshift by a bi-closing code. Almost finite type subshifts form
a class of irreducible sofic subshifts strictly containing the irreducible finite
type subshifts. An irreducible sofic subshift is of almost finite type if and
only if its right Fischer cover is left-closing [3, Proposition 2.16]. It is known
that this class is closed under conjugation [3, Proposition 4.1]. Independently
from this result, in [4] it was proved that almost finite type subshifts belong
to SI(LInv), and the second author proved in [12] that in fact all elements
of SI(LInv) are almost finite type subshifts. Therefore, since Sl ⊆ Inv, from
Theorem 6.1 we deduce the following sharper result:

Theorem 6.3. The class of almost finite type subshifts is closed under taking
irreducible divisors.

The class of aperiodic subshifts is a class of almost finite type subshifts
that deserves some attention [3]. It is proved in [5] that this class is equal to
SI(A). Since Sl ⊆ A = LA, Theorem 6.1 also has the following corollary:

Theorem 6.4. The class of aperiodic subshifts is closed under taking irre-
ducible divisors.

7. Comparison with other invariants

For a code ϕ : X → Y , let M(ϕ) be the set {x ∈ X : |ϕ−1ϕ(x)| > 1}.

Clearly, σ(M(ϕ)) ⊆ M(ϕ) and σ−1(M(ϕ)) ⊆ M(ϕ). Hence M(ϕ) is a
subshift, called multiplicity subshift of ϕ. In general M(ϕ) is not closed. On
the other hand, if ϕ : X → Y is a bi-closing code then M(ϕ) is closed [9].
The multiplicity subshift of a sofic subshift is effectively computable: see
the Appendix, page 27. Note that if (f, g) is a conjugacy between ϕ and ψ,

then (f|M(ϕ), g|ϕ
(

M(ϕ)
)) is a conjugacy between ϕ : M(ϕ) → ϕ

(

M(ϕ)
)

and

ψ : M(ψ) → ψ
(

M(ψ)
)

.

Theorem 7.1 ([9, Theorem 2.8]). Suppose that Y1 and Y2 are mixed subshifts
of almost finite type. For each i ∈ {1, 2}, let πi : Xi → Yi be the right Fischer
cover of Yi. Suppose that (π1)|M(π1) and (π2)|M(π2) are conjugate, and that
X1 and X2 are shift equivalent. Then Y1 and Y2 are shift equivalent.

Since shift equivalence is a very strong conjugacy invariant for sofic sub-
shifts, if π : X → Y is the right Fischer cover of a sofic subshift then the
conjugacy class of π|M(π) together with the shift equivalence class of X form
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a conjugacy invariant that is particularly strong when Y is mixed and of
almost finite type.

Let Y1 and Y2 be the sofic subshifts whose right Fischer covers π1 and π2

are respectively realized by the following labeled graphs (where x/α means
that the edge x is labeled α):

x7/a x3/a

x5/a

x1/a

x8/c

x4/bx6/c

x2/b

x9/d x7/a x3/a

x5/a

x1/a

x8/c

x4/cx6/b

x2/b

x9/d

Subshifts Y1 and Y2 are mixing almost finite type subshifts with the same
zeta function. The domains of the right and left Krieger/Fischer covers are
respectively equal. The next invariant to be tested is the multiplicity subshift.
The multiplicity subshifts of Y1 and Y2 are equal to the following subshift
X :

x1 x3x7 x5 x3x7

x2x8 x4x6

To prove that π1|X is not conjugate with π2|X we shall use the following
lemma:

Lemma 7.2 ([9, Lema 2.3]). Let ϕ : X → Y and ψ : X → Z be codes with
equal domain. Then ϕ and ψ are conjugate if and only if there is for X an
automorphism† F such that ψ ◦ F and ϕ have the same kernel‡.

