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PENALIZED SMOOTHING OF SPARSE TABLES

PIERRE JACOB AND PAULO EDUARDO OLIVEIRA

Abstract: In models using categorical data one may use some adjacency relations
to justify the use of smoothing to improve upon simple histogram approximations of
the probabilities. This is particularly convenient when in presence of a sparse num-
ber of observations. Moreover, in many models, the prior knowledge of a marginal
distribution is available. We propose two families of polynomial smoothers that
incorporate this marginal information into the estimates. Besides, one of the fam-
ily, the penalized polynomial smoothers, corrects the well known drawback of the
polynomial smoothers of producing negative approximations. A simulation study
show a good performance of the proposed estimators with respect to usual error
criteria. Our estimators, and particularly the penalized family, perform especially
well for sparse situations.
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1. Introduction

Models using categorical data usually assume that there does not exist any
relation between adjacent points of the distribution. This is not the case
for continuous distributions, where many estimation procedures are based
on the fact that observations that fall near the approximation site, give some
information about the function we are trying to estimate, whether this is
a density or a regression function. This information by proximity is at the
base of the modifications that have been proposed throughout the years to
the histogram. The classical kernel estimators or the local polynomial esti-
mator are, in fact, clever ways to use this idea to improve your estimates.
In many situations where categorical models are used, adjacency of points
does mean some kind of contiguity on the information described. This is
often the case when using some scale to categorize the observations. In such
situations it becomes natural to use adjacent observations to construct the
estimates. This idea has been used in the literature to smooth over discrete
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distributions. This smoothing becomes even more interesting when facing
situations where we have few observations when compared with the number
of points of the underlying distribution, that is, we have a sparse number
of observations. In such cases, the use of the classical point frequency es-
timator seems inadequate: there would be many points of the distribution
support without any observation or with only one observation, thus we would
come out with an approximation for the distribution with many zeros and
almost uniform on the remaining points. Such an approximation seems quite
unintuitive. Convenient smoothing over adjacent points does contribute to
improve this handicap of the histogram. With this in mind Simonoff [8] and
Hall and Titterington [6] studied estimators that correspond to smooth the
histogram with an uniform like distribution, although this was justified in
quite different way, while Burman [3] studied a discrete version of the kernel
estimator. More recently Simonoff [9, 10], Dong and Simonoff [4] or Aerts,
Augustyns and Janssen [1, 2] studied discrete versions of the local polynomial
estimator.

Smoothing over sparse observations has been used in the literature concen-
trating mainly on the asymptotic properties of the estimators. To keep the
sparseness of the problem, it was common to assume that quotient between
the number of observations and the number of points in the support converge
to some finite limit. This assumes that, as we collect more data, we are able
to somehow refine the support of the distribution, that is, in presence of a
larger number of observations we are able to differentiate observations with
increasing precision. With this approach in mind, the asymptotics of the
mean sum of squared errors was studied, for example, by Simonoff [8, 9],
Hall and Titterington [6], Burman [3], Dong and Simonoff [4] or Aerts, Au-
gustyns and Janssen [1]. Other criteria, trying to adapt sparse situations,
was introduced by Simonoff [8] who studied the properties of the smoother
he introduced. Later, in Aerts, Augustyns and Janssen [2], the properties
of the local polynomial with respect to the sparse error criterion were stud-
ied. We note that the assumption of a larger support when the number of
observations increasing is quite natural if we assume that there exists some
density, whose discretization generates the discrete support.

Our first interest in this kind of problems arose when analyzing data from
an anthropological study. The sample size was small, especially when com-
pared with the size of the support. Moreover, the inclusion of new units
in the sample was quite expensive, both in time and financially, so there
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was increased interest on extracting as much information as possible from
the (few) available observations. The asymptotic properties were not very
helpful in this situation, although the above mentioned references proved the
smoothers behave quite effectively. Moreover, the methods that have been
shown to have the best asymptotic results, the polynomial smoothers, quite
often produce negative estimations for some of the probabilities, and this is
obviously unacceptable for the practitioner. This behaviour occurs naturally
in regions where the smoothing window find almost no observation at all.

A particular aspect of the anthropological study, that was not at all ad-
dressed by the discussed methods, was the fact that a marginal distribution
was known. So, we are interested in smoothing over a sparse table and pro-
duce an approximation for the two dimensional distribution that does not
produce negative values and agrees with given values for one the margins.
To our best knowledge, this problem was not addressed in the literature.

Our estimates are obtained as a solution of a minimization problem and
have explicit formulations. As we were mainly interested in their finite sam-
ple properties we undertook some simulation work. These show a general
advantage on the behaviour of the estimators we are defining. We considered
the usual error criterion, mean sum of squared errors and the sup-norm. This
better behaviour attenuates when the number of observations increases with
respect to the support size. We simulated up to a mean of five observations
per point of the support. This is already considered a nonsparse situation.
The estimators proposed behave still well for each cases.

