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1. Introduction

In [3, problem 3.16] we are asked which manifolds M’ have the property that
homeomorphic coverings of M’ have always the same degree. This question,
due to Thurston, was completely solved by Wang, Wu and Yu, for those
manifolds admitting a geometric decomposition. They have proved [10, 11]
that if M’ admits a geometric decomposition and has no covering of type
(surface) xSt or a torus bundle over S!, then there exists at most one number
d for which M is a covering of M’', of degree d. This paper focuses on
Thurston’s question in the case of branched cyclic coverings, that is, to know
when is the order of an 3-manifold orientable cyclic covering of M’ by M of

prime order branched over L’ determined by the topological types of M and
(M’ L"),

The main result is the following theorem:
Main Theorem. Let M and M’ be compact orientable 3-manifolds and L'
a prime nontrivial 1-submanifold of M'. If the JSJ graph of the exterior of
L' is a tree then there exists at most one prime number d > 2 for which M

is a cyclic covering of M', of degree d, branched over L.

This has the following corollary, concerning links in a rational homology
sphere.
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Corollary. Let M’ be a rational homology sphere and L' C M’ be a prime
nontrivial link, whose exterior is irreducible. Then two cyclic coverings of
M'" branched over L' having different prime degrees are not homeomorphic.

We conjecture that the hypothesis that the JSJ graph of the exterior £’ of
L' is a tree is not necessary. In fact, Proposition 5.15 shows that the Main
Theorem also holds in the “opposite” case, that is, when the JSJ graph of
E’ is complete.

In the proof of the Main Theorem, we distinguish four cases. In section
3 we consider the case where E' is reducible. For irreducible exteriors, we
consider the cases where the JSJ decomposition of £’ contains an hyperbolic
piece, E' is a Seifert manifold or E’ is a nontrivial graph manifold. The
hyperbolic case was proved in [6], and in this case the Main Theorem is true
even with the slightly weaker condition that the cyclic branched covering is
strongly branched, instead of having prime degree. For the remaining cases,
we prove the following versions of the Main Theorem in sections 4 and 5.

Theorem 1 Let M and M’ be compact orientable 3-manifolds and L' C M’
a prime nontrivial link, whose exterior is a Seifert fibred space. Then there
is at most one prime number d for which M is a cyclic covering of M', of
degree d, branched over L.

Theorem 2 Let M and M’ be compact orientable 3-manifolds and L' C M’
a nontrivial prime link, whose exterior E' is a nontrivial graph manifold. If
the JSJ graph of E' is a tree, then there exists at most one prime number d
for which M is a cyclic covering of M’, of degree d, branched over L'.

In the case where E’ is a Seifert manifold we give examples in paragraph
4.4 where the degree of a cyclic branched covering is not determined, when
it is not prime.

In the final section we give examples showing that there is no uniqueness
of the action of a cyclic branched covering of prime degree for manifolds
whose JSJ decomposition contains a Seifert piece, even when M’ is a integral
homology sphere.
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2. Preliminaries

Let M, M’ be compact connected orientable 3-manifolds and L’ a disjoint
union of closed curves and arcs properly embedded in M’'. Let p : M —
(M', L") denote a cyclic covering of M' by M branched over L’. We say that
p is strongly branched if the stabiliser of each point of the singular set p~!(L')
is the whole group of covering transformations. A regular covering of prime
degree is strongly branched.

Consider two strongly branched coverings p; : M — (M’, L") with covering
transformation groups G; = Zg4,, ¢ = 1,2. These coverings induce strongly
branched coverings p; : 9M — (OM',OL') on the boundaries with the same
degree d;, i = 1,2. An Euler characteristic argument shows that if d; #
dy, OM and OM' have the same number of spheres (each sphere of M’
containing exactly two points of L’), a certain number of tori (not necessarily
the same for M and M’ and each torus of M’ containing no points of L')
and no surface of negative Euler characteristic. By gluing a discal orbifold to
each spherical connected component of OM and (OM’, JL’), we obtain a new
manifold M and a new pair (M’, L), called the closures of M and (M’, L').

Since p; extends to a strongly branched covering p; : M — (M’, L) with
the same degree, we will suppose, from now on, that the boundaries OM and
OM' are (possibly empty) unions of tori and that L' is a link, that is, L’ is
a disjoint union of closed curves in the interior of M’. We denote E’ the
exterior of L' in M’.

Definition. We say that L’ is:

(i) trivial if it is connected and E’ is either a solid torus or a product
T? x I;

(ii) prime if every sphere embedded in M’ that cuts L' transversally in
two points bounds a submanifold that cuts L’ in an unknotted arc.

It is easily seen that a link L' embedded in M’ is trivial if an only if M’ is
either a solid torus or a lens space and L' is (one of) its axis. For trivial links
L' there are strongly branched coverings with different degrees. The simplest
example is the self covering of the solid torus branched over its axis, which
can have any degree. Lens spaces have a similar property, which is proven in
Proposition 4.9.
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Consider the decompositions of E’, M and the quotient orbifold O; =
M /p; in nontrivial irreducible manifolds (orbifolds) by essential spherical 2-
manifolds (2-orbifolds) [1]. Since d; is prime, the spherical orbifolds for O;
may be spheres or footballs S?(d;, d;). If L' is a prime link, then only spheres
may appear and a decomposing family of £ also decomposes O;. The case
where E’ is reducible is treated in the following section. When E’ is irre-
ducible, the O; are irreducible. Consider the geometric decompositions of £’
and O;. The geometric decompositions of O; lift to G;-invariant geometric
decompositions of M. If a hyperbolic piece appears in the geometric decom-
position of E’ then the Main Theorem follows from [6]. If not, then E’ is
either a Seifert fibred space or a graphed manifold. These cases are treated
in the sections 4 and 5.

This paper contains results obtained in my thesis, under the supervision of
Professor Michel Boileau. I deeply thank him for his endless support.

3. The exterior is reducible

Proposition 3.1. Let M and M’ be compact connected orientable 3-manifolds
and L' € M' a prime link with irreducible exterior. Then there is at most
one prime number d for which M is a cyclic covering of M', of degree d,
branched over L.

