ORDERS AND ACTIONS OF BRANCHED COVERINGS OF HYPERBOLIC LINKS

ANTÓNIO SALGUEIRO

ABSTRACT: Let M, M' be compact oriented 3-manifolds and L' a link in M' whose exterior has positive Gromov norm. We prove that the topological types of M and (M', L') determine the degree of a strongly cyclic covering $p: M \to M'$, branched over L'. Moreover, if M' is an homology sphere then these topological types determine also the covering up to conjugacy.

KEYWORDS: Group actions, strongly branched coverings, orbifolds, hyperbolic volume.

AMS SUBJECT CLASSIFICATION (2000): 57M12, 57M25, 57M50.

1. Introduction

Let M, M' be compact, oriented 3-manifolds and G a group that acts orientation-preservingly on M, with $M/G \cong M'$. Suppose that M and M' are hyperbolic. If G acts freely then the natural projection $p: M \to M'$ is a covering and the order of G is given by $|G| = \operatorname{vol}(M)/\operatorname{vol}(M')$, where vol is the hyperbolic volume. A similar reasoning applies to manifolds which are not necessarily hyperbolic but whose JSJ decompositions [11, 12] contain hyperbolic pieces; it suffices to take the ratio between the sums of volumes of hyperbolic pieces of M and M'.

In this paper we consider the uniqueness problem of |G| and of the conjugacy class of G in Diff⁺(M) when the action is not free. Let $L' \subset M'$ be a nonempty link and G a group that acts orientation-preservingly on M, such that the natural projection $p: M \to M/G \cong M'$ is a branched covering, with branch set L'. The pre-image of L' in M is a link L. The link $L' \subset M'$ is *prime* if every embedded sphere in M' that cuts L' transversally in two points bounds a submanifold that intersects L' in an unknotted arc.

If $p: M \to M'$ is a branched covering over L' with covering group G, and the stabiliser of each point $x \in L = p^{-1}(L')$ equals G then p is called a covering of M' strongly branched over L'. When $p: M \to M'$ is a strongly branched covering, G is a cyclic group and the branching order of every component of L' is the same and equal to d = |G|. We will call p an (L', d)-covering and

Received December 18, 2006.

note O = (M', L', d) its quotient orbifold, that is, the orbifold with underlying manifold M', singular set L' and branching order d along every component of L'.

The main results of this paper are the following theorems.

Theorem 1. Let M and M' be compact, orientable, 3-manifolds, whose boundary is a (possibly empty) disjoint union of tori. Let $L' \subset M'$ be a prime link. If the exterior of L' in M' is irreducible and its JSJ decomposition contains an hyperbolic piece, then there exists at most one positive integer d for which M is a d-fold covering of M', strongly branched over L'.

Theorem 2. Let M' be an integral homology sphere and $L' \subset M'$ an hyperbolic link. Then, for each manifold M, any two cyclic coverings $p_1, p_2 : M \to M'$ branched over L', of prime degrees, are conjugated.

For completeness sake, in Theorem 1 we allow d to be 1, that is, we show that M' is not a self-covering strongly branched over a link. In [19] we consider the analogous problem for links whose exterior is a graph manifold.

To prove Theorem 1 we define the volume of an orbifold in section 2, and show that, under certain conditions, this volume increases with the branching order of the orbifold, a result that is interesting on its own. In section 3 we deduce Theorem 1 and in section 4 we prove Theorem 2.

This paper contains results obtained in [18], under the supervision of Professor Michel Boileau. I deeply thank him for his endless support.

2. Volumes of orbifolds

Since the exterior E' of L' is irreducible and L' is a prime link, it follows that O is irreducible. By [3], there is a finite family T of essential toric 2suborbifolds, disjoints, embedded in O such that each connected component of the complement M' - N(T) of a regular neighbourhood N(T) of T is either atoroidal or a Seifert orbifold. Moreover, such a minimal family is unique up to isotopy. We call it the JSJ family of O. By Thurston's Orbifold Theorem [2], the interior of the atoroidal pieces is either hyperbolic, euclidean, or admits a Seifert fibration. If O is not atoroidal, it may also admit a geometry modelled on the Lie group Sol. We define the volume of O as the sum of the hyperbolic volumes of all the hyperbolic pieces of the JSJ decomposition of O, and note it vol(O). By Mostow's rigidity theorem [1, 16], these hyperbolic volumes are topological invariants, which implies that the volume of O is well-defined. In this section, we establish a result relating the volume of an orbifold with its branching order. We make use of the following result of Souto [22] to compare the volume of a manifold with the volume of a metric defined on it with sectional curvature bounded below.