2. The framework

Consider N = K × L cells Ci,j, i = 1 . . . , K, j = 1, . . . L, arranged in
a table C = (Ci,j), and denote P = (Pi,j) the probability distribution on
C. The observation counts over each cell are described by N = (Ni,j), or
equivalently, by the empirical probability distribution P = (P i,j = Ni,j/n),
where n =

∑
i,j Ni,j, on C. Rearranging the rows in order to have a N -

dimensional vector, N is multinomially distributed.
The table C might be identified with the unit cube [0, 1] × [0, 1], con-

sidering equally sized squared cells with midpoints (xi, yj) =
(

i−1/2
K , j−1/2

L

)
,

i = 1, . . . , K, j = 1, . . . , L. Then, we might think of P as the result a dis-
cretization of a continuous underlying probability distribution with a density
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function f on [0, 1] × [0, 1]: for each i = 1, . . . , K, j = 1, . . . , L,

Pi,j =

∫

Ci,j

f(x, y) d(x, y).

The special feature of this paper is that we assume P to be partially known.
More precisely, we assume that the marginal distribution

Πi =
∑L

j=1
Pi,j, i = 1, ..., K,

is known.
Given an estimator P∗ =

(
P ∗

i,j

)
, the first error criterion studied was the

mean sum of squared errors:

MSSE(P∗) = E

(
K∑

i=1

L∑

j=1

(P ∗
i,j − Pi,j)

2

)
. (1)

We will also compare the performance of the estimators with respect to
the sup-norm:

NSUP(P∗) = sup
1≤i≤K, 1≤j≤L

∣∣P ∗
i,j − Pi,j

∣∣ . (2)

In order to avoid computational difficulties with border and edge effects, we
consider a replication of the given table C, and likewise for the distribution
P and observation counts N. We enlarge C, P and N by reflecting its
cells with respect to each one of the four borders and edges. For the cell
table C, this enlarged table is identified with the cube [−1, 2] × [−1, 2], the

cells being equally sized squares with midpoints (xs, yt) =
(

s−1/2
K , t−1/2

L

)
,

s = 1 − K, . . . , 2K, t = 1 − L, . . . , 2L. In this way, we have 9N cells,
arranged in a (3K) × (3L) matrix. The original table C corresponds to the
central K × L square block of the enlarged matrix.

The enlargement of P is easily described. Let the matrices P∗, P
∗

and P
∗
∗

have (i, j) entries equal to PK+1−i,j, Pi,L+1−j and PK+1−i,L+1−j, respectively.
The enlarged P matrix is then,




P
∗
∗ P∗ P

∗
∗

P
∗

P P
∗

P
∗
∗ P∗ P

∗
∗


 .
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For the enlargement of N we have similar descriptions. For these enlarged
matrices the lines are indexed from 1 − K to 2K, while the columns are
indexed from 1 − L to 2L.

In order to define the functions to be optimized for the construction of
the estimators, consider the indexes (s, t) of the enlarged matrices ordered
lexicographically. In fact, any order of these indexes is acceptable, but we
will refer to the lexicographic one. For each cell (i, j) of the original central
table, define the (9N) × 6 matrix Xi,j whose (s, t) line is
[
1 (xs − xi) (yt − yj) (xs − xi)

2 (xs − xi)(yt − yj) (yt − yj)
2
]
.

For the smoothing, let K1 and K2 be bounded and symmetrical densities with
support included in [−1/2, 1/2]. Given h1, h2 > 0, define

KH(u, v) =
1

h1h2
K1

(
u

h1

)
K2

(
v

h2

)
,

where H = (h1, h2). For each (i, j) in the original table, that is, for i =
1, . . . , K and j = 1, . . . , L, consider the (9N) × (9N) weight matrix

Ki,j = diag
[
KH(x1−L − xi, y1−K − yj), . . . ,

KH(xs − xi, yt − yj), . . . ,KH(x2L − xi, y2K − yj)
]
.

Finally, to introduce the notation to be used below, write
−→
P =

(
P 1−K,1−L, . . . , P s,t, . . . , P 2K,2L

)t
,

the vector of the empirical distribution P s,t, over the enlargement of the
matrix P, with the components listed in the lexicographic order.

3. The estimators

In this section we describe the estimators we propose. As mentioned earlier,
they will be constructed as solutions of optimization problems. The first
family of estimators, denoted CPS, for constrained polynomial smoother,
correspond to constrained, because of the marginal distribution being given,
polynomial estimators. These estimators will appear as an additive correction
of the usual local polynomial estimators. This family of estimators, like the
classical local polynomial estimators, may produce negative approximations
for some cells. Thus, we propose to optimize another error function that
will construct estimators that will be always nonnegative. This family of
estimators appears when modifying the error function by penalizing the error
in a relative way with respect to true probabilities. This penalizing idea was
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inspired by the chi-squared tests, where errors are measured relative to their
expected values. These estimators will be denoted CPPS, for constrained
penalized polynomial smoother.

For each cell Ci,j, the classical polynomial smoother of degree 2, that we
will denote by PSi,j(2), appears as the solution of the minimization of

Hi,j =
(−→
P − Xi,jβi,j

)t

Ki,j

(−→
P − Xi,jβi,j

)
, (3)

where βi,j = (β0,i,j, . . . , β5,i,j)
t. If β̂i,j the minimizer of Hi,j, then PSi,j(2) =

β̂0,i,j, the constant term of β̂i,j. The polynomial smoothers of different degree
appear as solution of the minimization of Hi,j with obvious changes of the
matrices Xi,j.