Proof. Let p1,ps : M — (M’', L") be two cyclic branched coverings with
prime degrees di,ds. Let Fg be a family of spheres that decomposes E’ in
nontrivial irreducible pieces. Since L’ is a prime link, Fz also decomposes O;
in nontrivial irreducible pieces. The family Fg is not unique and we choose
it in such a way that it exists a connected component | of E' — Fp whose
boundary contains a torus corresponding to a connected component of L’
and, moreover, a copy of every sphere of Fg/. Note F; = p, Y(Fg), and OY the
piece of O; corresponding to E{, i = 1, 2.

The decomposition of M as connected sum of nontrivial prime manifolds
is unique up to permutation of factors. We will analyse the contribution to
this decomposition of p; !(S) for each sphere S of Fz: C O;.

If S is non-separating, p;*(S) is always a collection of d; non-separating
spheres of F;,. This collection contributes with d; factors S? x S' to the
decomposition of M as a connected sum.

If S is separating p, 1(9) is either a collection of d; separating spheres of
F;, or a collection of d; non-separating spheres of F;. Note E§ the connected
component of E' — S that doesn’t contain Ej, and OY the corresponding
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piece of O;. The closures Ef and O are irreducible and nontrivial by the
construction of Fgr.

Suppose that p; *(S) is made of d; separating spheres. Then M — p; '(S)
contains d; + 1 components, among which d; are homeomorphic to £y = O?.
Then p; '(S) contributes with d; nontrivial irreducible factors (homeomorphic
to E—g) for the connected sum decomposition of M.

If p;1(S) is made of d; non-separating spheres, then M — p;!(.S) contains
2 components, one of which is a d;-sheeted covering of OF. The closure of
this connected component is a d;-sheeted covering of Of and is therefore
irreducible (although it maybe trivial). Therefore p; '(.S) contributes for the
connected sum decomposition of M with an irreducible factor (maybe trivial)
and d; — 1 factors S? x S' (when we cut successively along these d; spheres,
the last sphere, just before the cutting, is already separating).

Thus, for every sphere S of Fgr, py 1(S) contributes with at least as many
nontrivial prime factors for the connected sum decomposition of M as pl_l(S ),
since dy — 1 > dj. o - -

It remains to analyse p;*(OY) and p,*(0Y). The piece p,'(0Y) is prime
in M. If this piece is a 3-sphere, then Smith theory shows that O is an
orbifold whose underlying space is a punctured sphere and the singular set
is the trivial knot; in this case, p; '(0?) is also a 3-sphere.

By the uniqueness of the pieces of the prime decomposition of M, it follows
that, for each sphere S of Fgr, p;*(S) and p,'(S) induce the same number
of nontrivial prime factors. It follows from the previous discussion that d; =
ds — 1, that each sphere S of Fp/ is separating and that, for each one of
these spheres, py 1(9) is a collection of dy non-separating spheres. Moreover,

Py 1(S) induces a connected sum of dy—1 = dy factors S2x S!, that is, p; '(05)
is a 3-sphere. The covering pl_l(O—f) is either a connected nontrivial prime
manifold or a collection of d; copies of O_f (which in this case is a nontrivial
prime manifold).

Suppose that OF contains components of L. By the same reasoning as
before, it follows that O—f is an orbifold whose underlying space is a 3-sphere
and the singular set is the trivial knot and that pl_l(O_f) is also S?, which is
a contradiction.
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Therefore OF contains no components of L', which shows that the funda-
mental group of O7 = 05 is Zg4, and that p;'(Of) is a collection of either
one or d; spaces whose fundamental group is Z,.

The uniqueness of the prime decomposition of M shows that M is the
connected sum of a prime manifold N with d; factors S? x S! and that £’ =
El#N' where 711(N') = Zg,. Since p;*(N') = N, it follows that m(N) is a
finite group with dy/d; elements, which is impossible by dy/d; = 14+1/d; ¢ N.
]

4. Proof of Theorem 1

In this section we prove Theorem 1. In paragraph 4.3 we prove that in
certain cases the branching degree is unique without supposing that d is
prime.

Let BM be the space of fibres of a Seifert fibration of M with its orbifold
structure. It’s underlying space is topologically a surface F' and its singular
set is a finite set of points corresponding to the singular fibres of M. A Seifert
fibration of M may be described by the finite set of invariants

(97 n‘eo; 51/0517 R 7ﬁm/@m)

where n is the number of components of OF, g is the genus of the closed
surface obtained by gluing disks to these components (we write g < 0 to
indicate a non orientable surface), ey € Q is the rational Euler number of the
Seifert fibration, and (;/c; € Q/Z are the Seifert invariants of the singular
fibres of M. If n = 0 we omit it from the notation; if n # 0, then ¢; is not
defined, and is omitted too. Then BM is given by BM = F(ay, ..., ay).

Definition. A Seifert fibration of (M', L") is a Seifert fibration of M’ such
that L’ is a collection of fibres.

Let O be an orbifold whose topological type (M’, L') is Seifert fibred. To
point out the fibres of L’ in this Seifert fibration (and the corresponding
points of B(M’, L)), we represent their Seifert invariants in bold.

Consider a Seifert fibration of (M’, L") given by (g, n|eg; B1/aa, - - -, Bm/m),
where §;/a; € Q/Z,i = 1,...,m are the Seifert invariants of all singular
fibres of M’ and also of fibres of L’ (these fibres may be regular, thus it is
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possible that 3;/a; = 0). This fibration induces a induces a Seifert fibration
on O given by the same partition in circles, denoted by

(9, nleo; (Bi/a1)ays - -+ (Bm/m)a,),

where a; is the branching index of the i-th fibre in O (indices a; equal to 1
are omitted).

Proposition 4.1. If L' is a nontrivial prime link then a Seifert fibration of
the exterior E' C M' extends to (M',L").