Proposition 3. Let M be a closed, orientable, irreducible, geometrisable 3manifold. Let g be a metric on M with sectional curvature bounded below by -1. Then $vol(M) \leq vol(M, g)$.

In Theorem 6 we will consider cone-manifold structures on a manifold, so we derive from this proposition the following result.

Proposition 4. Let M be a closed orientable, irreducible, geometrisable 3manifold and C an hyperbolic cone-manifold structure on M. Then $vol(M) \leq vol(C)$.

Proof. To apply the previous proposition we need to replace the singular metric g_C defined on M by a smooth metric. For each $\varepsilon > 0$, we will obtain a smooth metric g_{ε} on M, with sectional curvature bounded below by -1, such that

$$\operatorname{vol}(M, g_{\varepsilon}) < u(\varepsilon) \operatorname{vol}(M, g_C),$$

where u is a function such that $\lim_{\varepsilon \to 0} u(\varepsilon) = 1$.

Let V be a tubular neighbourhood of the singular set L of C, with radius r_0 . The cone hyperbolic metric g_C is given on V by

$$ds^{2} = dr^{2} + f^{2}(r) d\theta^{2} + g^{2}(r) dz^{2}$$

where $f(r) = (d_1/d_2) \sinh r$ and $g(r) = \cosh r$. For $\delta > 0$ sufficiently small, we replace the singular metric g_C in V by a metric g_{ε}^* given by

$$ds^2 = dr^2 + \varphi^2(r) \, d\theta^2 + \gamma^2(r) \, dz^2$$

where $\varphi, \gamma : [0, r_0 - \delta] \rightarrow [0, +\infty)$ are smooth functions such that:

(1) in a neighbourhood of 0, $\varphi(r) = r$ and $\gamma(r)$ is constant;

(2) in a neighbourhood of
$$r_0 - \delta$$
, $\varphi(r) = f(r+\delta)$ and $\gamma(r) = g(r+\delta)$;
(3) $\forall r \in [0, r_0 - \delta], \frac{\varphi''(r)}{\varphi(r)} \le 1 + \varepsilon, \frac{\gamma''(r)}{\gamma(r)} \le 1 + \varepsilon$ and $\frac{\varphi'(r)\gamma'(r)}{\varphi(r)\gamma(r)} \le 1 + \varepsilon$.

Note $f_{\delta}(r) = f(r+\delta)$ and $g_{\delta}(r) = g(r+\delta)$. Let r_1 be the smallest positive solution of the equation $f_{\delta}(r) = r$. Set $\varphi = f_{\delta}$ in $[2r_1, r_0 - \delta]$. To define φ in $[0, 2r_1]$, set $\varphi = id$ in a small neighbourhood of 0 and extend smoothly with $\varphi'' < 0 < \varphi'$ until $r_1, \varphi(r_1) \approx f_{\delta}(r_1)$ and $\varphi'(r_1) \approx f'_{\delta}(r_1)$. Then extend

 φ smoothly to $[r_1, 2r_1]$ so that φ'' becomes rapidly close to f_{δ}'' and finally maintain φ , φ' and φ'' close to f_{δ} , f_{δ}' , f_{δ}'' (see Figure 1). Now we construct γ . Set $\gamma = g_{\delta}$ in a small neighbourhood of $r_0 - \delta$. Extend γ smoothly to $[2r_1, r_0 - \delta]$ putting $\gamma'' < g_{\delta}', \gamma' < g_{\delta}'$ except in a small neighbourhood of $2r_1$ and $\gamma''(2r_1) = \gamma'(2r_1) = 0$. Finally extend γ to $[0, 2r_1]$ keeping it constant. Choosing a small δ (hence a small r_1) gives $\gamma \approx g_{\delta}, \gamma' \approx g_{\delta}'$ in $[2r_1, r_0 - \delta]$.

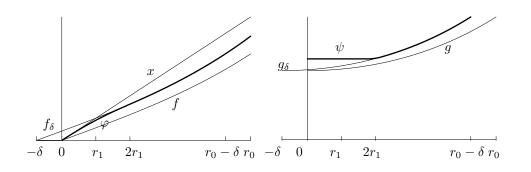


FIGURE 1. Graphs of φ and ψ

By construction, the quotients given in (3) (which are symmetrical to the sectional curvatures of g_{ε}^*), are all bounded above by $1 + \varepsilon$: in $[0, 2r_1]$, the latter two quotients are zero and the bound on the first quotient comes from the closeness of φ'' and f_{δ}'' ; in $[2r_1, r_0 - \delta]$, the bound comes from $\varphi = f_{\delta}$ and the closeness of γ and g_{δ} and of their derivatives.