Whenever the cell Ci,j is such that KH(x−xi, y− yj) = 0, for each (x, y) /∈
[0, 1] × [0, 1], the minimizer of Hi,j is

β̂i,j =
(
Xt

i,jKi,jXi,j

)−1
Xt

i,jKi,j
−→
P , (4)

which is exactly the usual polynomial estimator of βi,j. Now, the situation
differs near the border. In fact, it is well known that the usual local polyno-
mial estimate gives some automatic correction to border effects at the cost
of a somewhat intricate expression for the regression coefficients. The fact
that we use the replication device described earlier, that may seem some-
what painful to describe, gives in return the advantage of correcting border
effects without strictly modify the general expression of the estimate near
the boundary of the table C. Evidently, it amounts to an automatic revision
of the weights around each border, or edge, cell.

The above mentioned construction does not take into account the knowl-
edge of the marginal distribution Πi, i = 1, . . . , K. In order to use this
knowledge of the marginal distribution, we introduce a new estimate of Pi,j

as the solution of the optimization problem:

minimize
L∑

l=1

Hi,l

subject to
∑L

j=1 β0,i,j = Πi.

(5)

If β̂c
i,j, j = 1, . . . , L, are the minimizers of this problem, the constrained

polynomial smoother of degree 2 is CPSi,j(2) = β̂c
0,i,j, the constant term

of β̂c
i,j. For constrained polynomial smoothers with different degrees, the
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solution appears by modifying the matrices Xi,j appropriately. In Section 5
we show that

CPSi,j(p) = PSi,j(p) +
1

L

(
Πi −

L∑

l=1

PSi,l(p)

)
. (6)

An explicit formula for CPSi,j(2) is given in Section 6. Expressions for
CPSi,j(0) and CPSi,j(1) are given in Section 10.

It is well known that the polynomial smoother β̂i,l tend to produce negative
values for its constant term. This means that PSi,j(p) might be negative, ex-
cept for the case p = 0, when this estimator is the classical Nadaraya-Watson
estimator. Unfortunately, the expression above does not always correct this
drawback for β̂c

i,j.
We now propose a new estimator. For this purpose, define, for each i =

1, . . . , K, and j = 1, . . . , L, the penalized target functions

H∗
i,j =

1

β0,i,j

(−→
P − Xi,jβi,j

)t

Wi,j

(−→
P − Xi,jβi,j

)
, (7)

where

Wi,j =
1∑

s,t KH(xs − xi, yt − yj)
Ki,j.

This is a penalized error measure, so we will call the estimator derived a pe-
nalized polynomial smoother of degree 2. For different degrees, just change
the matrices Xi,j conveniently. The idea of considering errors that are rela-
tive to the probability we are trying to estimate will contribute to keep the
nonnegativity and to some overestimation of very small probabilities. The
minimization of (7), for each (i, j), does not necessarily produce a probabil-
ity distribution, less one that respects the knowledge of the given marginal.
Thus, our constrained penalized polynomial smoother, is defined by the so-
lution of the optimization problem:

minimize H∗
i =

L∑

l=1

H∗
i,l

subject to
∑L

j=1 β0,i,j = Πi.

(8)

The constrained penalized polynomial smoother of degree 2, denoted
CPPSi,j(2) is the first coordinate of the minimizer of the above problem. For
different degrees of the smoother, we modify the matrices Xi,j accordingly.
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To present a matricial expression for CPPSi,j, define the matrices X̃i,j by

replacing in Xi,j the first column by zeros. Then, the matrix X̃t
i,jWi,jX̃i,j is

of the form 


0 · · · 0
...
0

M


 .

Whenever the block M is nonsingular we shall say the matrix has a general-
ized inverse and write

(
X̃t

lWlX̃l

)−1

=




0 · · · 0
...
0

M−1


 .

With this definition, put

Ai,j = Wt
i,jX̃i,j

(
X̃t

i,jWi,jX̃i,j

)−1

X̃t
i,jWi,j. (9)

We show in Section 8 that

CPPSi,j(p) = Πi

∣∣∣
−→
P t(Wi,j − Ai,j)

−→
P

∣∣∣
1/2

∑L
l=1

∣∣∣
−→
P t(Wi,l − Ai,l)

−→
P

∣∣∣
1/2

. (10)

Notice that the matrix Ai,j depends on the degree of the polynomial smoother.
At a first glance one can observe that CPPSi,j gives positive estimations for
each Pi,j. Moreover, CPPSi,j may be interpreted as a multiplicative cor-
rection of the estimator obtained when minimizing H∗

i,j without constraint,
in contrast to CPSi,j which appears as an additive correction of the uncon-
strained estimator PSi,j. Alternatively, CPPSi,j can be viewed as a kind of
conditional estimator through the obvious formula

Pi,j = Πi
Pi,j∑L
l=1 Pi,l

.

The expression for CPPSi,j given in (10) uses absolute values. In fact, in

general, the sign of
−→
P t(Wi,j−Ai,j)

−→
P depends on the properties of the kernel.