Proof. To extend a Seifert fibration of £’ to the solid torus component V; of
M' — E'| it suffices that the fibres of the torus dV/ are not meridians of V.
Suppose that this condition is false for a torus V/. Since L’ is nontrivial, it
follows that BE’ is not a disk nor an annulus. There exists an essential arc on
BE’ whose endpoints lie on B(0V/) which is not homotopic to an arc of this
circle. The union of the fibres that project on this arc is an essential annulus
A"in E'. Each fibre of 0A’ bounds a meridian disk of V/. It follows that the
union of A" with these two disks is a sphere in M’ that cuts L’ transversally
in exactly two points. Since L' is a prime link, this sphere bounds a ball
whose intersection with L’ is an unknotted arc. Therefore A’ is parallel to
OF’, therefore is not essential. O

It is well known that some Seifert fibred spaces admit nonequivalent Seifert
fibrations, as it is stated in the following proposition.

Proposition 4.2 ([9]). The only compact connected orientable manifolds M
which admit nonequivalent Seifert fibrations are the following:

(1) the solid torus has the Seifert fibrations (0,1|5/«);

(ii) the lens space Lo has the Seifert fibrations of the form (0|eg; £1/cu, B2/ a2),
where a; > 1 and ayasey = —ay

(iii) a prism space has exactly two Seifert fibrations, namely (0leg; 1/2,1/2, 3 /«)
and (—1] — 1/eg; —a/B);

(iv) twisted I-bundle over the Klein bottle, has exactly two Seifert fibra-
tions which are (—1,1|) and (0,1|1/2,1/2);

(v) the double of the twisted I-bundle over the Klein bottle has exactly
two Seifert fibrations which are (—1]0;) and (0]0;1/2,1/2,1/2,1/2).

The following proposition generalises this result to Seifert fibrations of
(M’ L.
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Proposition 4.3. Let M’ be a compact connected orientable manifold and
L' M" a link. Then (M', L") admits nonequivalent Seifert fibrations if and
only if it verifies one of the following conditions:

(i) M’ is a solid torus and L' is its axis;

(i1) M" is a lens space and L' is formed by one or both axis;

(iii) M" is a prism space and L' is a fibre whose exterior is the twisted
I-bundle over the Klein bottle.

Proof. Let (M', L") be a pair admitting nonequivalent Seifert fibrations, and
suppose that L’ is connected..

If M'—N(L') has only one Seifert fibration, then M’ has at least two Seifert
fibrations whose Seifert invariants differ only for the fibre L. Tt follows from
the previous proposition that M’ is either a solid torus or a lens space and
L’ is an axis of M'. The second case cannot happen since M’ — N(L") would
be a solid torus, which contradicts the uniqueness of the Seifert fibration of
M’ — N(L'). Therefore M’ is a solid torus and L’ is its axis.

If M’ — N(L') has nonequivalent Seifert fibrations, then by the previous
proposition, M'—N(L') is either a solid torus or the twisted /-bundle over the
Klein bottle. The first case is included in ii. and the second case corresponds
to iii.

Now suppose that L’ is not connected and let L be the components of L'.
Then each pair (M’, L)) has nonequivalent Seifert fibrations. Therefore M’
is either a solid torus, a lens space, or a prism space. If M’ is a solid torus,
each L is an axis of M’. Therefore M’ is trivially Seifert fibred. If M’ is a
prism space, each L, is the fibre of M’ whose exterior is the twisted /-bundle
over the Klein bottle. Therefore, in both cases, L’ would be connected. It
follows that M’ is a lens space and L’ is formed by its two axes. H

Corollary 4.4. Under the conditions of Proposition 4.3, (M', L) admits
nonequivalent Seifert fibrations if and only if x(BE') > 0 for a Seifert fibra-
tion of E'.

Proof. In cases i. and iii. of the proposition, x(BE') = 0. In case ii., y(BE’)
is positive or zero according to whether L' contains one or two components.

Reciprocally, if x(BE') > 0 for a certain Seifert fibration of F’, this base is
diffeomorphic to D?, D?(a), D?(2,2), the Mobius strip M? or to an annulus
A? = S x . The two first bases correspond to case ii., the following two
bases to case iii. and the last base corresponds to cases i. or ii., according to
L' contains one or two components. [l
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A Seifert fibration of (M’, L') lifts to a Seifert fibration of M preserved by
the covering transformations and induces a Seifert fibration on O,. Therefore
p: M — (M’ L) induces an orbifold covering

v : BM — BO;y.

Definition. Let V/,... V! be a nonempty family of fibred solid tori in M’,
for which X' = M’ — N(L') — Uint V! and X = 7 1(X’) have only regular
fibres. Put

u = deg
v = degp|ﬁbre.

Then w is the number of fibres of X that cover each fibre of X’. In this
situation we say that p is of type (u,v).

Since d is prime and d = uwv, there are only two types of cyclic branched
coverings to consider, namely (u,v) = (1,d) and (u,v) = (d, 1).

Lemma 4.5. Let M and M’ be Seifert fibred spaces and p : M — M’ a
(branched) covering of type (u,v). Let h{, be a fibre of M" and hy a connected
component of p~1(hy). Note 3/a and 3'/a’ the Seifert invariants of hy and
hy, respectively. If V and V' are respectively saturated tubular neighbourhoods
of hy and hy, and p : V — V' is a covering of type (uy,v) of branching order
k > 1 over hy, then

B'/a = (v/uy)(B/a) and k = ged(auy, fv).

Proof. Let m' ~ o/¢’ + 5'h be a meridian of V’, where ¢’ is a section of the
Seifert fibration of V'. Let ¢ be a connected component of the pre-image of ¢/
in V. Since the branching order over hj is k, the image by p of the meridian
m ~ aq + Bh of V' is homologous to km’ in 9V’. Then

ap(q) + Bp(h) ~ ka'q' + kB

Since p(q) = uyq and p(h) = vh', it follows that o/ = auy/k and ' =
Bu/k. Therefore, §'/a/ = (v/uy)(6/a) and k = ged(auy, Bv). O
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Adding the Seifert invariants of all the fibres yields eo(M’) = (v/u) eg(M).
Since a regular fibre is not fixed by an action of type (1,d), this lemma has
the following corollary:

Corollary 4.6. Let p : M — (M', L") be a cyclic branched covering of type
(1,d) with d prime. If M = (g,n|ep; B1/a1, ..., Bm/am), then the quotient
orbifold O = M /p has Seifert invariant

(g, n\deo; (dﬁl/@l)gcd(al,d)a SR (dﬁm/@m)gcd(am,dD )

To prove Theorem 1, we consider two cases, according to whether (M, L")
has nonequivalent Seifert fibrations or not.