Let F be an automorphism of X , with block map f with window size n.
Since F permutes constant sequences, there is i ∈ {1, 3, 5, 7} such that

F (xζi ) = xζ1. Suppose i 6= 1. Then there are k, j such that k 6= i and
xω̃k .xjx

ω
i ∈ X . Since f(xni ) = x1, we have F (xω̃k .xjx

ω
i ) ∼σ y.xω1 for some

y ∈ Aω̃. Since xlx1 ∈ L(X ) implies l = 1, we have F (xω̃k .xjx
ω
i ) = xζ1 = F (xζi ),

contradicting F being one-to-one. Hence F (xζ1) = xζ1. Analogously, F (xζ5) =

xζ5, thus {F (xζ3), F (xζ7)} = {xζ3, x
ζ
7}. Let z = xω̃1 .x2x

ω
3 and t = xω̃3 .x4x

ω
5 . Then

z, t ∈ X and π1(z) = π1(t) = aω̃.baω. Suppose F (xζ3) = xζ7 and F (xζ7) = xζ3.
Then F (z) ∼σ x

ω̃
1 .x8x

ω
7 and F (t) ∼σ x

ω̃
7 .x6x

ω
5 , thus π2F (z) ∼σ a

ω̃.caω and
π2F (t) ∼σ aω̃.baω. In particular, π2F (z) 6= π2F (t), and the same conclu-

sion holds if F (xζ3) = xζ3 and F (xζ7) = xζ7. Therefore π1|X and π2|X are not
conjugate, by Lema 7.2. Hence Y1 and Y2 are not conjugate.

†An automorphism for X is a conjugacy from X to X .
‡Recall that the kernel of a map h : P → Q is the set {(x, y) ∈ P × P | h(x) = h(y)}.
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The preceding arguments are somewhat ad-hoc, and depend on knowing the
group of automorphisms of a subshift, a very difficult problem in general [18,
Chapter 13]. On the other hand, as observed in [12], for the pseudovariety
V of finite semigroups satisfying the identity x3 = x2, one has Y1 /∈ S (LV)
and Y2 ∈ S (LV). Since Sl ⊆ V, by Theorem 6.1 we conclude that Y1 and
Y2 are not weak equivalent. Hence Theorem 6.1 provides an expedite form
of proving not only that Y1 and Y2 are not conjugate, but also that they are
far from being conjugate, in the sense that weak equivalence is considered a
very weak conjugacy invariant.

8. A topological proof

In this section we use a different method for proving Theorem 6.1, based
on profinite semigroup theory. As an introductory reference for this theory
see [2].

A semigroup endowed with a compact topology for which the multiplication
is continuous is called a compact semigroup. We consider finite semigroups as
compact semigroups, endowing them with the discrete topology. A compact
semigroup S is said to be generated by a map ι : A→ S if the subsemigroup of
S generated by ι(A) is dense in S. Let V be a pseudovariety of semigroups.
A pro-V semigroup is a projective limit of semigroups from V. A pro-V
semigroup is therefore a compact semigroup. For the pseudovariety S of
all finite semigroups, the term profinite is usually used instead of pro-S.
For every set A there is a pro-V semigroup such that ΩAV is generated by
a map ι with domain A with the property that for every map ϕ from A
into a semigroup S from V there is a unique continuous homomorphism
ϕ̂ : ΩAV → S such that ϕ̂ ◦ ι = ϕ. The semigroup ΩAV is the unique pro-V
semigroup with these properties, up to isomorphism of compact semigroups.
For this reason it is called the free profinite semigroup relatively to V (or
free pro-V semigroup) generated by A. Assuming A is finite (as we do from
here on), the topology of ΩAV is generated by a metric. If V contains some
non-trivial semigroup, then ι is injective, thus A is considered as a subset of
ΩAV. And if V contains N then A+ embeds in ΩAV as a dense subsemigroup
whose elements are isolated points.

The following proposition makes the connection between the combinatorial
properties of V-recognizable languages and the topology of ΩAV, when N ⊆ V.
For a more general result see [1, Theorem 3.6.1], or [2, Section 3].
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Proposition 8.1. Let V be a pseudovariety containing N. If L is a lan-
guage of A+ then L is V-recognizable if and only if the closure of L in ΩAV

open. The topology of ΩAV is generated by the closures of the V-recognizable
languages of A+.