In Section 9 below, it will be shown that, although the previous expression
is random, its sign is the same as the sign of the nonrandom expression

et (Wi,j − Ai,j) e = 1 −

(
τ 4
2 σ4

1 + τ 4
1 σ4

2 + 2σ4
1σ

4
2

τ 4
1 τ 4

2 − σ4
1σ

4
2

)
,
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dist.1 dist.2 dist.3

Table 1. Distributions used for simulation.

whenever it is different from zero. This might be, in fact, any real num-
ber, and it is independent of the cell (i, j). It is interesting to note that
et (Wi,j − Ai,j) e = 0 if we choose the kernels K1 and K2 such that their mo-
ments verify τ 4

1 = 3σ4
1 and τ 4

2 = 3σ4
2. This holds, for example, if the kernels

are gaussian densities. As it will become apparent from the computational
details of Sections 8 and 9, it seems convenient that et (Wi,j − Ai,j) e should
be positive. This can be achieved by a suitable choice of the kernel, thus the
sign becoming independent of the data set. A simple solution to have this
control is to choose kernels that are leptokurtic.

4. Simulation results

In this section we compare the performance of the different constrained
smoothers with respect to the mean sum of squared errors MSSE and to the
sup-norm NSUP. We considered three distributions obtained as mixtures of
discretized Beta with different parameters. These type of distributions are
used in the literature for smoothers over a discrete one dimensional support
(see, for example, Aerts, Augustyns and Janssen [1], Simonoff [8, 9] or Dong
and Simonoff [4]).

In Table 1 we graph the three distributions used for simulation. The given
marginal, considered as know for estimation purpose, was the uniform for
distribution 1, and β(.8, .8) for the other distributions. The conditional dis-
tribution over the second coordinate given the first coordinate, was of the
form β(a, a) with a ranging from -1 to 2 for distribution 1, from .5 to 3 for
distribution 2, and from .3 to 5.2 for distribution 3. These distributions were
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dist.1 dist.2 dist.3
n = N n = 5N n = N n = 5N n = N n = 5N

K = 10, L = 10
CPS(0) 0.003811 0.003860 0.004047 0.000768 0.000815 0.000916
CPS(2) 0.006631 0.006619 0.006859 0.001343 0.001358 0.001414
CPPS(0) 0.001970 0.002063 0.002333 0.000687 0.000685 0.000828
CPPS(1) 0.002109 0.002201 0.002409 0.000691 0.0007012 0.000793
CPPS(2) 0.003671 0.003764 0.003892 0.001318 0.001347 0.001365
K = 30, L = 10
CPS(0) 0.001225 0.001251 0.001324 0.000251 0.000256 0.000296
CPS(2) 0.002139 0.002173 0.002249 0.000441 0.000439 0.000461
CPPS(0) 0.000632 0.000640 0.000748 0.000222 0.000216 0.000268
CPPS(1) 0.000676 0.000686 0.000771 0.000223 0.000221 0.000256
CPPS(2) 0.001186 0.001211 0.001257 0.000430 0.000440 0.000446
K = 30, L = 30
CPS(0) 0.000454 0.000459 0.000486 0.000091 0.000093 0.000110
CPS(2) 0.000795 0.000797 0.000821 0.000167 0.000165 0.000173
CPPS(0) 0.000245 0.000246 0.000306 0.000075 0.000077 0.000106
CPPS(1) 0.000259 0.000261 0.000311 0.000077 0.000078 0.000099
CPPS(2) 0.000469 0.000463 0.000481 0.000163 0.000163 0.000162

Table 2. Simulated values for the MSSE.

discretized over 10 × 10, 30 × 10 and 30 × 30 tables. We performed simu-
lations with the number of observations equal to the number of cells, still
considered a sparse situation, and with the number of observations equal
to five times de number of cells, already a non sparse situation. We per-
formed some other simulations with fewer observations over the table, that
is, in a situation clearly more sparse than those reported. The results were
in accordance with the ones that are to be described, so we decided not to
include them here. We considered two symmetric and leptokurtic kernels,
one in each direction. All the numerical results were obtained by running
500 Monte Carlo samples in each of the considered situations.

In Table 2 we show the simulated values for the MSSE of the estimators.
We verify that the constrained penalized polynomial smoothers of degrees
0 and 1, CPPS(0) and CPPS(1) perform better that all the others in every
sparse situation, the next best performance is always for the constrained
polynomial smoothers of degree 0, CPS(0). The constrained smoothers of
degree 2 are consistently the worst ones, although the constrained penalized
smoother CPPS(2) exhibits some advantage over the constrained polynomial
smoother CPS(2). For distribution 3, this advantage vanishes, due to a
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very flat distribution. For nonsparse situations, the constrained penalized
smoothers continue to exhibit a better performance for small tables. They
seem to loose some of their advantage when the table size increases. The
relative performance between the estimators is essentially the same as for
sparse observations. This loss of performance seems linked to the support
of the smoothing kernel. In order to compare results we kept the smoothing
kernel over the simulation process. It is clear that the size of the support in
the 30×30 tables means that we are looking for smoothing over a quite small
neighborhood, while the same kernel looks at a significant neighborhood of
the 10 × 10 table.