4.1. (M’, L’) admits nonequivalent Seifert fibrations.

Lemma 4.7. If (M’, L") admits nonequivalent Seifert fibrations, then M is
a solid torus, a lens space or a prism space.

Proof. For each Seifert fibration of (M’, L") we obtain a Seifert fibration of
O4. By Corollary 4.4, x(BE’) > 0 and this implies that x(BO,) > 0, for
every Seifert fibration. Therefore also y(BM) > 0 for every Seifert fibration.

Suppose that M has a single Seifert fibration. Then BM is either S?(2, 3, 3),
S%(2,3,4) or S*(2,3,5). We will show that this implies that (M’, L’) has a
single Seifert fibration, in contradiction with the hypothesis.

If BM = S?(2,3,5), pis of type (1,d), because BM admits no nontrivial
cyclic action. Therefore p is of type (1,d). It follows from Corollary 4.6 that
d=2,3 or 5, and L' is composed of a single regular fibre of M’ which is the
image of a single fibre of M.

Suppose for example that d = 5 (we reason analogously for the other
degrees). Then BM’' = §?(2,3), M’ is a lens space and the knot L’ if not an
axis of M'. By Proposition 4.3, it follows that (M’, L) has a single Seifert
fibration.

If BM =2 S%(2,3,4), then p is also of type (1,d) and either d = 2 or d = 3.
For d = 2, it follows that M’ is a lens space with BM' = §%(3,2) and L' is
composed of an axis of M’ and a regular fibre. Again (M’, L) has a single
Seifert fibration. The case d = 3 is analogous.

If BM = S?(2,3,3), pmay be of type (2, 1). In this case, M’ is a lens space
with BM' = S%*(4,3) and L' is a regular fibre of M’. Again (M’,L’) has a
single Seifert fibration.
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In all other cases a similar situation occurs: M’ is a lens space and L’
contains a component that is not an axis of M’, therefore (M’ L') has a
single Seifert fibration. Since x(BM) > 0, M is a solid torus, a lens space or
a prism space. [l

This proposition and Proposition 4.2 show that if (M’, L") admits nonequi-
valent Seifert fibrations, then M is either a solid torus, a lens space or a
prism space. For solid tori, the situation is simple. For any cyclic branched
covering M — (M’ L"), M’ is a solid torus and L’ is its axis. Therefore L' is
a trivial link.

In the following proposition, we prove Theorem 1 for lens spaces by com-
paring the Seifert invariants of the different Seifert fibrations of M and
(M',L"). Moreover, we deduce from this proposition that when L’ is the
trivial link composed by one of the axis of M’ = L,y, M = L, is a bran-
ched cyclic covering of (M’, L") of degree d, for every prime number d such
that db’ = b(mod a).

Proposition 4.8. Theorem 1 is true when M is a lens space.

Proof. By Proposition 4.2, a lens space L,; has several Seifert fibrations
given by L, = (0leg; B1/ a1, B2/ e), where o > 1 and ajasey = —a. Then a
Seifert fibred space is a lens space if and only its base has the form S?(ay, as),
where aq, a9 > 1.

Fix a Seifert fibration on (M’, L) and lift it by the cyclic branched covering
p: M — (M' L") to a Seifert fibration

M = (0leg; B1/au, B2/ 2).
Suppose first that p is of type (1,d). By Corollary 4.6,

0= (O\deo; (dﬁl/@l)gcd(al,d), (dﬁz/@2)gcd(a2,d)) :
Then M’ is a lens space and L’ is contained in the union of both axes

of M'. Since L' is nontrivial, it contains both axes of M’ and d divides
simultaneously a; and as. Then

Br  Bo )
al/d ’ az/d .

Therefore M' = Ly where @' = —deg(ay/d)(as/d) = a/d. The degree is
then determined by

(M, L) = (o ‘ dey:
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d=ajd.

Suppose now that p is of type (d,1). Then the covering ¢ : BM — BO is
of prime degree d.

If BM has two singular points and ¢ identifies these two points, then d = 2,
M = (Oleo; B/, B/a) and

(M/7 L/) = (0‘60/2; B/Qa 0, O)

In this case, L' has one fibre that is not an axis of M’. By Proposition 4.3,
(M', L") has a unique Seifert fibration. In fact, this is the only case where we
find uniqueness of the Seifert fibration of (M’, L').

If each singular point of BM is fixed by ¢, then, by Lemma 4.5,

Og@ﬁ;(ﬂ) ,<&> .
d \da1/ geaapm) \902/ ged(a )

As before, the non triviality of L’ assures that d divides simultaneously (3
and (5. The Seifert fibration of (M’, L') is then given by

(0] oy 2L2 222

Therefore M' = Ly, where o/ = —(ey/d)arae = a/d. We obtain as before
the degree

d=ajd.

Since m (M) = m(Lap) = Zg and m(M') = m(Lyy) = Zy, then the
degree of the cyclic covering p: M — (M’, L) is given by

O]
[m (M")]
that does not depend on the Seifert fibrations of M and M. [

Proposition 4.9. There are cyclic coverings p; : Loy — Lay branched over
an axis of Lqy, with different degrees, if a, b and b' are positive integers such

that ged(a, b) = ged(a, b') = 1.
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Consider again the case from the previous proposition where p : M —
(M', L") was of type (1,d) and L’ was trivial. Suppose, without loss of gen-
erality, that d|ay and d { as. The Seifert fibration of O is then described

by
(olaess (57 -22)-

Therefore M" = Ly, where @' = —(deg)(a1/d)as = a. To compute ¥,
recall that

b= 04152 + a3y,
where @, #; are integers such that ozlﬁl — 04151 — 1. Since ﬁl and 62 must

satisfy the equality eg = — ﬁl Jaq — 62 /g, and similarly for M’ we can choose
gl = [ 52 ——(60041 + 51)
an
~ ~ ~/
B =01=0 [y = (deg(on/d) + B1) = dfs

— 1/d
There remains to compute ) and Bl These integers are chosen such that
o\ B, — @B, = 1. Since o, = oy /d and 3, = B, we choose
a) =ay and B,l = dBl.