Let V be a pseudovariety with non-trivial semigroups. Then, as we have
said before, the alphabet A is a subset of ΩAV. Since ΩAV is a profinite semi-
group, there is a unique continuous homomorphism pV from ΩAS to ΩAV such
that pV(a) = a. The map pV is called the canonical projection from ΩAS to
ΩAV. This map is closely related with the equational theory of pseudoiden-
tities, since the equality pV(u) = pV(v) means that the pseudoidentity u = v
is satisfied by V. We do not need to enter in this theory of pseudoidentities.

Theorem 8.2. Let V be a pseudovariety containing Sl and N. For every
alphabet A and non-negative integer k, the map Φk : A+ → (Ak+1)∗ has a
unique continuous extension from ΩA(V ∗Dk) to (ΩAk+1V)1, which we denote
by ΦV

k .

Proof : The theorem was already proved by Almeida for the pseudovariety S

of all finite semigroups [1, Lemma 10.6.11]. The following map

ΦV

k : ΩA(V ∗ Dk) → (ΩAk+1V)1

pV∗Dk
(u) 7→ pV(ΦS

k(u)), u ∈ ΩAS,

is well defined by Theorem 10.6.12 from [1]. Since pV∗Dk
and pV ◦ ΦS

k are
continuous and ΦV

k ◦ pV∗Dk
= pV ◦ ΦS

k, by a well-known topological result the
map ΦV

k is also continuous.

Theorem 8.3. Let V be a pseudovariety containing Sl and N. Consider a
code F : AZ → BZ with window size k. Let Y be a subshift of BZ. If
Y ∈ S (V) then F−1(Y) ∈ S (V ∗ Dk−1).

Proof : Let f : Ak → B be a block map for F . Then there is a unique
continuous homomorphism f̂ : ΩAkV → ΩBV extending f . Denote by W the
pseudovariety V ∗ Dk−1. Let f̃ : ΩAW → (ΩBV)1 be the map f̂ ◦ ΦV

k−1. The

map f̃ is a (unique) continuous extension of f .

Let X = F−1(Y). Since Y ∈ S (V), the set L(Y) is open in ΩBV, by Propo-

sition 8.1. By the same proposition, what we want to prove is that L(X ) is

open in ΩAW. Let u ∈ L(X ). Since L(X ) is a prolongable language, with a
simple compactness argument [13] one proves that for every integer l there



A NEW ALGEBRAIC INVARIANT FOR WEAK EQUIVALENCE OF SOFIC SUBSHIFTS 25

are finite words rl and sl with length greater that l such that rlusl ∈ L(X ).
Since ΩAW is compact, taking subsequences if necessary, we can assume that
(rl)l and (sl)l converge to some elements r and s of ΩAW, respectively. Then

rus ∈ L(X ). Since f̃(L(X )) ⊆ L(Y) ∪ {1} and f̃ is continuous, one has

f̃(rus) ∈ L(Y). Let (un)n be an arbitrary sequence of elements of A+ con-

verging to u. Then limn→+∞,l→+∞ f̃(rlunsl) = f̃(rus). Since L(Y) is an open

neighborhood of f̃(rus), there is an integer N such that if n, l > N then

f̃(rlunsl) ∈ L(Y). Let n > N . Since the elements of B+ are isolated in
ΩBV, we have f̃(rlunsl) ∈ L(Y) for all l > N . Consider arbitrary elements
pl ∈ Aω̃, ql ∈ Aω and let xn,l = plrl.unslql ∈ AZ. Let xn be an adherent point
of (xn,l)l in AZ. Then, given a positive integer k, for sufficiently large l the

word F (xn)[−k,k] is a factor of f̃(rlunsl), hence it belongs to L(Y). Since k is
arbitrary, we have F (xn) ∈ Y , thus xn ∈ X . Therefore un ∈ L(X ), because
un is a factor of xn. Since (un)n is an arbitrary sequence of elements of A+

converging to u and A+ is dense in ΩAW, we conclude that L(X ) is open.

Since V ∗ D = (V ∗ D) ∗ Dk, and Sl,N ⊆ LSl = Sl ∗ D ⊆ V ∗ D, Theorem 6.1
is a corollary of Theorem 8.3.