Condition (2) insures that we may glue the metric g_{ε}^* in V to the metric g_C in C - V along ∂V . The smooth riemannian metric obtained in M', which we note also g_{ε}^* , has sectional curvature bounded below by $-1 - \varepsilon$.

When $\delta \to 0$, the functions φ and γ approach respectively f and g so that volume $\operatorname{vol}(V, g_{\varepsilon}^*)$ approaches $\operatorname{vol}(V, g_C)$. Then, for $\delta > 0$ sufficiently small, g^* is a smooth metric on M', with sectional curvature bounded below by $-1 - \varepsilon$, such that $\operatorname{vol}(V, g_{\varepsilon}^*) < (1 + \varepsilon) \operatorname{vol}(V, g_C)$. Then $g_{\varepsilon} = (1 + \varepsilon)^{1/2} g^*$ is a metric on M' with sectional curvature bounded below by -1 and

$$\operatorname{vol}(M, g_{\varepsilon}) < (1 + \varepsilon)^{3/2} \operatorname{vol}(M, g^*) < (1 + \varepsilon)^{5/2} \operatorname{vol}(M, g_C)$$

Since by Proposition 3, $\operatorname{vol}(M) \leq \operatorname{vol}(M, g_{\varepsilon})$, for every $\varepsilon > 0$, it follows that $\operatorname{vol}(M) \leq \operatorname{vol}(C)$.

The following proposition will be useful to classify the non-hyperbolic orbifolds that may appear. **Proposition 5.** Let O = (M', L', d) be a geometric 3-orbifold where L' is nonempty and $d \ge 3$. If O is not hyperbolic, then either O - L' admits a Seifert fibration which induces a Seifert fibration on O, or $O = (\mathbb{S}^3, L', 3)$ where L' is the figure-eight knot.

Proof. Since O is geometric but not hyperbolic, it is a spherical, euclidean, Seifert or Sol orbifold. We study each case separately.

Suppose that O is a Seifert orbifold. Since d > 2, every component of L' is a fibre of O and O - L' admits a Seifert fibration.

If O is a Sol orbifold, there is a non-free action of a group G of isometries of Sol such that $\operatorname{Sol}/G \cong O$. Let $x \in \operatorname{Sol}$ be a singular point of this action. Since the stabiliser of x is the dihedral group D_4 [21], then d = 2, which contradicts the hypothesis that $d \geq 3$.

Suppose now that O is a spherical orbifold that doesn't admit Seifert fibrations. By [7], the singular set of O contains vertices, which contradicts the hypothesis that L' is a link.

If O is an euclidean orbifold that doesn't admit Seifert fibrations and its singular set is a link, the classification of crystallographic groups [6] shows that the underlying space of O is the sphere \mathbb{S}^3 and its singular set is the figure-eight knot with branching order d = 3.

Now we use Propositions 4 and 5 to obtain the main result of this section.

Theorem 6. Let M' be a compact, orientable 3-manifold whose boundary is a (possibly empty) disjoint union of tori and $L' \subset M'$ a nonempty link. For i = 1, 2, let $O_i = (M, L', d_i)$, with $2 \le d_1 < d_2$. If O_1 and O_2 are irreducible then $vol(O_1) \le vol(O_2)$.

Proof. For i = 1, 2, consider the minimal families F_i of toric incompressible non parallel suborbifolds that decompose O_i in geometric pieces. Since, by definition, vol is additive with respect to these families, we may suppose that F_1 and F_2 do not contain tori.

Since the branching degree of O_i is constant, F_i is either empty, a union of euclidean turnovers $S^2(3,3,3)$, or a union of pillows $S^2(2,2,2,2,2)$. The last case is not possible for F_2 , since $d_2 > 2$. Furthermore, if F_2 contained an euclidean turnover, then O_1 would contain a spherical turnover $S^2(2,2,2,2)$. Since O_1 is irreducible, this spherical turnover bounds a discal orbifold whose singular set is a graph, which contradicts the hypothesis that L' is a link. Then F_2 is empty and O_2 is a geometric orbifold.

Suppose O_2 is not hyperbolic. By Proposition 5, either $O_2 - L'$ admits a

Seifert fibration which induces a Seifert fibration on O_2 , or $O_2 = (\mathbb{S}^3, L', 3)$ where L' is the figure-eight knot. In the first case, both O_1 and O_2 are Seifertfibred and $\operatorname{vol}(O_1) = \operatorname{vol}(O_2) = 0$. In the latter case, $O_1 = (\mathbb{S}^3, L', 2)$ is a spherical orbifold since its double covering is a lens space [20]. We have again $\operatorname{vol}(O_1) = \operatorname{vol}(O_2) = 0$.