Tables 3 and 4 report the results obtained for the simulation of sup-norm.
We show the empirical distributions obtained, as they give an easier to read
general impression of the performance of each estimator. In Table 3 we show
the results for sparse observations, while Table 4 shows results for nonsparse
observations. In general, for sparse observations, the constrained penalized
smoothers of degrees 0, CPPS(0), shows the better performance, while the
constrained polynomial smoother of degree 2, CPS(2), shows the worst per-
formance. In general, the constrained penalized smoothers of degrees 0 and
1, CPPS(0) and CPPS(1), show an equivalent performance, with some ad-
vantage to CPPS(0).

As what regards nonsparse observations, from Table 4 we can see that
the constrained polynomial and the constrained penalized polynomial of de-
grees 2, CPS(2) and CPPS(2) show equivalent performance. The constrained
penalized smoothers of degrees 0 and 1, CPPS(0) and CPPS(1), and the
constrained polynomial smoother of degree 1, CPS(1), also show similar be-
haviour, although with some advantage to the penalized smoothers. The
behaviour is distinct for distribution 3, a rather flat one with strong peaks
at the four corners of the table, and a 30 × 30 table. Here the smoothers
of degree 0 show the worst performance, and it is the constrained penalized
smoother of degree 2, CPPS(2), that exhibits the best behaviour.

According to these comments, we could indicate a rule of thumb for the
choice of the estimator one should use: in general, prefer CPPS(0) or CPPS(1),
consider CPS(0) if you decide to smooth with a kernel that has a small sup-
port when compared to the size of the table. If you have the information
that the distribution you are estimating is almost constant with a few peaks
and your data is no longer very sparse, you should also consider CPPS(2).
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dist.1 dist.2 dist.3
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Table 3. Empirical distribution of sup-norm for sparse observations.
Smoothers: CPPS(0) (solid), CPPS(1) (dashed), CPPS(2) (dotted), CPS(0)
(dotdashed), CPS(2) (longdashed).

5. Derivation of the CPS estimators

In order solve the optimization problem (5), introduce the Lagrange func-
tion

Hi =
L∑

l=1

Hi,l + 2ν

(
L∑

l=1

htβi,l − Πi

)
, (11)
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0

0.000 0.002 0.004 0.006 0.008

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

30 × 30

0.0000 0.0005 0.0010 0.0015 0.0020

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.0000 0.0010 0.0020 0.0030

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0.000 0.001 0.002 0.003 0.004

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Table 4. Empirical distribution of sup-norm for nonsparse observations.
Smoothers: CPPS(0) (solid), CPPS(1) (dashed), CPPS(2) (dotted), CPS(0)
(dotdashed), CPS(2) (longdashed).

where h = (1, 0, 0, 0, 0, 0)t and 2ν stands for the Lagrange multiplier. The
first order conditions are

∂Hi

∂βi,l
= −2Xt

i,lKi,l
−→
P + 2Xt

i,lKi,lXi,lβi,l + 2νh = 0, l = 1, . . . , L. (12)
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From this system of equations and htβi,l = β0,i,l we obtain, for each l =
1, . . . , L, the following matricial expression

[
Xt

i,lKi,lXi,l h

ht 0

]
×

[
βi,l

ν

]
=

[
Xt

i,lKi,l
−→
P

β0,i,l

]
. (13)

Multiplying on the left by the matrix
[

Id 0

−ht
(
Xt

i,lKi,lXi,l

)−1
1

]
,

it follows [
Xt

i,lKi,lXi,l h

0 −ht
(
Xt

i,lKi,lXi,l

)−1
h

]
×

[
βi,l

ν

]

=

[
Xt

i,lKi,l
−→
P

β0,i,l − ht
(
Xt

i,lKi,lXi,l

)−1
Xt

i,lKi,l
−→
P

]
.

Summing the last line of this equation over l = 1, . . . , L, gives

ν =
−Πi +

∑L
l=1 ht

(
Xt

i,lKi,lXi,l

)−1
Xt

i,lKi,l
−→
P

∑L
l=1 ht

(
Xt

i,lKi,lXi,l

)−1

h

=
−Πi +

∑L
l=1 β̂0,i,l

∑L
l=1 ht

(
Xt

i,lKi,lXi,l

)−1

h

. (14)

Now from (12) we derive

β̂c
i,j =

(
Xt

i,jKi,jXi,j

)−1
(
Xt

i,jKi,j
−→
P − νh

)

= β̂i,j − ν
(
Xt

i,jKi,jXi,j

)−1
h.

Multiplying on the left by ht and introducing the expression obtained for ν,
it follows

β̂c
0,i,j = β̂0,i,j +

ht
(
Xt

i,jKi,jXi,j

)−1
h

∑L
l=1 ht

(
Xt

i,lKi,lXi,l

)−1

h

(
Πi −

L∑

l=1

β̂0,i,l

)
. (15)

Finally, observe that, under our construction of Xi,l and Wi,l, the matrix

ht
(
Xt

i,lWi,lXi,l

)−1
h does not depend on the index l, and use the notation
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for the estimators, to find

CPSi,j(p) = PSi,j(p) +
1

L

(
Πi −

L∑

l=1

PSi,l(p)

)
, (16)

that is, expression (6).

