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1. Introduction

Let M , M ′ be compact, oriented 3-manifolds and G a group that acts ori-
entation-preservingly on M , with M/G ∼= M ′. Suppose that M and M ′ are
hyperbolic. If G acts freely then the natural projection p : M → M ′ is a
covering and the order of G is given by |G| = vol(M)/ vol(M ′), where vol
is the hyperbolic volume. A similar reasoning applies to manifolds which
are not necessarily hyperbolic but whose JSJ decompositions [11, 12] contain
hyperbolic pieces; it suffices to take the ratio between the sums of volumes
of hyperbolic pieces of M and M ′.
In this paper we consider the uniqueness problem of |G| and of the conjugacy
class of G in Diff+(M) when the action is not free. Let L′ ⊂ M ′ be a
nonempty link and G a group that acts orientation-preservingly on M , such
that the natural projection p : M → M/G ∼= M ′ is a branched covering,
with branch set L′. The pre-image of L′ in M is a link L. The link L′ ⊂M ′

is prime if every embedded sphere in M ′ that cuts L′ transversally in two
points bounds a submanifold that intersects L′ in an unknotted arc.
If p : M →M ′ is a branched covering over L′ with covering group G, and the
stabiliser of each point x ∈ L = p−1(L′) equals G then p is called a covering
of M ′ strongly branched over L′. When p : M → M ′ is a strongly branched
covering, G is a cyclic group and the branching order of every component of
L′ is the same and equal to d = |G|. We will call p an (L′, d)−covering and
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2 A. SALGUEIRO

note O = (M ′, L′, d) its quotient orbifold, that is, the orbifold with underlying
manifold M ′, singular set L′ and branching order d along every component
of L′.
The main results of this paper are the following theorems.

Theorem 1. Let M and M ′ be compact, orientable, 3-manifolds, whose
boundary is a (possibly empty) disjoint union of tori. Let L′ ⊂ M ′ be a
prime link. If the exterior of L′ in M ′ is irreducible and its JSJ decom-
position contains an hyperbolic piece, then there exists at most one positive
integer d for which M is a d-fold covering of M ′, strongly branched over L′.

Theorem 2. Let M ′ be an integral homology sphere and L′ ⊂M ′ an hyper-
bolic link. Then, for each manifold M , any two cyclic coverings p1, p2 : M →
M ′ branched over L′, of prime degrees, are conjugated.

For completeness sake, in Theorem 1 we allow d to be 1, that is, we show
that M ′ is not a self-covering strongly branched over a link. In [19] we con-
sider the analogous problem for links whose exterior is a graph manifold.
To prove Theorem 1 we define the volume of an orbifold in section 2, and
show that, under certain conditions, this volume increases with the branch-
ing order of the orbifold, a result that is interesting on its own. In section 3
we deduce Theorem 1 and in section 4 we prove Theorem 2.
This paper contains results obtained in [18], under the supervision of Profes-
sor Michel Boileau. I deeply thank him for his endless support.

2. Volumes of orbifolds

Since the exterior E ′ of L′ is irreducible and L′ is a prime link, it follows
that O is irreducible. By [3], there is a finite family T of essential toric 2-
suborbifolds, disjoints, embedded in O such that each connected component
of the complement M ′−N(T) of a regular neighbourhood N(T) of T is either
atoroidal or a Seifert orbifold. Moreover, such a minimal family is unique up
to isotopy. We call it the JSJ family of O. By Thurston’s Orbifold Theorem
[2], the interior of the atoroidal pieces is either hyperbolic, euclidean, or
admits a Seifert fibration. If O is not atoroidal, it may also admit a geometry
modelled on the Lie group Sol. We define the volume of O as the sum of the
hyperbolic volumes of all the hyperbolic pieces of the JSJ decomposition of
O, and note it vol(O). By Mostow’s rigidity theorem [1, 16], these hyperbolic
volumes are topological invariants, which implies that the volume of O is
well-defined.
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In this section, we establish a result relating the volume of an orbifold with
its branching order. We make use of the following result of Souto [22] to
compare the volume of a manifold with the volume of a metric defined on it
with sectional curvature bounded below.