There remains the case where O_2 is an hyperbolic orbifold. Suppose that ∂M is a nonempty union of tori T_1, \ldots, T_n . By Thurston's Hyperbolic Surgery Theorem [23, 8, 2], there exist pairs of integers $(a_i, b_i)_{i=1,\ldots,n}$ such that the closed orbifold \overline{O}_2 obtained by Dehn filling of ratio (a_i, b_i) along the tori $T_i \subset \partial O_2$ verify

$$\operatorname{vol}(\mathsf{O}_2) - \varepsilon < \operatorname{vol}(\overline{\mathsf{O}}_2) < \operatorname{vol}(\mathsf{O}_2).$$

Since O_1 is not necessarily hyperbolic, Thurston's Hyperbolic Surgery Theorem does not apply directly to it. Consider the JSJ decomposition of O_1

$$\mathsf{O}_1 = \bigcup_j \mathsf{O}_1^j.$$

Each torus T_i belongs to the boundary of a piece O_1^j of this decomposition. If O_1^j is hyperbolic, we may apply Thurston's Hyperbolic Surgery Theorem to obtain a pair (a_i, b_i) such that the closed orbifold $\overline{\mathsf{O}}_1^j$ obtained from O_1^j by Dehn filling of ratio (a_i, b_i) along T_i is hyperbolic and its hyperbolic volume is close to $\operatorname{vol}(\mathsf{O}_1^j)$. If O_1^j is a Seifert orbifold, we may choose the pair (a_i, b_i) such that $\overline{\mathsf{O}}_1^j$ is still a Seifert orbifold. For that, it suffices that the fibres of O_1^j are not meridians of the glued solid torus. Then $\operatorname{vol}(\overline{\mathsf{O}}_1^j) = \operatorname{vol}(\mathsf{O}_1^j) = 0$, that is, we choose a Dehn filling on this Seifert piece that doesn't change its volume.

Since the pieces of the JSJ decomposition of the closed orbifold \overline{O}_1 are the orbifolds \overline{O}_1^j , we have that $vol(\overline{O}_1)$ and $vol(O_1)$ are close.

Since $\overline{\mathsf{O}}_1$ is a very good orbifold [14], there exists a manifold M and a finite group $G \subset \text{Diff}^+(M)$ such that $M/G \cong \overline{\mathsf{O}}_1$. Lift the hyperbolic metric of $\overline{\mathsf{O}}_2$ by the projection $p: M \to \overline{\mathsf{O}}_1$ induced by the action of G, to obtain an hyperbolic cone-manifold structure C on M. Its singular set is the singular set L of the G-action with cone-angle $2\pi(d_1/d_2) < 2\pi$. By Proposition 4, $\operatorname{vol}(M) \leq \operatorname{vol}(C)$. Since the volumes of M and C are d_1 times the volumes of $\overline{\mathsf{O}}_1$ and $\overline{\mathsf{O}}_2$, respectively, then $\operatorname{vol}(\overline{\mathsf{O}}_1) \leq \operatorname{vol}(\overline{\mathsf{O}}_2)$. It follows from the above construction that $vol(O_1) < vol(O_2) + \varepsilon$, for every $\varepsilon > 0$, which shows that $vol(O_1) \le vol(O_2)$.

We note that for $d_2 \ge d_1 \ge 3$ we could prove Theorem 6 without using the method of Besson-Courtois-Gallot involved in the proof of Proposition 3. If $d \ge 4$, we can assume that both O_1 and O_2 are closed hyperbolic orbifolds. We can deform the cone hyperbolic metric of O_1 to the cone hyperbolic metric of O_2 . By [2], when we increase the cone-angles from 0, no degeneration occurs, and the Schläfli formula [10, 13, 15] shows that the hyperbolic volume decreases.

In the case $d_1 = 3$, it still possible to use the same reasoning but we need to cut O_1 along the euclidean turnovers $S^2(3,3,3)$ of the JSJ family of O_1 and cut O_2 along the corresponding family of hyperbolic turnovers $S^2(d_2, d_2, d_2)$. This family is isotopic to a family of totally geodesic turnovers [2]. Now we must use the theory of deformations of hyperbolic manifolds with totally geodesic boundary [5] to conclude that the hyperbolic volume also decreases in this case.

3. Uniqueness of the degree

In this section we use Theorem 6 to prove Theorem 1.

Proof of Theorem 1. For i = 1, 2, let $p_i : M \to M'$ be an (L, d_i) -covering, and suppose $d_1 < d_2$.