6. An explicit expression for CPSi,j(2)
In order to give an explicit formula for the estimator CPSi,j(2), given by

(16), we will find an expression for the polynomial smoother

PSi,j(2) = htβ̂c
i,j = ht

(
Xt

i,jKi,jXi,j

)−1
Xt

i,jKi,j
−→
P .

We start by noting that, with replication device we used, all the cells of he
original table C are interior, so

∑
s,t KH(xs − xi, yt − yj) does not depend

upon (i, j), thus we may replace, in the expression above, the matrices Ki,j

by Wi,j. That is, we have the representation

PSi,j(2) = ht
(
Xt

i,jWi,jXi,j

)−1
Xt

i,jWi,j
−→
P =

∑

s,t

Rs,tP s,t,

where the coefficients Rs,t are to be determined. Moreover, recalling that
K = K1 ×K2, it is convenient to introduce the system of product weights

p1(s − i)p2(t − j) =
KH(xs − xi, yt − yj)∑
u,v KH(xs − xu, yt − yv)

,

and the sums

Sα,β =
∑

s,t

(xs − xi)
α(yt − yj)

βp1(s − i)p2(t − j).

The symmetry of K1 and K2 entails the symmetry of p1 and p2 hence Sα,β = 0
if one of the coefficients α or β is odd. Define now the second and fourth
moments of the weight functions p1 and p2:

σ2
1 =

∑
z z2p1(z), σ2

2 =
∑

z z2p2(z),

τ 4
1 =

∑
z z4p1(z), τ 4

2 =
∑

z z4p2(z).

Then, it is easy to check that S0,0 = 1, S2,0 = σ2
1/K

2, S0,2 = σ2
2/L

2, S2,2 =
σ2

1σ
2
2/K

2L2, S4,0 = τ 4
1 /K4, and S0,4 = τ 4

2 /L4. These sums may be used to
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describe the matrix

Xt
i,jWi,jXi,j =




S0,0 S1,0 S0,1 S2,0 S1,1 S0,2

S1,0 S2,0 S1,1 S3,0 S2,1 S1,2

S0,1 S1,1 S0,2 S2,1 S1,2 S0,3

S2,0 S3,0 S2,1 S4,0 S3,1 S2,2

S1,1 S2,1 S1,2 S3,1 S2,2 S1,3

S0,2 S1,2 S0,3 S2,2 S1,3 S0,4




.

As
(
Xt

i,jWi,jXi,j

)−1
is left multiplied by ht, we only need the first line of this

matrix. A simple calculation shows that

ht
(
Xt

i,jWi,jXi,j

)−1
=
[

U 0 0 V 0 W
]

where

U =
S4,0S0,4 − S2

2,2

(S4,0 − S2
2,0)(S0,4 − S2

0,2)

V =
S2,2S0,2 − S2,0S0,4

(S4,0 − S2
2,0)(S0,4 − S2

0,2)

W =
S2,2S2,0 − S0,2S0,4

(S4,0 − S2
2,0)(S0,4 − S2

0,2)
.

Now, it is easy to verify that

Rs,t = p1(s − i)p2(t − j)

[
U + V

(
s − i

K

)2

+ W

(
t − j

L

)2
]

,

so we have explicit expressions for the coefficients appearing in the linear
combination defining CPSi,j(2).

Note that, due to Schwarz’s inequality, U > 0 and V < 0 , W < 0.
Moreover, ∑

s,t

Rs,t = U + S2,0V + S0,2W = 1,

thus, the weights Rs,t may be viewed as a bidimensional kernel of order
4. This means that PSi,j(2), as well as CPSi,j(2), may produce negative
estimates of Pi,j. This a drawback that we can avoid by using our estimator
CPPSi,j(2).
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7. Derivation of the CPPS estimators

In order to solve the minimization problem (8), introduce the Lagrange
function

H∗
i =

L∑

l=1

H∗
i,l + λ

(
L∑

l=1

htβi,l − Πi

)
(17)

where h = (1, 0, 0, 0, 0, 0)t, as before, and λ stands for the Lagrange multi-
plier. The first order conditions ∂Hi

∂βi,l
= 0, l = 1, . . . , L, give rise, for each l,

to the system of six equations

λβ0,i,lh =

= −2Xt
i,lWi,l

(−→
P−Xi,lβi,l

)
−

h

β0,i,l

(−→
P−Xi,lβi,l

)t

Wi,j

(−→
P−Xi,lβi,l

)
(18)

We will now analyze this system for fixed l. The first equation is non linear,
so it deserves a special treatment. We start by solving the linear part of this
system of equations. For this purpose define β̃i,l = βi,l − β0,i,lh, and recall

that X̃i,j is the matrix obtained by replacing the first column of Xi,j by a
column of zeros. Then

Xi,lβi,l = X̃i,jβ̃i,l + β0,i,le, (19)

where et = (1, . . . , 1), and the linear part of (18) reduces to

X̃t
i,jWi,l

(−→
P − β0,i,le

)
= X̃t

i,jWi,lX̃i,lβ̃i,l.