We obtain therefore the value

b =@\ 0y + ayB) = a1 (dfs) + aadB, = db.

Finally, consider positive integers a, b and b’ such that ged(a, b) = ged(a, b)) =
1. Choose any prime number d such that db = b'(mod a). Then, by the argu-
ment above, there is a cyclic branched covering p : L — (Lay, L) of order
d, where L' is an axis of L. O

Proposition 4.10. Theorem 1 is true when M is a prism space.

Let M be a prism space. By Proposition 4.2, M has exactly two nonequi-
valent Seifert fibrations whose bases are S%(2,2, ) and P?(3), namely the
fibrations

(Oleg; 1/2,—1/2, 8 /cx) and (—1] — 1/eg; —a/B).



14 A. SALGUEIRO

Reciprocally, if M has fibration with one of these two bases, M is neces-
sarily a prism space.

Fix a Seifert fibration of (M', L") and consider its reciprocal image by the
cyclic branched covering p : M — (M', L"). These fibrations induce orbifolds
BM, BM' and BO. The orbifold BO is a quotient of BM (either by the trivial
group or by the cyclic group of order d), and BM' is obtained from BO by
dividing d by the multiplicities of the points corresponding to L'.

Suppose first that o # 2. If BM = S?(2,2, «), BO is either S?(2,2,«a) or
S*(2,2,2a). If BM = P%(3), BO has the form P?(3). Therefore BM' is an
orbifold of one of the following forms: S?(a/), S?(2, '), S%(2,2, /) or P%(3).

The degree of the cyclic branched covering is d = 2 for the two first forms
(for which M’ is a lens space). Consider then the two remaining forms (for
which M’ is a prism space). For each of the oriented prism spaces M and
M’ one of the Seifert fibrations has positive rational Euler number ef and
the other has negative rational Euler number ¢;,. Since p is orientation-
preserving, it preserves also the sign of the rational Euler number of this
fibration, then there exists at most two fibred applications p™,p~ : M —
(M',L). The degree d* of the cyclic branched covering p* is the unique
integer such that

# e {500 S0
ey (M) eg (M) )7
according to the type of the covering. This set is the same for both signs,
since for each oriented prism space M and M’ the two rational Euler numbers
verify e, = —1/ej. Thus the degree is uniquely determined (in fact, it is
given by d = o'’ /af3).

Suppose now that o = 2. If BM = §?(2,2,2), BO is either S?(2,2,2),
S%(2,2,4) or S%(2,3,3). If BM = P?(3), 'orbifold BO is of the form P%(/3').
Then BM’ is an orbifold of one of the following forms: S?, S?(2,4), S*(2) or
P%(3"). In the three first cases the Seifert fibration of (M’, L) and the degree
of the cyclic branched covering are unique. In the first two cases d = 2 and
in the third case d = 3. In the last case, d is again given by d = o/’ /af. O

4.2. (M’,L’) admits a unique Seifert fibration.

Proposition 4.11. Theorem 1 is true when (M', L") admits a unique Seifert
fibration.
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Proof. We suppose that M is not a solid torus, a lens space or a prism space,
since these cases were already treated. Then y(BM) is well defined, since in
the remaining cases where M admits nonequivalent Seifert fibrations, they
all have bases of zero Euler characteristic, by Proposition 4.2.

The Euler characteristic of BO, is not determined because it depends on
d. However, x(BO,) and x(BM) are related by

X(BM) = ux(BOq), (1)

since ¢ : BM — BQy is an orbifold covering.

On the other hand, BO; may be obtained from BM’ by multiplying by d
the multiplicities of the points corresponding to the components of L'. If L'
has n components and the multiplicities of the corresponding points of BM’
are ap, as, . .., a,, then, putting r = >_" | 1/a; yields

X(BOq) = x(BM') —r +r/d, (2)

since the cyclic covering p is strongly branched. From (1) and (2) we obtain

Y(BM) = u (X(BM’) o r/d) . (3)

Since d is prime, u is either 1 or d. Since r > 0, an indetermination for
d may occur only when u = d and r = x(BM) = x(BM'). Then x(BE') =
X(BM') —r = 0. By Corollary 4.4, (M’, ') admits nonequivalent Seifert
fibrations. Therefore each value of u induces at most one solution d of (3).
Therefore (3) has at most two solutions (if x(BM) = 0 there is only one).
We note these solutions d; and ds, according to u =1 or u = d.

Suppose that there are two cyclic branched coverings py,ps : M — (M', L")
of prime degree, that p; is of type (1, d;) and that ps is of type (ds, 1). Denote
the quotient Seifert fibred orbifolds O; and O,. Since there is a covering with
u = 1, it follows that

IBM| = |BO;| = |BO,|.

On the other hand, ps induces a covering o : BM i BO,, where the
number over the arrow represents the covering degree. This covering induces

a cyclic branched covering @3 : |BM| i IBM|. The only surfaces having
a cyclic branched covering over themselves are the sphere (with two branch
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points), the projective plane and the disk (each with a single branch point),
thus [BM| = §?, D? or P2

Let f = 1,2 be the number of branch points of 5, k the number of singular
points of BM (and BO;) and £’ be the number of singular points of BM fixed
by ¢9. Then

]ﬂ—]{?/:dQ(k_f)? Oék/§f7

since o does not fix k — k' points of BM that project over k — f points of
BO,. Then ¢y may be:

i) S%(a,a,bb) > S*(a,b,2,2) with f=2 k=4, =0,d, =2
i) S%(a,a,a) > S*(a,3,3) with f =2 k=3 kK =0, dy = 3;
iii) S2(a,b,b) = S%(2a,b,2) with f=2, k=3 kK =1, dy = 2;
iv) S%(a,b) & S?(ady, bds) with f =2, k=2, k' = 2, dy arbitrary.
v) D?*(a,a) ER D?(a,2) with f=1, k=2, k' =0, dy = 2;
vi) P%(a,a) = P(a,2) with f=1,k=2 kK =0, dy = 2;
vii) D2(a) 2 D2(ad,) with f =1, k = 1, ¥’ = 1, dy arbitrary;
viit) P2(a) 2 P2(ads) with f =1, k =1, ¥’ = 1, do arbitrary.

