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Abstract: The modular vector field of a Poisson-Nijenhuis Lie algebroid A is
defined and we prove that, in case of non-degeneracy, this vector field defines a
hierarchy of bi-Hamiltonian A-vector fields. This hierarchy covers an integrable
hierarchy on the base manifold, which may not have a Poisson-Nijenhuis structure.
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1. Introduction

The relative modular class of a Lie algebroid morphism was first discussed
by Grabowski, Marmo and Michor in [11]. Kosmann-Schwarzbach and We-
instein in [16] showed that this relative class could be seen as a generalization
of the notion of modular class introduced by Weinstein in [17]. In [8], Dami-
anou and Fernandes introduced the modular vector field of a Poisson-Nijehuis
manifold and showed that it is intimately related with integrable hierarchies
(see, also, the alternative approach offered by Kosmann-Schwarzbach and
Magri in [14]). In this paper, we generalize this construction and consider
the modular vector field of a Poisson-Nijenhuis Lie algebroid.

Recall (see, e.g, [15]) that a Nijenhuis operator N : A → A on a Lie
algebroid (A, [ , ] , ρ) allows us to define a deformed Lie algebroid structure
AN = (A, [ , ]N , ρ ◦ N) such that N : AN → A is a Lie algebroid morphism.
Our first result states that the modular class of this morphism has a canonical
representative:

Proposition 1. The relative modular class N : AN → A is represented by
dA TrN .

Let us assume now that A is equipped with a Poisson structure π
compatible with N . Then we can define two Lie algebroid structures
on A∗, namely (A∗, [ , ]π , ρ ◦ π♯) obtained by dualization from π, and
A∗

N∗ = (A∗, [ , ]Nπ, ρ ◦ Nπ♯) obtained from the first one by deformation
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along N∗. Again, N∗ : A∗
N∗ → A∗ is a Lie algebroid morphism and, by the

proposition above, its relative modular class has the canonical representa-
tive X(N,π) := dπ(TrN), which we will call the modular vector field of the
Poisson-Nijenhuis Lie algebroid (A, π, N). When A = TM we recover the
construction of Damianou and Fernandes [8] up to a factor of 1/2 (for the
same reason that the modular class associated with a Poisson manifold differs
from the modular class of its cotangent Lie algebroid by a factor of 1/2).

The modular vector field X(N,π) of the Poisson-Nijenhuis Lie algebroid
(A, π, N) is always a dNπ-cocycle. If N is non-degenerated it is also a
dNπ-coboundary. In this case we have the following generalization of a result
of Damianou and Fernandes for a Poisson-Nijenhuis manifold:

Theorem 2. Let (A, π, N) be a Poisson-Nijenhuis Lie algebroid with N a
non-degenerated Nijenhuis operator. Then there exists a hierarchy of
A-vector fields

X i+j

(N,π) = N i+jX(N,π) = dN iπhj = dN jπhi, (i, j ∈ Z)

where

h0 = ln(detN) and hi =
1

i
Tr N i, (i 6= 0).

The hierarchy of flows on A, given by this theorem, covers a hierarchy of
(ordinary) multi-Hamiltonian flows on the base manifold M . Although the
hierarchy on A is generated by a Nijenhuis operator, it may happen that the
base hierarchy is not generated by one. We will see that this is precisely the
case for the An-Toda lattice. This gives a new explanation for the existence of
a hierarchy of Poisson structures and flows associated with a bi-Hamiltonian
system which may not have a Nijenhuis operator.

This paper is organized as follows. In Section 2, we present the necessary
background on Poisson-Nijenhuis Lie algebroids. In Section 3, we introduce
the modular vector field of a Poisson-Nijenhuis Lie algebroid, state its basic
properties, and prove Theorem 2. Section 4 is concerned with integrable
hierarchies and discusses the example of the An-Toda lattice. In the last
section, we discuss our results in the context of three basic classes of Lie
algebroids: The first class is the extreme case where the base manifold is a
point, i.e., a Lie algebra. The second class, is the case of the tangent bundle
of a manifold where we recover the results of [8], and the last class is the Lie
algebroid associated with the dynamical Yang-Baxter equation of Etingof
and Varchenko ([4]) and discovered by Xu in [18].
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2. Poisson-Nijenhuis Lie Algebroids

In this section we will recall some basic facts about Nijenhuis operators
and Poisson structures on Lie algebroids which we will need later. A general
reference for Lie algebroids is the book by Cannas da Silva and Weinstein
[3]. Nijenhuis operators are discussed in detail in the article by Kosmann-
Schwarzbach and Magri [15], while PN-structures on Lie algebroids are dis-
cussed by Kosmann-Schwarzbach in [13] and by Grabowski and Urbanski in
[12].