The matrix X̃t
i,jWi,lX̃i,l has a null first line and column, so it is not invertible.

Nevertheless, using the generalized invertibility, as described in Section 5, we
can write

β̃i,l =
(
X̃t

i,jWi,lX̃i,l

)−1

X̃t
i,jWi,l

(−→
P − β0,i,le

)
. (20)

Return to the first (non linear) equation which can be written, after a mul-
tiplication of (18) by β0,i,lh

t:
(−→
P − X̃i,jβ̃i,l + β0,i,le

)t

Wi,j

(−→
P − X̃i,jβ̃i,l − β0,i,le

)
= λβ2

0,i,l.

Expanding and noting that etWi,je = 1, this equation reduces to
(−→
P − X̃i,jβ̃i,l

)t

Wi,j

(−→
P − X̃i,jβ̃i,l

)
− β2

0,i,l = λβ2
0,i,l. (21)
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Now using (20) and a straightforward calculus we find

−→
P t (Wi,l − Ai,l)

−→
P − β2

0,i,le
t (Wi,l − Ai,l) e = λβ2

0,i,l. (22)

where Ai,j is defined by (9). Suppose for the moment that et (Wi,l − Ai,l) e
does not depend upon the index l and denote it by Ri, for shortness. This
will be proved later in Section 9. Taking into account that β0,i,l should be
positive, it follows that

∣∣∣
−→
P t (Wi,l − Ai,l)

−→
P

∣∣∣
1/2

= β0,i,l |Ri + λ|1/2 ,

thus, using the constraint, we find

L∑

l=1

∣∣∣
−→
P t (Wi,l − Ai,l)

−→
P

∣∣∣
1/2

= Πi |Ri + λ|1/2 .

Finally from these two expressions, we derive the following estimate for Pi,j:

CPPSi,j(2) = Πi

∣∣∣
−→
P t (Wi,j − Ai,j)

−→
P

∣∣∣
1/2

∑L
l=1

∣∣∣
−→
P t (Wi,l − Ai,l)

−→
P

∣∣∣
1/2

.

It remains to verify that we have indeed identified a minimum, as the
objective function is not quadratic. First remark that, as the constraint is
linear in βi,l, the term corresponding to the Lagrange multiplier does not
appear in the Hessian matrix of H∗

i . This implies that ∇2H∗
i is a block

diagonal matrix with blocks defined by the Hessian matrices of each H∗
i,l, l =

1, . . . , L. It is now easy to check that, for u = (u1| · · · |uL) a general L × 6
vector, we have

ut∇2H∗
i u =

L∑

l=1

ut
l∇

2H∗
i ul = 2

L∑

l=1

1

β2
0,i,l

Zt
lZl ≥ 0,

where Zl = u0,l
β0,i,l

(−→
P − Xi,lβi,l

)t

W
1/2
i,l +utXt

i,lW
1/2
i,l . As the objective function

and the constraint are convex the Karush-Kuhn-Tucker conditions ensure we
have, in fact, a minimum.
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8. An explicit expression for CPPSi,j(2)
According to (10), we need to compute first matrix

Ai,j = Wi,jX̃i,j

(
X̃t

i,jWi,jX̃i,j

)−1

X̃t
i,jWi,j.

The matrix X̃t
i,jWi,jX̃i,j is obtained from Xt

i,jWi,jXi,j by replacing the first
line and column of by zeros. Thus, using the notation introduced in Section 6:

X̃t
i,jWi,jX̃i,j =




0 0 0 0 0 0
0 S2,0 0 0 0 0
0 0 S0,2 0 0 0
0 0 0 S4,0 0 S2,2

0 0 0 0 S2,2 0
0 0 0 S2,2 0 S0,4




It follows that X̃t
i,jWi,jX̃i,j is invertible, in the generalized sense introduced

before, and

(
X̃t

i,jWi,jX̃i,j

)−1

=




0 0 0 0 0 0
0 S−1

2,0 0 0 0 0
0 0 S−1

0,2 0 0 0
0 0 0 S0,4∆

−1 0 S2,2∆
−1

0 0 0 0 S−1
2,2 0

0 0 0 S2,2∆
−1 0 S4,0∆

−1




.

where ∆ = S4,0S0,4 − S2
2,2.

Next, the typical line of Wi,jX̃i,j is of the form

p1(s − i)p2(t − j)
[

0 s−i
K

t−j
L

(
s−i
K

)2 s−i
K

t−j
L

(
t−j
L

)2 ]
.