We discard cases iv), vii) and viii), since M’ is either a solid torus, a lens
space or a prism space and (M’ L) has nonequivalent Seifert fibrations.
We finish the proof by finding a contradiction in all remaining 5 cases, by
using Seifert invariants.
In case i), for a cyclic branched covering of type (ds, 1) we obtain

B(M' L) = S*a,b,1,1),

which shows that L’ contains two fibres. Therefore, to obtain the same base
B(M', L") for a covering of type (1,d;), the degree d; must divide a or b, but
not both. If for example d;|a, then

B(M' L) = S*b,b,1,1).

To obtain a coincidence we need a = b and d;|b, which is impossible.
In case ii) there are always three fibres in L’ for coverings of type (1,d;)
and at most two for coverings of type (da, 1).
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In case iii), if there is only one fibre in L', then d;|a and d; 1 b. We obtain
for a cyclic branched covering of type (1,d;) the base

B(M' L") = S*a/dy,b,b)
and for a cyclic branched covering of type (ds, 1) the base

B(M', L) = S*(2a,b,1).
Therefore d; = a and b = 2a, which contradicts the fact that dy 1 b. If there
are two fibres in L, then d; { a and d;|b. Then

B(M', L") = S*(a,b/dy,b/dy)

for a cyclic branched covering of type (1,d;) and

B(M' L") = S*a,b,1)
for a cyclic branched covering of type (da, 1). As before, the two bases of the
Seifert fibration of (M’, L) do not coincide.

In cases v) and vi), L’ contains always two fibres for a covering of type
(1,dy) and only one fibre for a covering of type (da, 1). O

4.3. Uniqueness of the degree when the rational Euler number of
M is nonzero. In this section we prove the following theorem.

Theorem 4.12. Let M, M’ be compact closed orientable 3-manifolds and
L' ¢ M a nontrivial prime link. If M admits an unique Seifert fibration,
with nonzero rational FEuler number, then there exists at most one number d
for which M is a cyclic covering of M’ of degree d strongly branched over L.

Proof. 1f d is prime, this theorem is a consequence of Theorem 1. A simpler
proof in this case comes from the fact that the equality

eo( M) /eo(M) = v/u = d*
determines the integer d uniquely.
Suppose then that d is not prime. By hypothesis, y(BM) is well defined and
by Lemma 4.7, x(BM’) is also well defined. As in the proof of Proposition
411,

X(BM) =u (X(BM') —r —H“/d) :

Since the rational Euler numbers of M and M’ are nonzero, their quotient
k =eo(M)/eq(M') is a well defined nonzero rational number and



18 A. SALGUEIRO

u = kv.

Since d = uv, then d = kv?. Therefore,

X(BM) = kv <X(BM/) —r+ #) ,

or equivalently,

k(x(BM') — r)v? — x(BM)v +1r = 0.

Since x(BM), x(B(M', L")), k and r are well determined, this equation has
at most two real solutions v; and v,. Since (M’, L’) admits an unique Seifert
fibration, it follows from Corollary 4.4 that x(BM’) —r = x(BE’) < 0. Then,
the product of the solutions is

r
V1Ug = < 0.
T E((BMY) =)
At most one of the solutions v; is positive, hence there exists at most one
possible degree d = kv?. Ll

4.4. Examples of non-uniqueness of the degree. By Theorem 1, if the
degree d of a branched cyclic covering p : M — (M’, L') is prime, then it
is unique. In the following examples, we show that if the hypothesis that
the degree d is prime is withdrawn, then d is not in general unique. We give
examples where M and M’ are closed and the rational Euler numbers of their
Seifert fibrations are nonzero. By Theorem 4.12, these cyclic coverings are
not strongly branched.

Example 4.13. Let M = (0|0;1/3,1/3,1/3) and (M', L') = (S*xS, {x,y, 2} x
SY). Then M is a cyclic covering of (M', L"), of type (1,3n), for everyn € N.

Proof. In fact, Corollary 4.6 shows that the quotient orbifold has the Seifert
fibration (0]0; 03, 03, 03), for every n € N. Therefore M’ is the space Ly =
S? x S! and L' is composed of three circles of its product Seifert fibration.[]

Example 4.14. Consider the manifold M = (0|—4/3;1/3,1/3,1/3,1/3) and
the pair (M', L") where M" = Ly and L' C M’ is the union of three fibres
of the fibration (0| — 4;) of M'. Then M is a branched cyclic covering of
(M’ L"), of type (2,6) and of type (4,12).
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Proof. In the first case, the action induced on BM identifies two of its
singular points and for both these points uy = 1. The other two singular
points remain fixed and for these points uy = 2. By Lemma 4.5, the quotient
O = has the Seifert fibration (0| — 4; 03, 0g, Og).

In the second case, the action induced on BM identifies all four singular
points and BM contains two regular points that are fixed. Then, for the

singular points uy = 1 and for the regular fixed points uy = 4. By Lemma
4.5, the quotient O has the Seifert fibration (0| — 4; 03, 04, 04). O

5. Proof of Theorem 2

In this section we prove Theorem 2. To do this, we don’t argue on the
JSJ decomposition of a 3-manifold M, but on its decomposition in geometric
pieces (cf. [5]).

To each compact irreducible orientable 3-orbifold O we associate a JSJ
graph I'g as follows. Consider the JSJ family T of tori of O and associate a
vertex v; to each connected component O; of O — T and an edge a’ to each
torus 77 € T. If O;, and O;, are the two components of O — T on both sides
of T7, then v;, and v;, are the two endpoints of the edge @’ (it may happen
that #; = 45, and in this case @’ is a loop in I'g).