2.1. Cartan calculus on Lie algebroids. Let us recall that a Lie algebroid
is a kind of generalized tangent bundle, which carries a generalized Cartan
calculus.

First, for any Lie algebroid (A, [ , ] , ρ) we have a complex of A-differential
forms Ωk(A) := Γ(∧kA∗) with the differential given by:

dAω(X0, . . . , Xk) :=
n∑

i=0

(−1)iρ(Xi) · ω(X0, . . . , X̂i, . . . , Xk)

+
∑

0≤i≤j≤k

(−1)i+jω
(
[Xi, Xj]A, X0, . . . , X̂i, . . . , Xk

)
,

where X0, . . . , Xk ∈ Γ(A). The corresponding Lie algebroid cohomology is
denoted by H•(A).

Dually, the space of A-multivector fields X•(A) =
⊕

k∈Z
Xk(A) :=

⊕
k∈Z

Γ(∧kA) carries a super-Lie bracket [ , ]A, extending the Lie bracket on Γ(A),
and satisfying the following super-commutation, super-derivation and super-
Jacobi identities:

[P, Q] = −(−1)(p−1)(q−1)[P, Q]

[P, Q ∧ R] = [P, Q] ∧ R + (−1)(p−1)qQ ∧ [P, R]

(−1)(p−1)(r−1)[P, [Q, R]] + (−1)(q−1)(p−1)[Q, [R, P ]] + (−1)(r−1)(q−1)[R, [P, Q]] = 0

where P ∈ Xp(A), Q ∈ Xq(A) and R ∈ Xr(A). The triple (X•(A), [ , ]A,∧)
is a Gerstenhaber algebra.

If X ∈ Γ(A) and ω ∈ Ωk(A) the Lie derivative of ω along X is the A-
differential form LXω ∈ Ωk(A) defined by

LXω := dAiXω + iXdAω,
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where iX : Ωk(A) → Ωk−1(A) is defined by

iXη(X1, . . .Xk−1) := η(X, X1, . . . , Xk), X1, . . . , Xk−1 ∈ Γ(A),

for k > 1. If k = 1, then iXη := η(X) and, for k ≤ 0 we say that iXη = 0.
A morphism φ : A → B (over the identity) of Lie algebroids over M induces

by transposition a chain map of the complexes of differential forms:

φ∗ : (Ωk(B), dB) → (Ωk(A), dA).

Hence, we also have a well defined map at the level of cohomology, which we
will denote by the same letter φ∗ : H•(B) → H•(A).

2.2. Nijenhuis operators. Let (A, [ , ] , ρ) be a Lie algebroid over a mani-
fold M . Recall that a Nijenhuis operator is a bundle map N : A → A (over
the identity) such that the induced map on the sections (denoted by the same
symbol N) has vanishing torsion:

TN(X, Y ) := N [X, Y ]N − [NX, NY ] = 0, X, Y ∈ Γ(A), (1)

where [ , ]N is defined by

[X, Y ]N := [NX, Y ] + [X, NY ] − N [X, Y ], X, Y ∈ Γ(A).

Let us set ρN := ρ ◦ N . For a Nijenhuis operator N , one checks easily that
the triple AN = (A, [ , ]N , ρN) is a new Lie algebroid, and then N : AN → A
is a Lie algebroid morphism.

Since N is a Lie algebroid morphism, its transpose gives a chain map of the
complexes of differential forms N∗ : (Ωk(A), dA) → (Ωk(AN), dAN

). Hence we
also have a map at the level of algebroid cohomology N∗ : H•(A) → H•(AN).

2.3. Poisson structures on Lie algebroids. Let π ∈ X2(A) be a bivector
on the Lie algebroid (A, [ , ] , ρ) and denote by π♯ the usual bundle map

π♯ : A∗ −→ A
α 7−→ π♯(α) = iαπ.