For the case $d_1 = 1$, we consider the Gromov simplicial volumes [9, 23] of the pairs $(M, \partial M)$ and $(M', \partial M')$. Since $p_1 : (M, \partial M) \to (M', \partial M')$ is a diffeomorphism, we have $||(M, \partial M)|| = ||(M', \partial M')||$. On the other hand $p_2 : (M, \partial M) \to (M', \partial M')$ has degree $d_2 > 1$, which gives

$$||(M, \partial M)|| \ge d_2 ||(M', \partial M')|| > ||(M', \partial M')||,$$

a contradiction.

We suppose now that $2 \leq d_1 < d_2$. For i = 1, 2, let O_i be the quotient orbifold of M by p_i . By Theorem 6, $vol(O_1) \leq vol(O_2)$. Lifting the geometric decomposition of O_i to M, we get a G_i -invariant geometric decomposition of M. Hence,

$$0 \le \frac{\operatorname{vol}(M)}{d_1} = \operatorname{vol}(\mathsf{O}_1) \le \operatorname{vol}(\mathsf{O}_2) = \frac{\operatorname{vol}(M)}{d_2} < \infty.$$

Since $d_1 < d_2$, this inequality shows that M has null volume. Therefore both orbifolds O_i contain no hyperbolic pieces.

7

Let E'_0 be an hyperbolic piece of the geometric decomposition of the exterior E' of L' (whose existence is granted by hypothesis) and L'_0 the union of the connected components of L' touching E'_0 . Since $\operatorname{vol}(\mathsf{O}_i) = 0$, the link L'_0 is nonempty. We denote O_i^0 the correspondent geometric suborbifold of O_i , i = 1, 2. Proposition 5 shows that $\mathsf{O}_2^0 = (\mathbb{S}^3, L', 3)$, where L' is the figure-eight knot. Hence $\mathsf{O}_2^0 = \mathsf{O}_2$ and M' is an euclidean manifold. Again, $\mathsf{O}_1 = (\mathbb{S}^3, L', 2)$ is a spherical orbifold. Therefore M admits both an euclidean and a spherical metric, which is impossible [21].

We end this section with an easy corollary.

Corollary 7. Let $L \subset \mathbb{S}^3$ be a prime link. If L is not a an iterated cable then all cyclic coverings of L are nonhomeomorphic.

Proof. This follows from the fact that the JSJ decomposition of the exterior of a link has no hyperbolic piece iff the link is an iterated cable. \Box

4. Uniqueness of the action

In this section we prove Theorem 2. Let $p_1, p_2 : M \to M'$ be two branched coverings over an hyperbolic link L' with prime degrees. Then p_1, p_2 are strongly branched coverings. Theorem 1 allows us to suppose that the degrees of p_1 and p_2 are the same. Then Theorem 2 is a consequence of the following theorem.

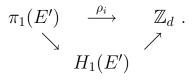
Theorem 8. Let M be a closed orientable manifold, M' is a \mathbb{Z}_d -homology sphere where d is prime, and $L' \subset M'$ an hyperbolic link. Then any two (L', d)-coverings $p_1, p_2 : M \to M'$ are conjugated.

To prove this, we consider first the easier cases (d = 2, L' is a knot, M is not hyperbolic) and in Proposition 13 we prove the remaining case.

For i = 1, 2, let G_i be the covering group of the (L', d)-covering $p_i : M \to M'$. Denote E', E_i the exteriors of L' and $L = p_i^{-1}(L')$, respectively. Since the branched covering $p_i : M \to M'$ induces a cyclic covering $p_{i|E_i} : E_i \to E'$, we have the exact sequences

$$1 \longrightarrow \pi_1(E_i) \xrightarrow{p_{i*}} \pi_1(E') \xrightarrow{\rho_i} \mathbb{Z}_d \longrightarrow 1.$$

Since \mathbb{Z}_d is abelian, the representation $\rho_i : \pi_1(E') \to \mathbb{Z}_d$ factors



We call the homomorphism $\rho_i : H_1(E') \to \mathbb{Z}_d$ the holonomy of the covering p_i . The image $\rho(\mu)$ of the meridian of each component of L' by the holonomy of the covering is nontrivial.

Since M' is a \mathbb{Z}_d -homology sphere, the Mayer-Vietoris sequence of the triple (M', E', V'), where V' is a tubular neighbourhood of L', shows that $H_1(E'; \mathbb{Z}_d) \cong \mathbb{Z}_d^n$, where n is the number of components of L'.

Proposition 9. Let $p_1, p_2 : M \to M'$ be two (L', d)-coverings and its holonomies $\rho_1, \rho_2 : H_1(E') \to \mathbb{Z}_d$. If $\ker(\rho_1) = \ker(\rho_2)$, then p_1 and p_2 are conjugated.