Thus, the general entry of Ai,j, that is, the entry on line (s, t) and column
(s′, t′) is



20 P. JACOB AND P. E. OLIVEIRA

Ai,j

(
(s, t), (s′, t′)

)
= p1(s − i)p2(t − j)p1(s

′ − i)p2(t
′ − j)

×

[
(s − i)(s′ − i)

K2
S−1

2,0 +
(t − j)(t′ − j)

L2
S−1

0,2

+
(s − i)2(s′ − i)2

K4
S0,4∆

−1 +
(t − j)2(t′ − j)2

L4
S4,0∆

−1

+
(s − i)(s′ − i)

K2

(t − j)(t′ − j)

L2
S−1

2,2

+
(s − i)2(t′ − j)2

K2L2
S2,2∆

−1 +
(s′ − i)2(t − j)2

K2L2
S2,2∆

−1

]

So, finally,
−→
P tAi,j

−→
P =

∑

(s,t),(s′,t′)

P s,tP s′,t′Ai,j

(
(s, t), (s′, t′)

)

=
1

σ2
1



∑

(s,t)

(s − i)p1(s − i)p2(t − j)P s,t




2

+
1

σ2
2



∑

(s,t)

(t − j)p1(s − i)p2(t − j)P s,t




2

+
τ 4
2

τ 4
1 τ 4

2 − σ4
1σ

4
2



∑

(s,t)

(s − i)2p1(s − i)p2(t − j)P s,t




2

+
τ 4
1

τ 4
1 τ 4

2 − σ4
1σ

4
2



∑

(s,t)

(t − j)2p1(s − i)p2(t − j)P s,t




2

+
1

σ2
1σ

2
2



∑

(s,t)

(s − i)(t − j)p1(s − i)p2(t − j)P s,t




2

+
2σ2

1σ
2
2

τ 4
1 τ 4

2 − σ4
1σ

4
2



∑

(s,t)

(s − i)2p1(s − i)p2(t − j)P s,t


×

×



∑

(s,t)

(t − j)2p1(s − i)p2(t − j)P s,t


 .
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To complete the expression for CPPSi,j(2), the remaining term is
−→
P tWi,j

−→
P =

∑

(s,t)

p1(s − i)p2(t − j)P
2
s,t. (23)

9. The term et (Wi,j − Ai,j) e

In this section we characterize the term et (Wi,j − Ai,j) e. Replacing P s,t

by 1 in the calculations of the previous section gives,

et (Wi,j − Ai,j) e = 1 −

(
τ 4
2 σ4

1 + τ 4
1 σ4

2 + 2σ4
1σ

4
2

δ

)
.

where δ = τ 4
1 τ 4

2 − σ4
1σ

4
2. Thus, this expression depends only on the moments

of the marginal kernels K1 and K2, and its sign depends on these moments.
It should be noticed that et (Wi,j − Ai,j) e may even be null. This happens,
for instance, for weight distributions which satisfy the “gaussian property”
τ 4
1 − 3σ4

1 = 0, τ 4
2 − 3σ4

2 = 0.

It is worth noticing that the first order conditions for H∗
i =

∑L
l=1 H∗

i,l, with
no constraint, are obtained by setting λ = 0 in the formulas (17), (18), (21)
and (22). In particular, (22) reduces to

−→
P t (Wi,l − Ai,l)

−→
P = β2

0,i,le
t (Wi,l − Ai,l) e.

It follows then that
−→
P t (Wi,l − Ai,l)

−→
P has a constant sign given by the sign

of et (Wi,l − Ai,l) e.
In case the et (Wi,l − Ai,l) e = 0 there is no solution to the first order equa-

tions for H∗
i =

∑L
l=1 H∗

i,l. This means that the unconstrained minimization
problem of minimizing has no finite positive solution for β0,i,l. In such a case,

we are unable to precise the sign of
−→
P t (Wi,l − Ai,l)

−→
P . However the proof

developed in Section 7, for the constrained problem, runs even in this case.

10. The smoothers of degree 0 and 1

The previous sections present a detailed description of the smoothers based
upon polynomials of degree p = 2. Similar estimators are easily produced for
degrees p < 2, by suppressing the non relevant columns in the matrix Xi,j.

It is easy to check that for p = 0, 1, due to the symmetry of the marginal
kernels,

PSi,j(p) =
∑

s,t

Rs,tP s,t
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with
Rs,t = p1(s − i)p2(t − j).

Thus PSi,j(p) reduces to a smoother based upon the weights of the matrix
Wi,j. For the constrained polynomial smoother, and we still have

CPSi,j(p) = PSi,j(p) +
1

L

(
Πi −

L∑

l=1

PSi,l(p)

)
.

For the penalized polynomial smoother, we still have, for p = 1,

CPPSi,j(1) = Πi

∣∣∣
−→
P t (Wi,j − Ai,j)

−→
P

∣∣∣
1/2

∑L
l=1

∣∣∣
−→
P t (Wi,l − Ai,l)

−→
P

∣∣∣
1/2

,

with
−→
P tWi,j

−→
P given by (23), while

−→
PtAi,l

−→
P reduces to

1

σ2
1



∑

(s,t)

p1(s − i)p2(t − j)(s − i)P s,t




2

+
1

σ2
2



∑

(s,t)

(t − j)p1(s − i)p2(t − j)P s,t




2

.

Finally, for p = 0, a direct computation gives, as the matrices Ai,j become
null,

CPPSi,j(0) = Πi

∣∣∣
−→
P tWi,j

−→
P

∣∣∣
1/2

∑L
l=1

∣∣∣
−→
P tWi,l

−→
P

∣∣∣
1/2

.
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