We say that π defines a Poisson structure on A if [π, π]A = 0. In this case,
the bracket on the sections of A∗ defined by

[α, β]π = Lπ♯αβ −Lπ♯βα − dA (π(α, β)) , α, β ∈ Γ(A∗),

is a Lie bracket and (A∗, [ , ]A∗ , ρ ◦ π♯) is a Lie algebroid. The differential
of this Lie algebroid is given by dπX = [π, X]A, X ∈ Ω(A∗), and the pair
(A, A∗) is a special kind of Lie bialgebroid, called a triangular Lie bialgebroid.
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2.4. Poisson-Nijenhuis Lie algebroids. The basic notion to be used in
this paper is the following:

Definition 3. A Poisson-Nijenhuis Lie algebroid (in short, a PN-
algebroid) is a Lie algebroid (A, [ , ]A , ρ) equipped with a Poisson structure π
and a Nijenhuis operator N which are compatible.

The compatibility condition between N and π means that:

[ , ]Nπ = [ , ]N∗ ,

where [ , ]Nπ is the Lie bracket defined by the bivector field Nπ ∈ X2(A), and
[ , ]N∗ is the Lie bracket obtained from the Lie bracket [ , ]π by deformation
along the Nijenhuis tensor N∗.

As a consequence, Nπ defines a new Poisson structure on A, compatible
with π:

[π, Nπ]A = [Nπ, Nπ]A = 0,

and one has a commutative diagram of morphisms of Lie algebroids:

(A∗, [·, ·]Nπ)
N∗

//

π♯

��

Nπ♯

%%L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

L

(A∗, [·, ·]π)

π♯

��

(A, [·, ·]N)
N

// (A, [·, ·]A)

In fact, we have a whole hierarchy Nkπ (k ∈ N) of pairwise compatible
Poisson structures on A.

3. Modular class of a Poisson-Nijenhuis Lie algebroid

In this section we will state and prove our main results.

3.1. Modular class of a Lie algebroid. Let (A, [ , ] , ρ) be a Lie algebroid
over the manifold M . For simplicity we will assume that both M and A
are orientable, so that there exist non-vanishing sections η ∈ Xtop(A) and
µ ∈ Ωtop(M).

The modular form of the Lie algebroid A with respect to η⊗µ is the A-form
ξA ∈ Ω1(A), defined by

〈ξA, X〉η ⊗ µ = LXη ⊗ µ + η ⊗Lρ(X)µ, X ∈ Γ(A). (2)
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This is a 1-cocycle of the Lie algebroid cohomology of A. If one makes a
different choice of sections η′ and µ′, then η′ ⊗ µ′ = fη ⊗ µ, for some non-
vanishing smooth function f ∈ C∞(M). One checks easily that the modular
form ξ′A associated with this new choice is given by:

ξ′A = ξA − dA log |f |, (3)

so that the cohomology class [ξA] ∈ H1(A) is independent of the choice of η
and µ. This cohomology class is called the modular class of A and we will
denoted it by mod A := [ξA].

Proposition 4. Let N be a Nijenhuis operator on a Lie algebroid A and fix
non-vanishing sections η and µ as above. The modular form ξAN

of the Lie
algebroid AN and the modular form ξA of A are related by:

ξAN
= dA(TrN) + N∗ξA. (4)

Proof : Around any point, we can always choose a local base {e1, . . . , er} of
sections of A and local coordinates (x1, . . . , xn) of M such that η = e1 ∧
. . .∧ er and µ = dx1 ∧ . . .∧ dxn. In these coordinates, we have the following
expressions for the anchor ρ and the Nijenhuis operator N :

ρ(ei) =

n∑

u=1

pu
i

∂

∂xu

and N(ei) =

r∑

j=1

N j
i ej, (i = 1, . . . , r).

Now, for i = 1, . . . , r, we compute:

Lei
η = Lei

(e1 ∧ . . . ∧ er) =
r∑

k,j=1

[
Nk

i Cj
kj −

n∑

u=1

(
ρu

j

∂N j
i

∂xu

+ ρu
i

∂N j
j

∂xu

)]
η

and

LρN (ei)µ = Lρ◦N(ei)(dx1 ∧ . . . ∧ dxn) =
r∑

k=1

n∑

u=1

(
∂Nk

i

∂xu

ρu
k +

∂ρu
k

∂xu

Nk
i

)
µ.