Proposition 3. Let M be a closed, orientable, irreducible, geometrisable 3-
manifold. Let g be a metric on M with sectional curvature bounded below by
−1. Then vol(M) ≤ vol(M, g).

In Theorem 6 we will consider cone-manifold structures on a manifold, so
we derive from this proposition the following result.

Proposition 4. Let M be a closed orientable, irreducible, geometrisable 3-
manifold and C an hyperbolic cone-manifold structure on M . Then vol(M) ≤
vol(C).

Proof. To apply the previous proposition we need to replace the singular
metric gC defined on M by a smooth metric. For each ε > 0, we will obtain
a smooth metric gε on M , with sectional curvature bounded below by −1,
such that

vol(M, gε) < u(ε) vol(M, gC),

where u is a function such that lim
ε→0

u(ε) = 1.

Let V be a tubular neighbourhood of the singular set L of C, with radius
r0. The cone hyperbolic metric gC is given on V by

ds2 = dr2 + f 2(r) dθ2 + g2(r) dz2

where f(r) = (d1/d2) sinh r and g(r) = cosh r. For δ > 0 sufficiently small,
we replace the singular metric gC in V by a metric g∗ε given by

ds2 = dr2 + ϕ2(r) dθ2 + γ2(r) dz2

where ϕ, γ : [0, r0 − δ] → [0,+∞) are smooth functions such that:

(1) in a neighbourhood of 0, ϕ(r) = r and γ(r) is constant;
(2) in a neighbourhood of r0 − δ, ϕ(r) = f(r + δ) and γ(r) = g(r + δ);

(3) ∀r ∈ [0, r0 − δ],
ϕ′′(r)

ϕ(r)
≤ 1 + ε,

γ ′′(r)

γ(r)
≤ 1 + ε and

ϕ′(r)γ ′(r)

ϕ(r)γ(r)
≤ 1 + ε.

Note fδ(r) = f(r+ δ) and gδ(r) = g(r+ δ). Let r1 be the smallest positive
solution of the equation fδ(r) = r. Set ϕ = fδ in [2r1, r0 − δ]. To define ϕ
in [0, 2r1], set ϕ = id in a small neighbourhood of 0 and extend smoothly
with ϕ′′ < 0 < ϕ′ until r1, ϕ(r1) ≈ fδ(r1) and ϕ′(r1) ≈ f ′

δ(r1). Then extend
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ϕ smoothly to [r1, 2r1] so that ϕ′′ becomes rapidly close to f ′′
δ and finally

maintain ϕ, ϕ′ and ϕ′′ close to fδ, f
′
δ, f

′′
δ (see Figure 1).

Now we construct γ. Set γ = gδ in a small neighbourhood of r0−δ. Extend γ
smoothly to [2r1, r0−δ] putting γ ′′ < g′′δ , γ

′ < g′δ except in a small neighbour-
hood of 2r1 and γ ′′(2r1) = γ ′(2r1) = 0. Finally extend γ to [0, 2r1] keeping
it constant. Choosing a small δ (hence a small r1) gives γ ≈ gδ, γ

′ ≈ g′δ in
[2r1, r0 − δ].

r0r0 − δ2r1r10−δ

f

fδ

x

ϕ

−δ 0 r1 2r1 r0 − δ r0

g

gδ

ψ

Figure 1. Graphs of ϕ and ψ

By construction, the quotients given in (3) (which are symmetrical to the
sectional curvatures of g∗ε), are all bounded above by 1 + ε: in [0, 2r1], the
latter two quotients are zero and the bound on the first quotient comes from
the closeness of ϕ′′ and f ′′

δ ; in [2r1, r0 − δ], the bound comes from ϕ = fδ and
the closeness of γ and gδ and of their derivatives.
Condition (2) insures that we may glue the metric g∗ε in V to the metric gC
in C − V along ∂V . The smooth riemannian metric obtained in M ′, which
we note also g∗ε , has sectional curvature bounded below by −1 − ε.
When δ → 0, the functions ϕ and γ approach respectively f and g so that
volume vol(V, g∗ε) approaches vol(V, gC). Then, for δ > 0 sufficiently small,
g∗ is a smooth metric on M ′, with sectional curvature bounded below by
−1 − ε, such that vol(V, g∗ε) < (1 + ε) vol(V, gC). Then gε = (1 + ε)1/2g∗ is a
metric on M ′ with sectional curvature bounded below by −1 and

vol(M, gε) < (1 + ε)3/2 vol(M, g∗) < (1 + ε)5/2 vol(M, gC)