Proof. Since $\ker(\rho_1) = \ker(\rho_2)$, the coverings $p_{1|E_1}$ et $p_{2|E_2}$ are equivalent, that is, the following diagram is commutative,

where $h: E_1 \to E_2$ is a diffeomorphism and == represents the identity. Then, if we note $G_{i|E_i}$ the group of restrictions to E_i of the diffeomorphisms of G_i , we have

$$hG_{2|E_2}h^{-1} = G_{1|E_1}$$

Now we want to extend $h: E_1 \to E_2$ to a diffeomorphism $M \to M$. The inverse image by p_i of d times the meridian μ of each component of L' is a meridian μ_i of a component of L_i . Then $h(\mu_1) = \mu_2$, that is, the meridian of each component of L_1 is sent by h over the meridian of a component of L_2 . This shows that h can be extended to M.

Corollary 10. Theorem 8 is true for d = 2.

Proof. There is a single homomorphism $\rho : H_1(E') \to \mathbb{Z}_2$ such that the image of the meridians of each connected component of L' is non trivial. \Box

Now we suppose that the singular set L' of M' is a knot and, with this condition, we prove that G_1 and G_2 are conjugated in Diff⁺(M).

Proposition 11. If M' is a \mathbb{Z}_d -homology sphere and L' is a knot in M', then any two (L', d)-coverings $p_1, p_2 : M \to M'$ are conjugated.

Proof. Since L' is a knot, $H_1(E') \cong \mathbb{Z}_d$. Therefore, a nontrivial homomorphism $\rho : H_1(E') \to \mathbb{Z}_d$ is unique, up to right compositions by an automorphism of G_i , for d is prime. Then the kernels of the holonomies ρ_1 et ρ_2 are the same for the two actions. By Proposition 9, p_1 and p_2 are conjugated.

Corollary 12. Theorem 8 is true when $d \ge 3$ and M is not an hyperbolic manifold.

Proof. Since $d \geq 3$ and M' is a \mathbb{Z}_d -homology sphere, Thurston's Orbifold Theorem shows that O is a geometric orbifold. Since O is not hyperbolic and the exterior E' of L' is hyperbolic, Proposition 5 shows that $O = (\mathbb{S}^3, L', 3)$, where L' is the figure-eight knot. The conclusion that the two \mathbb{Z}_3 -actions on M are conjugated follows from Proposition 11.

We now prove Theorem 8 when M is an hyperbolic manifold, L' is disconnected and $d \geq 3$.

Proposition 13. Let M be a closed hyperbolic manifold. Let G_1 and G_2 two nonfree actions of the cyclic group \mathbb{Z}_d on M, with $d \ge 3$ prime. Then the actions of G_1 and G_2 are conjugated if and only if the quotient orbifolds are diffeomorphic.

The orbifold theorem shows that the actions of G_1 and G_2 are conjugated to isometric actions. We may then suppose that G_1 and G_2 are isometry groups of M. Note

$$L_i = \operatorname{Fix}(G_i),$$

the set of fixed points of G_i . Since G_i is a cyclic group of prime order, the covering of M' by M is strongly branched. Therefore both links L_i contain the same number of connected components as L'.

Lemma 14. The group G_i is the group of isometries of M that fix L_i pointwise.

Proof. Let K be a component of L_i and x an isometry of M such that $K \subseteq \operatorname{Fix}(x)$. Let \widetilde{K} be a component of the covering of K in \mathbb{H}^3 . Since x and the generator g_i of G_i fix K pointwise, there are isometries \widetilde{x} and \widetilde{g}_i of \mathbb{H}^3 that project respectively over x and g_i and fix \widetilde{K} pointwise. Then \widetilde{x} and \widetilde{g}_i are rotations around the hyperbolic line \widetilde{K} , thus commuting in $\operatorname{PSL}_2(\mathbb{C})$. Then x and g_i commute in $\operatorname{Isom}(M)$. This shows that x projects by p_i over an isometry x' of O that fixes L' pointwise. Since M' is a \mathbb{Z}_d -homology sphere and L' is disconnected, it follows that the isometry x' is trivial [4], and therefore $x \in G_i$.

Since M is an hyperbolic manifold, the isometry group of M is finite. Since d is a prime number, Isom(M) contains a Sylow d-group S. After conjugating by an isometry, we may suppose that G_1 and G_2 are in S. We will prove that G_1 and G_2 are the same. Note $N_i = N_S(G_i)$ the normaliser of G_i in S.

Lemma 15. The group N_i is the group of isometries of M that fixes L_i setwise.

Proof. Let $x \in \text{Isom}(M)$ be such that $x(L_i) = L_i$. Then $\text{Fix}(x^{-1}G_ix) = x(\text{Fix} G_i) = x(L_i) = L_i$. Lemma 14 shows then that $x^{-1}G_ix \subseteq G_i$, and therefore $x \in N_i$. The reciprocal inclusion is immediate.