So

ξN
A (ei) =

∑

j

(
∑

k

N j
i C

k
jk +

∑

u

(
∂ρu

j

∂xu

N j
i +

∂N j
i

∂xu

ρu
i

))

=
∑

j

(
∑

k

N j
i C

k
jk +

∑

u

∂ρu
j

∂xu

N j
i

)
+ dA Tr N(ei)

= (N∗ξA + dA TrN) (ei).
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By linearity this holds for any section of A, so the result follows.

The theorem shows that the AN -form ξAN
−N∗ξA = dA TrN is independent

of the choice of section of η ⊗ µ ∈ Xtop(A) ⊗ Ωtop(M).

Remark 5. This can also be checked directly using relation (3): If ξA and
ξAN

are the modular forms associated to the choice η⊗µ, ξ′A and ξ′AN
are the

modular forms associated with another choice fη ⊗ µ, then:

ξ′A = ξA − dA ln |f |,

ξ′AN
= ξAN

− dAN
ln |f |.

For any function g ∈ C∞(M), we have dAN
g = N∗dAg, so it follows from

these relations that:
ξ′AN

− N∗ξ′A = ξAN
− N∗ξA.

Recall (see [11, 16]) that for any Lie algebroid morphism over the identity
φ : (A, [ , ] , ρA) → (B, [ , ]B , ρB) one defines its relative modular class to be

the cohomology class modφ(A, B) ∈ H1(A) given by:

modφ(A, B) := modA − φ∗ modB. (5)

Therefore we have the following immediate corollary of Proposition 4:

Corollary 6. The relative modular class of the algebroid morphism
N : AN → A is a AN-cohomology class with canonical representative the
AN-form dA TrN .

Note that the class [dA Tr N ] ∈ H1(AN) maybe non-trivial: in general, the
differentials dA and dAN

will be distinct.

3.2. Modular class of a Poisson-Nijenhuis Lie algebroid. Now we
consider a Poisson-Nijenhuis Lie algebroid (A, N, π). Then N∗ is a Nijenhuis
operator of the dual Lie algebroid (A∗, [ , ]π , ρ ◦ π♯) and, by Corollary 6, its
relative modular class has the canonical representative dπ(TrN∗), so that:

modN∗

(A∗
N∗, A∗) = [dπ(TrN∗)] = [dπ(TrN)].

Definition 7. The modular vector field of the Poisson-Nijenhuis Lie al-
gebroid (A, π, N) is defined by

X(N,π) = ξA∗

N∗
− NξA∗ = dπ(TrN) ∈ X(A).

Notice that the modular vector field of a PN-algebroid is a dNπ-cocycle.
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Proposition 8. Let (A, π, N) be a PN-algebroid. Then

NkX(N,π) =
1

k − i + 1
X(Nk−i+1, N iπ), i < k ∈ N.

Proof : The operator N is Nijenhuis so it satisfies the identity

kN∗dA TrN = dA TrNk, k ∈ N. (6)

Now simply observe that

NkX(N,π) = Nkdπ(TrN) = Nk [π, TrN ]

= −N i π♯(N∗ k−i dA TrN) = −
1

k − i + 1
(N iπ)♯

(
dA TrNk−i+1

)

=
1

k − i + 1
dN iπ

(
Tr Nk−i+1

)
=

1

k − i + 1
X(Nk−i+1, N iπ).

In case N is non-degenerated, we obtain the PN-algebroid generalization of
a result in [8] (which corresponds to the case A = TM ; see examples below):

Theorem 9. Let (A, π, N) be a Poisson-Nijenhuis Lie algebroid with N a
non-degenerated Nijenhuis operator. Then the modular vector field X(N,π) is
a dNπ-coboundary and determines a hierarchy of vector fields

X i+j

(N,π) = N i+jX(N,π) = dN iπhj = dN jπhi, (i, j ∈ Z) (7)

where

h0 = ln(detN) and hi =
1

i
Tr N i, (i 6= 0). (8)

Proof : For any integer k, Nk is a non-degenerated Nijenhuis operator and
satisfies the identity

kN∗ kdA(ln det N) = dA(TrNk). (9)

It follows that

X(N,π) = −π♯ (dA Tr N) = −π♯ N∗dA (ln det N) = dNπ(ln det N).