Since by Proposition 3, vol(M) ≤ vol(M, gε), for every ε > 0, it follows that
vol(M) ≤ vol(C). �

The following proposition will be useful to classify the non-hyperbolic orb-
ifolds that may appear.
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Proposition 5. Let O = (M ′, L′, d) be a geometric 3-orbifold where L′ is
nonempty and d ≥ 3. If O is not hyperbolic, then either O − L′ admits a
Seifert fibration which induces a Seifert fibration on O, or O = (S3, L′, 3)
where L′ is the figure-eight knot.

Proof. Since O is geometric but not hyperbolic, it is a spherical, euclidean,
Seifert or Sol orbifold. We study each case separately.
Suppose that O is a Seifert orbifold. Since d > 2, every component of L′ is a
fibre of O and O − L′ admits a Seifert fibration.
If O is a Sol orbifold, there is a non free action of a group G of isometries
of Sol such that Sol/G ∼= O. Let x ∈ Sol be a singular point of this action.
Since the stabiliser of x is the dihedral group D4 [21], then d = 2, which
contradicts the hypothesis that d ≥ 3.
Suppose now that O is a spherical orbifold that doesn’t admit Seifert fibra-
tions. By [7], the singular set of O contains vertices, which contradicts the
hypothesis that L′ is a link.
If O is an euclidean orbifold that doesn’t admit Seifert fibrations and its
singular set is a link, the classification of crystallographic groups [6] shows
that the underlying space of O is the sphere S3 and its singular set is the
figure-eight knot with branching order d = 3. �

Now we use Propositions 4 and 5 to obtain the main result of this section.

Theorem 6. Let M ′ be a compact, orientable 3-manifold whose boundary is
a (possibly empty) disjoint union of tori and L′ ⊂ M ′ a nonempty link. For
i = 1, 2, let Oi = (M,L′, di), with 2 ≤ d1 < d2. If O1 and O2 are irreducible
then vol(O1) ≤ vol(O2).

Proof. For i = 1, 2, consider the minimal families Fi of toric incompressible
non parallel suborbifolds that decompose Oi in geometric pieces. Since, by
definition, vol is additive with respect to these families, we may suppose that
F1 and F2 do not contain tori.
Since the branching degree of Oi is constant, Fi is either empty, a union of eu-
clidean turnovers S

2(3, 3, 3), or a union of pillows S
2(2, 2, 2, 2). The last case

is not possible for F2, since d2 > 2. Furthermore, if F2 contained an euclidean
turnover, then O1 would contain a spherical turnover S2(2, 2, 2). Since O1 is
irreducible, this spherical turnover bounds a discal orbifold whose singular
set is a graph, which contradicts the hypothesis that L′ is a link. Then F2 is
empty and O2 is a geometric orbifold.
Suppose O2 is not hyperbolic. By Proposition 5, either O2 − L′ admits a
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Seifert fibration which induces a Seifert fibration on O2, or O2 = (S3, L′, 3)
where L′ is the figure-eight knot. In the first case, both O1 and O2 are Seifert-
fibred and vol(O1) = vol(O2) = 0. In the latter case, O1 = (S3, L′, 2) is a
spherical orbifold since its double covering is a lens space [20]. We have again
vol(O1) = vol(O2) = 0.
There remains the case where O2 is an hyperbolic orbifold.
Suppose that ∂M is a nonempty union of tori T1, . . . , Tn. By Thurston’s Hy-
perbolic Surgery Theorem [23, 8, 2], there exist pairs of integers (ai, bi)i=1,...,n

such that the closed orbifold O2 obtained by Dehn filling of ratio (ai, bi) along
the tori Ti ⊂ ∂O2 verify

vol(O2) − ε < vol(O2) < vol(O2).

Since O1 is not necessarily hyperbolic, Thurston’s Hyperbolic Surgery Theo-
rem does not apply directly to it. Consider the JSJ decomposition of O1

O1 =
⋃

j

O
j
1.

Each torus Ti belongs to the boundary of a piece O
j
1 of this decomposition.