The following proposition was proved in [17] in a more general form, where the degree is not necessarily prime.

Proposition 16. If $G_1 \neq G_2$, then L' has d components.

Proof. By Sylow theory, either $N_1 = S$ or N_1 contains a subgroup $xG_1x^{-1} \neq G_1$, where $x \in S - N_1$.

In the first case, we have $G_2 \subset N_1$. Then $G'_2 = p_1(G_2)$ is a nontrivial subgroup of Isom⁺(**O**). Since $\operatorname{Fix}(G'_2)$ is nonempty and M' is a \mathbb{Z}_d -homology sphere, then $\operatorname{Fix}(G'_2)$ is a knot. Then the number of components of $L_2 = \operatorname{Fix}(G_2)$ divides $|G_1| = d$. Since d is prime, the link L_2 (and therefore L') has dcomponents.

In the second case, let $y \in xG_1x^{-1} - G_1$. Then $\operatorname{Fix}(y) = \operatorname{Fix}(xg_1x^{-1}) = x(\operatorname{Fix}(g_1)) = x(L_1)$, which is a link with the same number of components as L_1 . Since $y \in N_1 - G_1$, then $y' = p_1(y)$ is a nontrivial isometry of O . Since $\operatorname{Fix}(y') \neq \emptyset$ and M' is a \mathbb{Z}_d -homology sphere, then $\operatorname{Fix}(y')$ is a knot. Then the number of components of $\operatorname{Fix}(y)$ divides $|G_1| = d$ and as before L' has d components.

Since d is prime, an element of N_i either preserves each component of L_i , or it permutes cyclically the components of L_i . We consider both cases in Propositions 17 and 18.

Proposition 17. If every element of N_1 (or N_2) preserves each component of L_1 (respectively L_2), then $G_1 = G_2$.

Proof. By hypothesis, N_1 contains only hyperbolic transformations which keeps invariant a tubular neighbourhood of each component of L_1 . They act on this tubular neighbourhood as rotations along and around its axis with order a power of d. Then N_1 is a subgroup of $\mathbb{Z}_{d^r} \oplus \mathbb{Z}_{d^s}$, where the first factor corresponds to rotations around the components of L_1 and the second corresponds to rotations along these components.

The group N_1 induces a group of isometries N'_1 of the quotient orbifold O, which is a subgroup of $\mathbb{Z}_{d^{r-1}} \oplus \mathbb{Z}_{d^s}$. We will prove that N'_1 is cyclic.

First notice that N'_1 cannot contain a nontrivial element (a, 0), since this

isometry of O would act on a tubular neighbourhood of L' as a rotation around the components of L'. Since M' is a \mathbb{Z}_d -homology sphere, this is impossible by Smith theory. Then N'_1 cannot contain two distinct elements (a_1, b) and (a_2, b) , since it would contain also the nontrivial element $(a_1 - a_2, 0)$. Therefore N'_1 is generated by the unique element $\eta = (a, b)$ with minimal positive second coordinate.

Let k be the smallest integer such that $A' = \operatorname{Fix}(\eta^{d^k})$ is nonempty. Since M' is a \mathbb{Z}_d -homology sphere, A' is a knot. For every element x' of N'_1 , we have either $\operatorname{Fix}(x') = \emptyset$, or $\operatorname{Fix}(x') = A'$, since N'_1 is cyclic. Then, for every element x of $N_1 - G_1$, we have $\operatorname{Fix}(x) \subseteq p_1^{-1}(A')$. Since d is a prime number,

$$A = p_1^{-1}(A')$$

is either a knot, or a link with d components. Now consider an element $x \in N_1$ such that Fix(x) is a link with d components. Then $Fix x = L_1$ or Fix x = A, according to if $x \in G_1$ or not.

Now we want to prove that $N_S(N_1) = N_1$. Choose any element $y \in N_S(N_1)$. The preceding argument shows that either $y(L_1) = L_1$, or $y(L_1) = A$. In the second case, we have $y^2(L_1) = L_1$. Then, the isometry y has even order, which contradicts the hypothesis that d is prime and greater than 2. It follows that $y(L_1) = L_1$. Lemma 15 shows that $y \in N_1$, for every $y \in N_S(N_1)$. Then $N_S(N_1) = N_1$. Sylow theory shows then that $N_1 = S$.

We have proven that S is commutative. Then G_1 and G_2 commute and therefore $G'_1 = p_2(G_1)$ is a subgroup of $\text{Isom}^+(\mathsf{O})$. Since M' is a \mathbb{Z}_d -homology sphere, if G'_1 was nontrivial, Fix G'_1 would be a knot. Then G_2 would permute the components of L_1 , which contradicts the hypothesis, and therefore G'_1 is trivial, and $G_1 = G_2$.