We also have

N−1X(N,π) = X(N,N−1π) = −N−1π♯(dA Tr N) = −π♯(dA ln det N)

= −π♯
(
N∗dA Tr N−1

)
= dNπ Tr N−1 = X(N−1,Nπ).

The expressions for the hierarchy now follow from identity (9) and Proposi-
tion 8 applied to N and to N−1.
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4. Integrable hierarchies and PN-Algebroids

4.1. Flows of A-vector fields. A vector field X ∈ X(A) on a Lie alge-
broid has a flow, generalizing the usual picture which corresponds to the case
A = TM .

Given a vector field X on M , we denote by Φt
X its flow:

d

dt
Φt

X(x) = X(Φt
X(x)), Φ0

X(x) = x .

We have that Φt is a 1-parameter group of diffeomorphisms and differentia-
ting, we obtain the infinitesimal flow of X:

φt
X(x) ≡ (dΦt

X)x : TxM → TΦt
X(x)M.

It is easy to see that φt
X is a 1-parameter group of automorphisms of the Lie

algebroid TM :

φt
X([Y, Z]) = [φt

X(Y ), φt
X(Z)],

for every pair of vector fields Y, Z ∈ X(M).
We can generalize this to any Lie algebroid A: to any vector field X ∈ X(A)

(i.e., a section of A) one associates a 1-parameter group φt
X of automorphisms

of A. For this we can use the following general construction of (infinitesimal)
flows. Let us assume that E is a vector bundle over M . A derivation on E
is a pair (D, X) where D : Γ(E) → Γ(E) is a differential operator, X is a
vector field on M , satisfying the Leibniz rule

D(fα) = fD(α) + X(f)α, ∀ f ∈ C∞(M), α ∈ Γ(E).

Now, any derivation (D, X) on E has an associated (infinitesimal) flow: a
standard argument shows that there is a unique 1-parameter family of linear
isomorphisms

φt
D(x) : Ex → EΦt

X(x),

which is characterized uniquely by the property:

d

dt
(φt

D)∗s = D(s), (10)

for all sections s ∈ Γ(E). Here (φt
D)∗s := φ−t

D ◦ s ◦ Φt
X .

The canonical lift of the vector field X to E associated with D is the vector
field XE

D on E (section of the tangent bundle TE → E) with flow φt
D:

XE
D =

d

dt
φt

D.
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Denote by D∗ be the dual derivation of D, i.e. the derivation on E∗ defined
by

〈D∗(α), s〉 + 〈α, D(s)〉 = X〈α, s〉, s ∈ Γ(E), α ∈ Γ(E∗),

and by fs : E∗ → R the linear function on the fibers defined by evaluation of
the section s of E:

fs(α(x)) = 〈α(x), s(x)〉, α ∈ Γ(E∗).

Notice that

XE
D(fα) =

d

dt
fα ◦ φt

D = fD∗α, α ∈ Γ(E∗)

XE
D(g ◦ p) = X(g) ◦ p, g ∈ C∞(M),

where fα : E∗ → R is the function defined by evaluation of the section α of
E∗. and p : E → M is the projection of the vector bundle.

We can apply the previous construction to a vector field X ∈ X(A) where
we consider the derivation (DX , ρ(X)) with DX = [X,−]. The resulting flow,
called the flow of X,

φt
X(x) : Ax → AΦt

ρ(X)(x)

is uniquely determined by the formula (10) above.
An alternative description can be obtained using the fiberwise linear Pois-

son structure { , }A on the dual bundle A∗: denote by XfX
the Hamiltonian

vector field associated with the function fX : A∗ → R. It is easy to check
(see [7]) that:

(a) The assignment X 7→ fX defines a Lie algebra homomorphism

(X(A), [ , ]) → (C∞(A∗), { , }A);

(b) Denoting by q : A∗ → M the projection, XfX
is q-related to ρ(X):

q∗XfX
= ρ(X).