If O
j
1 is hyperbolic, we may apply Thurston’s Hyperbolic Surgery Theorem

to obtain a pair (ai, bi) such that the closed orbifold O
j

1 obtained from O
j
1 by

Dehn filling of ratio (ai, bi) along Ti is hyperbolic and its hyperbolic volume

is close to vol(Oj
1). If O

j
1 is a Seifert orbifold, we may choose the pair (ai, bi)

such that O
j

1 is still a Seifert orbifold. For that, it suffices that the fibres of

O
j
1 are not meridians of the glued solid torus. Then vol(O

j

1) = vol(Oj
1) = 0,

that is, we choose a Dehn filling on this Seifert piece that doesn’t change its
volume.
Since the pieces of the JSJ decomposition of the closed orbifold O1 are the

orbifolds O
j

1, we have that vol(O1) and vol(O1) are close.
Since O1 is a very good orbifold [14], there exists a manifold M and a finite
group G ⊂ Diff+(M) such that M/G ∼= O1. Lift the hyperbolic metric of
O2 by the projection p : M → O1 induced by the action of G, to obtain an
hyperbolic cone-manifold structure C on M . Its singular set is the singular
set L of the G-action with cone-angle 2π(d1/d2) < 2π. By Proposition 4,
vol(M) ≤ vol(C). Since the volumes of M and C are d1 times the volumes
of O1 and O2, respectively, then vol(O1) ≤ vol(O2). It follows from the above
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construction that vol(O1) < vol(O2) + ε, for every ε > 0, which shows that
vol(O1) ≤ vol(O2). �

We note that for d2 ≥ d1 ≥ 3 we could prove Theorem 6 without using
the method of Besson-Courtois-Gallot involved in the proof of Proposition
3. If d ≥ 4, we can assume that both O1 and O2 are closed hyperbolic
orbifolds. We can deform the cone hyperbolic metric of O1 to the cone
hyperbolic metric of O2. By [2], when we increase the cone-angles from 0,
no degeneration occurs, and the Schläfli formula [10, 13, 15] shows that the
hyperbolic volume decreases.
In the case d1 = 3, it still possible to use the same reasoning but we need to
cut O1 along the euclidean turnovers S2(3, 3, 3) of the JSJ family of O1 and
cut O2 along the corresponding family of hyperbolic turnovers S2(d2, d2, d2).
This family is isotopic to a family of totally geodesic turnovers [2]. Now
we must use the theory of deformations of hyperbolic manifolds with totally
geodesic boundary [5] to conclude that the hyperbolic volume also decreases
in this case.

3. Uniqueness of the degree

In this section we use Theorem 6 to prove Theorem 1.

Proof of Theorem 1. For i = 1, 2, let pi : M →M ′ be an (L, di)-covering,
and suppose d1 < d2.
For the case d1 = 1, we consider the Gromov simplicial volumes [9, 23] of
the pairs (M, ∂M) and (M ′, ∂M ′). Since p1 : (M, ∂M) → (M ′, ∂M ′) is a
diffeomorphism, we have ‖(M, ∂M)‖ = ‖(M ′, ∂M ′)‖. On the other hand
p2 : (M, ∂M) → (M ′, ∂M ′) has degree d2 > 1, which gives

‖(M, ∂M)‖ ≥ d2‖(M
′, ∂M ′)‖ > ‖(M ′, ∂M ′)‖,

a contradiction.
We suppose now that 2 ≤ d1 < d2. For i = 1, 2, let Oi be the quotient
orbifold of M by pi. By Theorem 6, vol(O1) ≤ vol(O2). Lifting the geometric
decomposition of Oi to M , we get a Gi−invariant geometric decomposition
of M . Hence,

0 ≤
vol(M)

d1
= vol(O1) ≤ vol(O2) =

vol(M)

d2
<∞.

Since d1 < d2, this inequality shows that M has null volume. Therefore both
orbifolds Oi contain no hyperbolic pieces.