9. Ordered semigroups

In a partial ordered set (X,≤), an order ideal is a subset I of X such that
if t ≤ s and s ∈ I then t ∈ S. The order ideal generated by a set X is the
set ↓X = {t ∈ S | ∃s ∈ X : t ≤ s}.

An ordered semigroup is a semigroup S endowed with a partial order ≤ such
that if s ≤ t then xsy ≤ xty, for all x, y ∈ S1. For an introduction to ordered
semigroups see [22]. Usual semigroups are considered as ordered semigroups
for the equality order. The morphisms between ordered semigroups are the
order preserving homomorphisms of semigroups. Divisors and direct prod-
ucts have the obvious definitions, and there is also a theory of pseudovarieties
of ordered semigroups.

The syntactic ordered semigroup of a language L of A+ is the syntactic
semigroup of L endowed with the partial order ≤ such that u ≤ v if and only
if CL(v) ⊆ CL(u). A language L of A+ is recognized by a homomorphism ϕ
from A+ into an ordered semigroup S if there is an order ideal I in S such
that L = ϕ−1(I). We say that L is recognized by the ordered semigroup S if
there are such homomorphism ϕ and ideal I. If ≡ is the syntactic congruence
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of L, then the language L is recognized by the homomorphism ϕ : u 7→ u/≡
into its syntactic ordered semigroup.

The natural partial order for the wreath product of two ordered semigroups
is defined as follows: given (f1, t1), (f2, t2) ∈ S ◦ T we have

(f1, t1) ≤ (f2, t2) ⇔

{

f1(t) ≤ f2(t), ∀t ∈ T 1,

t1 ≤ t2.

Theorem 9.1. Let F : AZ → BZ be a code with window size k and let Y be a
sofic subshift of BZ with syntactic ordered semigroup S. Then the syntactic
ordered semigroup of F−1(Y) divides the ordered wreath product S ◦ Dk−1.

Proof : Consider the syntactic ζ-semigroup Z of Y . Let ϕ be the canonical
ζ-semigroup homomorphism from B∞ to Z, and ψ be the ζ-semigroup ho-
momorphism from A∞ to Z ◦ Dk−1 as defined in Lemma 5.9. Denote by X
the subshift F−1(Y).

Let I be a subset of Zζ such that Y = ϕ−1
ζ (I). By the proof of Theorem 5.10

we know that X = ψ−1
ζ (I). Consider the following set:

Iψ = {t ∈ (Z ◦ Dk−1)+ | ∃x ∈ Aω̃, y ∈ Aω : ψω̃(x) t ψω(y) ∈ I}.

By Lemma 5.11 we have L(X ) = ψ−1
+ (Iψ). Let u ∈ ψ−1

+ [↓ψ+(L(X ))]. There
is v ∈ L(X ) such that ψ+(u) ≤ ψ+(v). That is, (gu, tk−1(u)) ≤ (gv, tk−1(v)).
Equivalently,

ϕ+(e ∗ u) ≤ ϕ+(e ∗ v), ∀e ∈ E(Dk−1), (9.1)

tk−1(u) = tk−1(v). (9.2)

Since v ∈ ψ−1
+ (Iψ), there are x ∈ Aω̃, y ∈ Aω such that ψζ(xvy) ∈ I. By the

proof of Theorem 5.10, we have

ψζ(xvy) = ψω̃(x)ψω(vy) = ϕω̃(x ∗ q(x)) · ϕω(q(x) ∗ vy) ∈ I. (9.3)
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By Lemma 5.9, we have

ϕω(q(x) ∗ vy) = ψω(vy)[q(x)]

= ψ+(v)ψω(y)[q(x)]

= (gv, tk−1(v))ψω(y)[q(x)]

= gv[q(x)] · ψω(y)[q(x) · tk−1(v)]

= ϕ+[q(x) ∗ v] · ϕω[(q(x) · tk−1(v)) ∗ y]

= ϕ+[q(x) ∗ v] · ϕω[(q(x) · tk−1(u)) ∗ y] (by (9.2)).