So XfX
is the canonical lift of the vector field ρ(X) to A∗ (associated with

the derivation D∗
X). For each t, the flow Φt

XfX
defines a Poisson automorphism

of A∗ (wherever defined), which maps linearly fibers to fibers of A∗. So, in
fact, we have a bundle map

Φt
XfX

: A∗ → A∗
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and, from (b), it covers Φt
ρ(X), the flow of ρ(X). By transposition we obtain

the flow of X:
φt

X(x) : Ax → AΦt
ρ(X)(x).

4.2. Hamiltonian flows on Lie algebroids. Let us assume now that
π ∈ X2(A) is a Poisson structure on the Lie algebroid A. This bivector field
determines a bundle map π♯ : A∗ → A, and for the Lie algebroid structure
on A∗, we have that π♯ is a Lie algebroid morphism.

Definition 10. Let f ∈ C∞(M). Its Hamiltonian vector field

Xf ∈ X(A) is the vector field:

Xf := π♯dAf.

The corresponding flow φt
Xf

will be called the Hamiltonian flow associated
with the Hamiltonian function f .

The Poisson structure π on A covers a (ordinary) Poisson structure πM on

the base manifold M which is defined by π♯
M = ρ ◦ π♯ ◦ ρ∗, i.e.

{f, g}πM
= 〈dAf, dπg〉 = π(dAf, dAg), f, g ∈ C∞(M).

We have that:

Proposition 11. For any f ∈ C∞(M) the Hamiltonian vector field Xf on A
covers the (ordinary) Hamiltonian vector field on M associated with f . The
Hamiltonian flow φt

Xf
on A is dual to the flow of the section dAf of A∗.

Proof : By definition, the flow of Xf covers the flow of ρ(Xf). This vector
field is the Hamiltonian vector field on M associated with f

ρ(Xf) = ρ ◦ π♯(dAf) = ρ ◦ π♯ ◦ ρ∗(df) = π♯
M(df).

Simply observe that dAf and Xf , they both cover the same vector field on
M and the associated derivations are dual

DdAf(α) = [dAf, α]π = LXf
α = D∗

Xf
(α), α ∈ Γ(A∗),

so, the flows must be dual.

Another way of seeing this duality is considering { , }A∗, the linear Poisson
bracket on A defined by the Lie algebroid (A∗, [ , ]π , ρ ◦ π♯): the Hamiltonian
vector field XfdAf

is the canonical lift of ρ(Xf) to A, associated with the
derivation DXf

= [Xf , ] and XfX
is the canonical lift of the vector field ρ(X)

to A∗, associated with the derivation DdAf = D∗
Xf

.
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4.3. Integrable Hierarchies on Lie algebroids.

Definition 12. Let X be a vector field on A. A first integral of X is a
function f : A → R which is constant along each integral curve of X:

d

dt
f ◦ φt

X = 0.

Note that a first integral of X is just a first integral of XA, the canonical
lift of ρ(X) to A.

Observe that, on one hand, given α ∈ Γ(A∗), fα is a first integral of X if
and only if D∗

X(α) = LXα = 0. On the other hand, since the flow of X covers
the flow of ρ(X), pull-backs of first integrals of ρ(X) are first integrals of X.

Definition 13. Given π a Poisson structure on A, we say that two functions
g, f ∈ C∞(A) π-commute if {f, g}A∗ = 0. A vector field X is said to be
integrable if XA, the canonical lift of ρ(X) to A, is Liouville integrable.

Two first integrals of the vector field ρ(X) may not πM -commute but their
pull-backs always π-commute, because basic functions always commute with
respect to the linear Poisson bracket defined on the dual of a Lie algebroid.
In particular, we have:

Proposition 14. Let f ∈ C∞(M). The first integrals of the Hamiltonian
vector field

XfdAf
= π♯dAf,

are the functions which π-commute with fdAf . In particular, evaluations of
sections of A∗ which commute with dAf and pull-backs of functions which
πM -commute with f are first integrals of Xf .

Let N be a Nijenhuis operator on A compatible with π. The sequence of
Poisson structures πk = Nkπ covers a sequence of Poisson structure on M :

πk
M

♯
= ρ ◦ Nkπ ◦ ρ∗,

but, as an example below shows, these Poisson tensors may not be related
by a Nijenhuis operator on M . We also have a sequence of linear Poisson
brackets on A:

{ , }k
A∗

and, given a section α on A∗, a sequence of Hamiltonian vector fields

Xk
fα

= {fα,−}k
A∗.
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A bi-Hamiltonian vector field

X = π♯
0(dAh1) = π♯

1(dAh0)

defines a hierarchy of multi-Hamiltonian vector fields on A:

Xk+i = π♯
k(dAhi) = π♯

i(dAhk).