8 A. SALGUEIRO

Let E ′
0 be an hyperbolic piece of the geometric decomposition of the exterior

E ′ of L′ (whose existence is granted by hypothesis) and L′
0 the union of

the connected components of L′ touching E ′
0. Since vol(Oi) = 0, the link

L′
0 is nonempty. We denote O

0
i the correspondent geometric suborbifold of

Oi, i = 1, 2. Proposition 5 shows that O0
2 = (S3, L′, 3), where L′ is the

figure-eight knot. Hence O0
2 = O2 and M ′ is an euclidean manifold. Again,

O1 = (S3, L′, 2) is a spherical orbifold. ThereforeM admits both an euclidean
and a spherical metric, which is impossible [21]. �

We end this section with an easy corollary.

Corollary 7. Let L ⊂ S
3 be a prime link. If L is not a an iterated cable then

all cyclic coverings of L are nonhomeomorphic.

Proof. This follows from the fact that the JSJ decomposition of the exterior
of a link has no hyperbolic piece iff the link is an iterated cable. �

4. Uniqueness of the action

In this section we prove Theorem 2. Let p1, p2 : M →M ′ be two branched
coverings over an hyperbolic link L′ with prime degrees. Then p1, p2 are
strongly branched coverings. Theorem 1 allows us to suppose that the degrees
of p1 and p2 are the same. Then Theorem 2 is a consequence of the following
theorem.

Theorem 8. Let M be a closed orientable manifold, M ′ is a Zd-homology
sphere where d is prime, and L′ ⊂ M ′ an hyperbolic link. Then any two
(L′, d)−coverings p1, p2 : M →M ′ are conjugated.

To prove this, we consider first the easier cases (d = 2, L′ is a knot, M is
not hyperbolic) and in Proposition 13 we prove the remaining case.

For i = 1, 2, let Gi be the covering group of the (L′, d)−covering pi : M →
M ′. Denote E ′, Ei the exteriors of L′ and L = p−1

i (L′), respectively. Since
the branched covering pi : M →M ′ induces a cyclic covering pi|Ei

: Ei → E ′,
we have the exact sequences

1 −→ π1(Ei)
pi∗−→ π1(E

′)
ρi−→ Zd −→ 1.

Since Zd is abelian, the representation ρi : π1(E
′) → Zd factors

π1(E
′)

ρi−→ Zd

ց ր
H1(E

′)

.
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We call the homomorphism ρi : H1(E
′) → Zd the holonomy of the covering

pi. The image ρ(µ) of the meridian of each component of L′ by the holonomy
of the covering is nontrivial.
Since M ′ is a Zd−homology sphere, the Mayer-Vietoris sequence of the
triple (M ′, E ′, V ′), where V ′ is a tubular neighbourhood of L′, shows that
H1(E

′; Zd) ∼= Zn
d , where n is the number of components of L′.

Proposition 9. Let p1, p2 : M → M ′ be two (L′, d)-coverings and its ho-
lonomies ρ1, ρ2 : H1(E

′) → Zd. If ker(ρ1) = ker(ρ2), then p1 and p2 are
conjugated.

Proof. Since ker(ρ1) = ker(ρ2), the coverings p1|E1
et p2|E2

are equivalent,
that is, the following diagram is commutative,

E1

ρi

−−−→ E2

p1 ↓ ↓ p2

E ′ ==== E ′

where h : E1 → E2 is a diffeomorphism and === represents the identity.
Then, if we note Gi|Ei

the group of restrictions to Ei of the diffeomorphisms
of Gi, we have

hG2|E2
h−1 = G1|E1

.

Now we want to extend h : E1 → E2 to a diffeomorphism M → M . The
inverse image by pi of d times the meridian µ of each component of L′ is a
meridian µi of a component of Li. Then h(µ1) = µ2, that is, the meridian of
each component of L1 is sent by h over the meridian of a component of L2.
This shows that h can be extended to M . �

Corollary 10. Theorem 8 is true for d = 2.

Proof. There is a single homomorphism ρ : H1(E
′) → Z2 such that the

image of the meridians of each connected component of L′ is non trivial. �

Now we suppose that the singular set L′ of M ′ is a knot and, with this
condition, we prove that G1 and G2 are conjugated in Diff+(M).

Proposition 11. If M ′ is a Zd−homology sphere and L′ is a knot in M ′,
then any two (L′, d)−coverings p1, p2 : M →M ′ are conjugated.