The geometric decomposition is obtained in the following way. If a torus
of the JSJ family of M bounds a piece diffeomorphic to the twisted I-bundle
over the Klein bottle, we don’t cut M along this torus, but instead, we cut it
along the corresponding central Klein bottle. Therefore, in the JSJ graph we
replace the vertex v that corresponds to a twisted I-bundle over the Klein
bottle, by a loop, as depicted in Figure 1.

e 0

F1GURE 1. JSJ graph vs. geometric graph.

We don’t consider these loops as cycles in the graph. Therefore, if the JSJ
graph of a 3-manifold M is a tree, we say that this new graph, which we call
the geometric graph of M, is still a tree.

Consider a component E” of the geometric decomposition of E’. This
component induces a suborbifold O] of O; whose boundary is an union of
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tori. Since L’ is a prime link, L' N Og is either empty or a prime link. In
the first case, Og >~ ' is a Seifert fibred space. In the second case, we can
extend the Seifert fibration of E” to O‘g , by Proposition 4.1. Therefore Og is
a Seifert fibred orbifold. This shows that O; is a graphed orbifold and that
the geometric graphs of O; and of £’ are isomorphic.

Lifting the geometric decomposition of O; by the orbifold covering p; :
M — Q;, it follows that M is also a nontrivial graph manifold. We note the
geometric graphs of M and O; by I'" and I" respectively. The coverings p;
induce (branched) coverings I' — I'" which are also noted p;.

5.1. Sufficient conditions for the uniqueness of the degree. In this
section, we give conditions under which the degree is determined, without
supposing that I is a tree.

The first condition is that the coverings are unbranched. The following
theorem has been proved in [10, 11].

Theorem 5.1 (Wang, Wu, Yu). If M and M’ are nontrivial graphed man-
ifolds, then there exists at most one number d for which M is a covering of
M’ of degree d.

In the case of unbranched coverings, the following proposition is a corollary
of Theorem 5.1. We adapt here the proof given in [10] to the case of branched
cyclic coverings.

Definition. Let X be a subset of the vertices of the geometric graph I' of a
3-orbifold O. We note OX the suborbifold of O whose geometric graph I'X is
formed by the vertices of X and the edges of I' which connect vertices of X.
If X = {s}, we write Ot*} = O°.

Proposition 5.2. If the graphs I' and I are isomorphic, then there exists
at most a number d for which M is a covering of (M', L") of degree d.

Proof. We sketch the proof, remarking the changes needed for the case of
branched coverings.

Suppose that there are two cyclic coverings p; : M — (M’ L"), i = 1,2, of
degrees dy < dy. Define, for each edge/loop e of I, the rational number
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be) 1
VT AN (BM)X(BMY)
where v and w are the endpoints of e and A(e) is the algebraic intersec-
tion number of the fibres of the Seifert fibrations of M" and M"™ along the
torus ON (e) corresponding to the torus/Klein bottle e. The integer A(e)
is nonzero because otherwise the fibration extends and the decomposition is
not geometric.

We define similarly, for ¢ = 1, 2, the numbers

b 1

T A (B0 )X (BOY)
For each edge/loop € of I, x(BOY') and y(BOY") are the Euler characteristics
of the bases of the Seifert pieces corresponding to v' and w’ of the quotient
orbifold O; = M/p; of topological type (M’, L').

Since I' = I, both coverings p; : I' — I" are diffeomorphisms. The pre-

image by p; of each edge/loop €’ of I contains then a single edge/loop e of
I'. A counting argument (Proposition 5.1 of [10]) shows that

A ((BMY)X(BMY) _ b(e) "
[A(e)] x(BO;)x(BOY")  ble)

In the proof given, we need only to change the Euler characteristics of the
base of the piece of the geometric decomposition of the quotient manifold M’
by those of the quotient orbifold O;.

We note that, for the pieces of the quotient orbifold O; that contain com-
ponents of L', these Euler characteristics depend on the branching degree.

In other words, if one of the endpoints v" of € contains components of L',
bi(€e') # bo(€). In fact, since di < dy, it follows that

di

x(BOT) > x(BO3).
Since the sign of the Euler characteristics of the pieces of the geometric
decomposition of O; is always negative, it follows that

bi(€') > by(e') > 0,
for every edge/loop €' of IV. Moreover, this inequality is strict for at least

one edge ¢’ of IV, when one of the endpoints contains ramification.
Adding all b(e) and all b;(¢’), it follows from (4) that
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which gives a contradiction. 0]

Lemma 5.3. Let p; : M — (M', L"), i = 1,2, be two cyclic branched cover-
ings of prime degree. If p1 and ps have the same type (u,v) for every Seifert
piece of the geometric decomposition of M, then di = ds.

Proof. Put, for each vertex w’ of I, 7, = >, 1/a}", where a"" are the multi-
plicities of the points of the underlying space |[BOY | = |BOY'| corresponding
to the components of L.

Suppose that p;'(w’) contains a single vertex w. Then equality (3) of
section 4.2 becomes

X(BM®) = u (x(BIOY| = 7 + rus ;)

Suppose now that there are d; pieces M"* of M which are identified, pro-
jecting to an underlying space |O¥'| of O¥. This situation may occur only
for coverings of type (u,v) = (d;, 1). In this case, r,y = 0 and

> x(BM*™*) = dix(B|O})).

Since u is constant, adding the previous equalities for every vertex of I and
of I gives

ZX (BM™) —UZ( (B]OY|) Tw/—k?“w//di)

Since all Euler characteristics that appear in this expression are non pos-
itive, an indetermination of type 0/0 for d cannot happen. Therefore the
degree is determined. 0

Lemma 5.4. If IV is a graph with exactly two vertices, then there exists

at most one prime number d for which M is a cyclic branched covering of
(M', L"), of degree d.

Proof. If " contains more than two vertices, then the degree of p; : I' — I is

d; = (number of vertices of I') — 1.
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In fact, in this case, a single vertex of IV contains components of L" and since
d; is prime, the pre-image of the other vertex of I has d; vertices.

Consider now the case where I' contains only two vertices v and w. Then
the pre-image of each loop of I is made only of loops from I'. Clearly each
loop of I" projects over a loop of I". Therefore if we remove the loops of
[ and I, we obtain still geometric graphs [’y and I, of nontrivial graphed
manifolds M, and M}, and the branched coverings p; : M — (M, L') restrict
to branched coverings pg; : My — (M|, L"), with the same degree d; as p;.