Therefore, by (9.3), we have

[x ∗ q(x)] · [q(x) ∗ v] · [(q(x) · tk−1(u)) ∗ y] ∈ ϕ−1
ζ (I) = Y . (9.4)

By Lemma 5.5 we have ϕ+(w1) ≤ ϕ+(w2) ⇔ CY(w2) ⊆ CY(w1). Therefore,
from (9.1) and (9.4) we deduce that

[x ∗ q(x)] · [q(x) ∗ u] · [(q(x) · tk−1(u)) ∗ y] ∈ ϕ−1
ζ (I) = Y .

Going backwards in the arguments, we conclude that

ψζ(xuy) = ϕζ([x ∗ q(x)] · [q(x) ∗ u] · [(q(x) · tk−1(u)) ∗ y]) ∈ I,

thus u ∈ ψ−1
+ (Iψ) = L(X ). This proves that ψ−1

+ [↓ ψ+(L(X ))] ⊆ L(X ).
The inclusion L(X ) ⊆ ψ−1

+ [↓ψ+(L(X ))] is trivial. We conclude that L(X ) is
recognized by (Z◦Dk−1)+. For the remaining part of the proof the arguments
are the same as those used in the proof of Theorem 5.12.

Using Theorem 9.1, it is now easy to prove that the results about pseudova-
rieties of semigroups from Section 6 generalize to pseudovarieties of ordered
semigroups, in a similar way to the corresponding results from [12]. The in-
struments for the topological approach from Section 8 seem to be insufficient
for achieving the ordered case.

Appendix: the computation of the multiplicity subshift

A labeled graph is faithfully labeled if distinct co-terminal edges have dis-
tinct labels. Next we describe an algorithm to compute the multiplicity
subshift of the cover associated to a faithfully labeled graph. This algorithm
has similarities with the algorithm appearing in [3] for deciding if the cover
is left-closing or not. In a graph G, we say that an edge e from r to s is
a descendant (respectively, an ascendant) of a vertice p if there is in G a
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path from p to r (respectively, from s to p). Supposing that (G, π) is a faith-
fully labeled graph, denote by (p, a, q) the unique edge from p to q labeled
a, if such edge exists. The π-square of G is the graph Gπ whose vertices are
the pairs of vertices of G, and where the set of edges between two vertices
(p, r) and (q, s) is the set of triples ((p, r), a, (q, s)) such that (p, a, q) and
(r, a, s) are edges from G. A diagonal vertice of Gπ is a vertice of the form
(p, p). The projections defined by the rules ((p, r), a, (q, s)) 7→ (p, a, q) and
((p, r), a, (q, s)) 7→ (r, a, s) will be denoted by λ and ρ, respectively.

Proposition 9.2. Consider the faithfully labeled graph (G, π). Let W be the
set of the elements of XGπ corresponding to bi-infinite paths over Gπ passing
at a non-diagonal vertice. Then M(π∗) = λ∗(W ). The language L(M(π∗))
is recognized by the labeled graph obtained from the essential part of (Gπ, λ)
by removing the edges which are neither ascendants or descendants of non-
diagonal vertices.

Proof : Suppose that c = (pi, ai, pi+1)i∈Z is an element of M(π∗). Then there
is in XG an element of the form (qi, ai, qi+1)i∈Z distinct from c. Let ĉ =
((pi, qi), ai, (pi+1, qi+1))i∈Z. Then ĉ ∈ W and λ∗(ĉ) = c, thus M(π∗) ⊆ λ∗(W ).
Conversely, for every c ∈ XGπ we have π∗(λ∗(c)) = π∗(ρ∗(c)), and c ∈ W if
and only if λ∗(c) 6= ρ∗(c), thus λ∗(W ) ⊆ M(π∗).

In an essential graph, an edge is ascendant or descendant of a given vertice
if and only if it belongs to a bi-infinite path passing at such vertice. Therefore,
by the first part of the proof, in the essential part of (Gπ, λ) the labels of
paths whose edges are ascendants or descendants of non-diagonal vertices are
precisely the elements of L(M(π∗)).

Since L(M(π∗)) = L(M(π∗)), Proposition 9.2 allows us to compute a

presentation of the subshift M(π∗).
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