Proof. Since L′ is a knot, H1(E
′) ∼= Zd. Therefore, a nontrivial homomor-

phism ρ : H1(E
′) → Zd is unique, up to right compositions by an automor-

phism of Gi, for d is prime. Then the kernels of the holonomies ρ1 et ρ2 are
the same for the two actions. By Proposition 9, p1 and p2 are conjugated.
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Corollary 12. Theorem 8 is true when d ≥ 3 and M is not an hyperbolic
manifold.

Proof. Since d ≥ 3 and M ′ is a Zd-homology sphere, Thurston’s Orbifold
Theorem shows that O is a geometric orbifold. Since O is not hyperbolic and
the exterior E ′ of L′ is hyperbolic, Proposition 5 shows that O = (S3, L′, 3),
where L′ is the figure-eight knot. The conclusion that the two Z3-actions on
M are conjugated follows from Proposition 11. �

We now prove Theorem 8 when M is an hyperbolic manifold, L′ is discon-
nected and d ≥ 3.

Proposition 13. Let M be a closed hyperbolic manifold. Let G1 and G2 two
nonfree actions of the cyclic group Zd on M , with d ≥ 3 prime. Then the
actions of G1 and G2 are conjugated if and only if the quotient orbifolds are
diffeomorphic.

The orbifold theorem shows that the actions of G1 and G2 are conjugated
to isometric actions. We may then suppose that G1 and G2 are isometry
groups of M . Note

Li = Fix(Gi),

the set of fixed points of Gi. Since Gi is a cyclic group of prime order, the
covering of M ′ by M is strongly branched. Therefore both links Li contain
the same number of connected components as L′.

Lemma 14. The group Gi is the group of isometries of M that fix Li point-
wise.

Proof. Let K be a component of Li and x an isometry of M such that
K ⊆ Fix(x). Let K̃ be a component of the covering of K in H3. Since x
and the generator gi of Gi fix K pointwise, there are isometries x̃ and g̃i of
H3 that project respectively over x and gi and fix K̃ pointwise. Then x̃ and
g̃i are rotations around the hyperbolic line K̃, thus commuting in PSL2(C).
Then x and gi commute in Isom(M). This shows that x projects by pi over
an isometry x′ of O that fixes L′ pointwise. Since M ′ is a Zd−homology
sphere and L′ is disconnected, it follows that the isometry x′ is trivial [4],
and therefore x ∈ Gi. �

Since M is an hyperbolic manifold, the isometry group of M is finite. Since
d is a prime number, Isom(M) contains a Sylow d-group S. After conjugating
by an isometry, we may suppose that G1 and G2 are in S. We will prove that
G1 and G2 are the same. Note Ni = NS(Gi) the normaliser of Gi in S.
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Lemma 15. The group Ni is the group of isometries of M that fixes Li
setwise.

Proof. Let x ∈ Isom(M) be such that x(Li) = Li. Then Fix(x−1Gix) =
x(FixGi) = x(Li) = Li. Lemma 14 shows then that x−1Gix ⊆ Gi, and
therefore x ∈ Ni. The reciprocal inclusion is immediate. �

The following proposition was proved in [17] in a more general form, where
the degree is not necessarily prime.

Proposition 16. If G1 6= G2, then L′ has d components.

Proof. By Sylow theory, either N1 = S or N1 contains a subgroup xG1x
−1 6=

G1, where x ∈ S −N1.
In the first case, we haveG2 ⊂ N1. ThenG′

2 = p1(G2) is a nontrivial subgroup
of Isom+(O). Since Fix(G′

2) is nonempty and M ′ is a Zd−homology sphere,
then Fix(G′

2) is a knot. Then the number of components of L2 = Fix(G2)
divides |G1| = d. Since d is prime, the link L2 (and therefore L′) has d
components.
In the second case, let y ∈ xG1x

−1 − G1. Then Fix(y) = Fix(xg1x
−1) =

x(Fix(g1)) = x(L1), which is a link with the same number of components as
L1. Since y ∈ N1 − G1, then y′ = p1(y) is a nontrivial isometry of O. Since
Fix(y′) 6= ∅ and M ′ is a Zd−homology sphere, then Fix(y′) is a knot. Then
the number of components of Fix(y) divides |G1| = d and as before L′ has d
components. �

Since d is prime, an element of Ni either preserves each component of Li,
or it permutes cyclically the components of Li. We consider both cases in
Propositions 17 and 18.