By the previous lemma, we may suppose that one of the coverings py; is of
type (1,d) over one of the two Seifert pieces of the geometric decomposition
of M. Therefore the tori incident on one of the vertices of I'y, are invariant
by the corresponding action, which shows that the number of edges of I
and I" coincide. Therefore I'y = I, and the equality d; = ds comes from
Proposition 5.2. [l

Definition. The wvalence of a vertex v of a graph I' is the number of edges
and of loops of I" incident on v. We say that the vertex v is:

(i) terminal if its valence is 1;
(ii) interior if its valence is greater than 1;
(iii) saturated if it is connected to all other vertices of T

We note I(I') (respectively E(I')) the set of interior (respectively terminal)
vertices of T

A graph I is complete if every vertex is saturated and if there is only one
edge between each pair of vertices. We note K, the complete graph with n
vertices without loops. A graph I' is a star if it is a tree without loops with
a single saturated vertex.

FIGURE 2. The complete graph K5 and the star with 6 vertices.

Lemma 5.5. If the graphs I' and T" contain respectively vertices v and v/,
such that p;'(v') = {v} = py ' (v'), then d; = do.
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Proof. If the Seifert piece OV of the geometric decomposition of O; contains
components of L', the cyclic branched coverings p; : M — (M’, L") restrict
to cyclic branched coverings

pi: MY — (|0y],0y n L)
having the same degree d; as p;. It follows from Theorem 1 that d; = ds.
If O N L' = (), the cyclic branched coverings p; : M — (M’, L') restrict to
cyclic unbranched coverings

pi - M" — ‘O;'/‘-
If x(BMV) # x(BOY"), then
x(BM®
d - / - d )
LoxBoy)

since QY = QY .

If x(BM") = x(BOY) it follows that both coverings pi) have type (1,d).
Then G; preserves the fibres of M, thus this group leaves each torus JSJ
of M invariant. Therefore, every vertex of I' connected to v is fixed by
both groups GG; and Gs. This shows that the star E centred in v is sent
by both coverings p; and ps to the star E' centred in v'. Then the cyclic
branched coverings p; : M — (M’, L") restrict to cyclic coverings (which may
be branched)

pi: M* — |OF].
Since the stars F and E’ are isomorphic, it follows from Proposition 5.2 that
dy = ds. O

5.2. Reduction to the case of trees without loops. Definition. Let M
be a compact connected orientable graphed 3-manifold and I" its geometric
graph. The complexity of M is a triple of nonnegative integers

(M) = (n,(T), ne(I), m(I')),

where n,(I'), n.(I') and n;(I") are respectively the number of vertices, edges
and loops of I'.
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Definition. Let {M; : i € I} be a set of compact connected orientable

3-manifolds. We say that the complexity of a manifold M; is minimal if, for
the lexicographical order, ¢(M;) < ¢(M;),Vj € I.

Definition. Let v and w be two vertices of a connected graph I'. A path ~
in [' between v and w is a sequence of edges

VoU1, V1V2, - . ., Up—1Uk

with vg = v and vy = w. The length of v is the number
len(vy) =k

of edges of v. The distance between two vertices v # w of I' is the integer
d(v,w) = min{len(7) : v is a path of I" between v and w}.

If v = w, the distance between v and w is zero, by definition.

The following lemma shows that if the group G; of the covering p; fixes a
vertex v of I', then p; preserves the distance of the vertices of I" to v.

Lemma 5.6. If a vertex v of I is fized by G;, then

d(v, w) = d(p;(v), pi(w)),

for every vertex w of I

Proof. Let v' = p;(v) and w' = p;(w). Clearly d(v',w'") < d(v,w). We show
by recurrence on the distance d(v’,w’) that the equality always holds. If
d(v';w") = 0, the hypothesis that v is fixed by G; is equivalent to d(v, w) = 0.

Now suppose that the equality is valid for every vertex whose distance to
v is at most k and we take a vertex w € I' for which d(v', w") = k+ 1. There
exists a vertex v’ of IV connected to w’, whose distance to v’ is k. The edge
between w’ and o’ lifts by p; to an edge between w and a vertex u of I" such
that p;(u) = /. By the recurrence hypothesis, d(v, w) < d(v,u)+1=k+1=
d(v',w'). O

Lemma 5.7. If (M, M' L) is a triple that contradicts the statement of The-
orem. 2 such that the complexity of M is minimal, then T and I don’t contain
loops.
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Proof. Suppose that there is a vertex v’ of I” and a loop attached to v" whose
pre-image by one of the coverings p; contains a edge a. Since an odd covering
of a Klein bottle is formed only by Klein bottles, it follows that the degree
d; of p; is even. Therefore d; = 2, since it is a prime number. Then 7 = 1 and
the endpoints of a are two vertices v; and v9 such that py(v1) = p1(ve) = 0.
Since L’ is nonempty, there exists a vertex w’ € I that contains components
of L'. Note w = p;*(w'). The minimal path v'w’ has two pre-images v;w
that start at v; and v (these two paths may have common vertices). Since w
is fixed by G, the distance to w is preserved by py, by the previous lemma.
Therefore the path ¢ = viwwvyvy is a cycle of odd length in T'.

Since the length of ¢ is odd and I” is a tree, the other projection ps(c)
contains loops, which contradicts the fact that p, is a branched covering of
prime degree ds > 3.

Thus the pre-image of a loop by each projection p; is formed only by loops.
Clearly each loop of I' projects over a loop of I''. Therefore if we remove the
loops of I' and IV, we obtain again geometric graphs of nontrivial graphed
manifolds that contradict the statement of the theorem. It follows from the
minimality of I that the both graphs I and I don’t contain loops. [

5.3. I' is a tree. In the proof of Theorem 2 when I' is a tree, we use the
following proposition, which is valid even if I" is not a tree.

Proposition 5.8. If (M, M’ L) is a triple that contradicts the statement of
Theorem 2 for which the complexity of M is minimal, then I is not a star.

Proof. Suppose that I is a star. We will show that the covering degre