To conclude the proof of Theorem 13, there remains to prove the case where N_1 and N_2 contain both elements that permute cyclically the *d* components of L_1 , respectively L_2 .

Proposition 18. If, for i = 1, 2, N_i contains an element x_i that permutes cyclically the d components of L_i , then $G_1 = G_2$.

Proof. Let $x_i \in N_i$ be such an element. We have $x_i g_i x_i^{-1} \in G_i$, and therefore it exists an integer $k_i \in \{0, 1, \dots, d-1\}$ such that

$$x_i g_i x_i^{-1} = g_i^{k_i}.$$

Then
$$x_i^2 g_i x_i^{-2} = x_i g_i^{k_i} x_i^{-1} = (x_i g_i x_i^{-1})^{k_i} = g_i^{k_i^2}$$
 and, more generally,
 $x_i^l g_i = g_i^{k_i^l} x_i^l$.

Then, for l = d, we obtain $x_i^d g_i = g_i^{k_i^d} x_i^d$. Since x_i^d and g_i keep invariant each component of L_i , they commute. It follows that

$$g_i = g_i^{k_i^d}.$$

Since d is prime, we obtain from the Fermat's little theorem the congruence $k_i^d \equiv k_i \pmod{d}$, and therefore $g_i = g_i^{k_i}$ and $k_i = 1$. Then x_i commutes with g_i .

Then g_i acts locally as a rotation around each component of L_i with the same angle of rotation. Then, the arrow

$$H_1(M'-L';\mathbb{Z}_d)\cong\mathbb{Z}_d\oplus\cdots\oplus\mathbb{Z}_d\to G_i$$

sends each meridian to the same power of g_i , up to automorphisms of G_i . Then the kernels of the holonomies associated to G_1 and G_2 are the same. By Proposition 9, G_1 and G_2 are conjugated.

References

- [1] R. Benedetti, C. Petronio, Lectures on hyperbolic geometry, Universitext (1992).
- [2] M. Boileau, J. Porti, Geometrization on 3-orbifolds of cyclic type, Astérisque 272 (2000).
- [3] F. Bonahon, L. Siebenmann, The characteristic toric splitting of irreducible compact 3-orbifolds, Math. Ann. 278 (1987) 441-479.
- [4] G. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, 46 (1972).
- [5] K. Bromberg, Rigidity of geometrically finite hyperbolic cone-manifolds, Geom. Dedicata 105 (2004).
- [6] W. Dunbar, Geometric orbifolds, Rev. Mat. Univ. Comp. Madrid 1 (1988) 67-99.
- [7] W. Dunbar, Nonfibering spherical 3-orbifolds, Trans. Amer. Math. Soc. 341 (1994) 121-142.
- [8] W. Dunbar, R. Meyerhoff, Volumes of hyperbolic 3-manifolds, Indiana Univ. Math. J. 43 (1994) 611-637.
- [9] M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. 56 (1982) 5-99.
- [10] C. Hodgson, Degeneration and regeneration of geometric structures on 3-manifolds, Ph. D. Thesis, Princeton Univ. (1986).
- [11] W. Jaco, P. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 220 (1979).
- [12] K. Johannson, Homotopy equivalences of 3-manifolds with boundary, Lecture Notes in Mathematics 761 (1979).
- [13] J. Milnor, On the Schläfli differential equality, in Collected Papers, vol. 1, Publish or Perish (1994).
- [14] D. McCullough, A. Miller, Manifold covers of 3-orbifolds with geometric pieces, Topology Appl. 31 (1989) 169-185.

13

- [15] J. Porti, Regenerating hyperbolic and spherical cone structures from Euclidean ones, Topology 37 (1998) 365-392.
- [16] J. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics 149 (1994).
- [17] M. Reni, Hyperbolic links and cyclic branched coverings, Topology Appl. 77 (1997) 51-56.
- [18] A. Salgueiro, Unicité de l'action d'un revêtement cyclique ramifié, Ph. D. Thesis, Univ. Paul Sabatier (2004).
- [19] A. Salgueiro, Unicity of the order of a branched covering, preprint.
- [20] H. Schubert, Knoten mit zwei Brücken, Math. Z. 65 (1956) 133-170.
- [21] P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983) 401-487.
- [22] J. Souto, Minimal volume and minimal entropy, Ph. D. Thesis, Universität Bonn (2001).
- [23] W. P. Thurston, The geometry and topology of 3-manifolds, Princeton Math. Dept. (1979).

António Salgueiro

DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE DE COIMBRA, PORTUGAL

E-mail address: ams@mat.uc.pt