Proposition 17. If every element of N1 (or N2) preserves each component
of L1 (respectively L2), then G1 = G2.

Proof. By hypothesis, N1 contains only hyperbolic transformations which
keeps invariant a tubular neighbourhood of each component of L1. They act
on this tubular neighbourhood as rotations along and around its axis with
order a power of d. Then N1 is a subgroup of Zdr ⊕ Zds, where the first
factor corresponds to rotations around the components of L1 and the second
corresponds to rotations along these components.
The group N1 induces a group of isometries N ′

1 of the quotient orbifold O,
which is a subgroup of Zdr−1 ⊕ Zds. We will prove that N ′

1 is cyclic.
First notice that N ′

1 cannot contain a nontrivial element (a, 0), since this
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isometry of O would act on a tubular neighbourhood of L′ as a rotation
around the components of L′. Since M ′ is a Zd−homology sphere, this is
impossible by Smith theory. Then N ′

1 cannot contain two distinct elements
(a1, b) and (a2, b), since it would contain also the nontrivial element (a1 −
a2, 0). Therefore N ′

1 is generated by the unique element η = (a, b) with
minimal positive second coordinate.
Let k be the smallest integer such that A′ = Fix(ηd

k

) is nonempty. Since
M ′ is a Zd−homology sphere, A′ is a knot. For every element x′ of N ′

1, we
have either Fix(x′) = ∅, or Fix(x′) = A′, since N ′

1 is cyclic. Then, for every
element x of N1 −G1, we have Fix(x) ⊆ p−1

1 (A′). Since d is a prime number,

A = p−1
1 (A′)

is either a knot, or a link with d components. Now consider an element
x ∈ N1 such that Fix(x) is a link with d components. Then Fix x = L1 or
Fixx = A, according to if x ∈ G1 or not.
Now we want to prove that NS(N1) = N1. Choose any element y ∈ NS(N1).
The preceding argument shows that either y(L1) = L1, or y(L1) = A. In
the second case, we have y2(L1) = L1. Then, the isometry y has even order,
which contradicts the hypothesis that d is prime and greater than 2. It follows
that y(L1) = L1. Lemma 15 shows that y ∈ N1, for every y ∈ NS(N1). Then
NS(N1) = N1. Sylow theory shows then that N1 = S.
We have proven that S is commutative. Then G1 and G2 commute and
thereforeG′

1 = p2(G1) is a subgroup of Isom+(O). SinceM ′ is a Zd−homology
sphere, if G′

1 was nontrivial, FixG′
1 would be a knot. Then G2 would permute

the components of L1, which contradicts the hypothesis, and therefore G′
1 is

trivial, and G1 = G2. �

To conclude the proof of Theorem 13, there remains to prove the case where
N1 and N2 contain both elements that permute cyclically the d components
of L1, respectively L2.

Proposition 18. If, for i = 1, 2, Ni contains an element xi that permutes
cyclically the d components of Li, then G1 = G2.

Proof. Let xi ∈ Ni be such an element. We have xigix
−1
i ∈ Gi, and therefore

it exists an integer ki ∈ {0, 1, . . . , d− 1} such that

xigix
−1
i = gki

i .
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Then x2
igix

−2
i = xig

ki

i x
−1
i =

(
xigix

−1
i

)ki = g
k2

i

i and, more generally,

xligi = g
kl

i

i x
l
i.

Then, for l = d, we obtain xdi gi = g
kd

i

i x
d
i . Since xdi and gi keep invariant each

component of Li, they commute. It follows that

gi = g
kd

i

i .

Since d is prime, we obtain from the Fermat’s little theorem the congruence
kdi ≡ ki(mod d), and therefore gi = gki

i and ki = 1. Then xi commutes with
gi.
Then gi acts locally as a rotation around each component of Li with the same
angle of rotation. Then, the arrow

H1(M
′ − L′; Zd) ∼= Zd ⊕ · · · ⊕ Zd → Gi

sends each meridian to the same power of gi, up to automorphisms of Gi.
Then the kernels of the holonomies associated to G1 and G2 are the same.
By Proposition 9, G1 and G2 are conjugated. �
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