This hierarchy, on one hand, covers a hierarchy of Hamiltonian vector fields
on M

ρ(Xi+k) = πk
M

♯
dhi = πi

M

♯
dhk

and, on the other hand, is associated with the hierarchy of canonical lifts

ρ(Xi+k)
A = X0

fdAhi+k
= X i

fdAhk
= Xk

fdAhi
.

4.4. Covering Integrable Hierarchies. We can try to apply our main
result (Theorem 9) to obtain an integrable hierarchy on a Lie algebroid.
However, one observes that in Theorem 9 the Hamiltonian functions, which
are first integrals of the vector fields in the hierarchy, are all basic functions,
i.e., are pull-backs of functions on the base. Hence, in general, they will
not provide a complete set of first integrals. However, there is yet another
connection with (classical) integrable systems, due to the following theorem:

Theorem 15. Let (A, π, N) be a Poisson-Nijenhuis Lie algebroid with N a
non-degenerated Nijenhuis operator. Then the the modular vector field X(N,π)

covers a bi-Hamiltonian vector field on M , and the associated hierarchy (7)
of A-vector fields covers a (classical) hierarchy of flows on M . This hierarchy
is given by:

Xi+j = −π♯
idhj = −π♯

jdhi (i, j ∈ Z) (11)

where πj are Poisson structures on M and hi are the functions given by (8).

Although we have a hierarchy of modular vector fields X(Nk,π) generated by
the Nijenhuis operator N , generally the covered hierarchy of bi-Hamiltonian
vector fields on M is not generated by any Nijenhuis operator. This is illus-
trated by the next example.

4.5. The classical Toda lattice. The classical Toda lattice was already
considered in [1], using specific properties of this system. We use our general
approach to show how one can recover those results and explain some of
those formulas.
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4.5.1. Toda lattice in physical coordinates. The Hamiltonian defining the
Toda lattice is given in canonical coordinates (pi, qi) of R

2n by

h2(q1, . . . , qn, p1, . . . , pn) =
n∑

i=1

1

2
p2

i +
n−1∑

i=1

eqi−qi+1. (12)

For the integrability of the system we refer to the classical paper of Flaschka
[10].

Let us recall the bi-Hamiltonian structure given in [6]. The first Poisson
tensor in the hierarchy is the standard canonical symplectic tensor, which we
denote by π̃0, so that

{qi, pj}0 = δij,

while the second Poisson tensor π̃1 is determined by the relations

{qi, qj}1 = −1, (i < j)

{qi, pj}1 = piδij,

{pj, pi}1 = eqi−qi+1δj,i+1.

Then setting h1 = p1+p2+· · ·+pn, we obtain the bi-Hamiltonian formulation:

π̃♯
0dh2 = π̃♯

1dh1.

If we set, as usual,

N := π̃♯
1 ◦ (π̃♯

0)
−1,

then a small computation gives the following multi-Hamiltonian formulation:

Proposition 16. The Toda hierarchy admits the multi-Hamiltonian formu-
lation:

π̃♯
jdh2 = π̃♯

j+2dh0,

where h0 = 1
2 log(detN) and h2 is the original Hamiltonian (12).

4.5.2. Toda lattice in Flaschka coordinates. Let us recall the Flaschka coor-
dinates (a1, . . . , an−1, b1, . . . , bn) where:

bi = pi, (i = 1, . . . , n)

ai = eqi−qi+1, (i = 1, . . . , n − 1)

In these new coordinates there is no recursion operator anymore (this is
a singular change of coordinates, where we loose one degree of freedom).
Nevertheless, the multi-Hamiltonian structure does reduce ([6]). One can
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then compute the modular vector fields of the reduced Poisson tensors πj

relative to the standard volume form:

µ = da1 ∧ · · · ∧ dan−1 ∧ db1 ∧ · · · ∧ dbn.

It turns out that the modular vector fields Xj
µ are Hamiltonian vector fields

with Hamiltonian function

h = log(a1 · · · an−1) + j log(det(L)),

where L is the Lax matrix. This is observed in [1], where one also finds the
multi-Hamiltonian formulation:

π♯
jdh2−j = π♯

j−1dh3−j, k ∈ Z

with hj = 1
j
TrLj for j 6= 0 and h0 = ln(det(L)).

We would like to give now an intrinsic explanation for these formulas,
similar to the one given above for the Toda chain in physical coordinates.

4.5.3. Toda lattice in extended Flaschka coordinates. Let us extend the
Flaschka coordinates by considering a variable an defined by:

an := qn.

Then the transformation (qi, pi) 7→ (ai, bi) is a honest change of coordinates.
In these extended Flaschka coordinates, the first Poisson tensor π̃0 is deter-
mined by:

{ai, bi}0 = ai, (i = 1, . . . , n − 1)

{ai, bi+1}0 = −ai, (i = 1, . . . , n − 1)

{an, bn}0 = 1.

while the second Poisson π̃1 structure is given by:

{ai, ai+1}1 = −aiai+1, (i = 1, . . . , n − 1)

{ai, bi}1 = aibi, (i = 1, . . . , n − 1)

{an, bn}1 = bn

{ai, bi+1}1 = −aibi+1, (i = 1, . . . , n − 1)

{bi, bi+1}1 = −ai, (i = 1, . . . , n − 1).

In these coordinates, we still have the Nijenhuis tensor, relating the various
Poisson tensors in the hierarchy.



16 RAQUEL CASEIRO

The submanifold R
2n−1 ⊂ R

2n defined by an = 0 is a Poisson submanifold
for all Poisson tensors in the hierarchy, so that the bi-Hamiltonian structure
reduces to this submanifold, and yields the bi-Hamiltonian formulation for
the Toda lattice in Flaschka coordinates. However, the tangent space to this
submanifold is not left invariant by the Nijenhuis operator N , and on R

2n−1

we do not have an induced PN-structure.
Another way of expressing these facts is to observe that the involutive

diffeomorphism φ : R
2n → R

2n defined by:

φ(a1, . . . , an, b1, . . . , bn) = (a1, . . . ,−an, b1, . . . , bn),

is a Poisson diffeomorphism for all Poisson structures. Hence, the group Z2 =
{I, φ} acts by Poisson diffeomorphisms on R

2n, for all Poisson structures. It
follows that its fix point set, which is just R

2n−1, has induced Poisson brackets
(see the Poisson Involution Theorem in [9, 19]), and these form the hierarchy
in Flaschka coordinates.

4.5.4. Toda lattice on a Lie algebroid. We now consider the following bi-Ha-
miltonian formulation on a Lie algebroid.

We let A = R
2n−1 × R

2n → R
2n−1 be the trivial vector bundle with fiber

R
2n. We denote by {e1, . . . , en, f1, . . . , fn} a basis of global sections and we

let (a1, . . . , an−1, b1, . . . , bn) be global coordinates on the base. Now we define
a Lie algebroid structure by declaring that the bracket satisfies:

[ei, ej]A = [fi, fj]A = [ei, fj]A = 0,

and that the anchor is given by:

ρA(ei) =
∂

∂ai

(i = 1, . . . , n − 1) ρA(en) = 0

ρA(fi) =
∂

∂bi

(i = 1, . . . , n).

Notice that (A, [ , ]A, ρA) is just the trivial extension of Lie algebroids:

0 // LR
// A // TR

2n−1 // 0

where LR denotes the trivial line bundle over R
2n−1.
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Now on A we can define the following Poisson tensors:

π0 =

n−1∑

i=1

aiei ∧ (fi − fi+1) + en ∧ fn

π1 = −

n−2∑

i=1

aiai+1ei ∧ ei+1 − an−1en−1 ∧ en +

n−1∑

i=1

aiei ∧ (bifi − bi+1fi+1)

+ bnen ∧ fn −
n−1∑

i=1

aifi ∧ fi+1.

These Poisson structures on A cover ordinary Poisson structures on the
base R

2n−1, which are just the Poisson structures π0 and π1 of the Toda
lattice, in Flaschka coordinates.

Since π0 is symplectic, the Poisson tensors on A are associated with a PN-
algebroid structure. By our main theorem, they give rise to an integrable
hierarchy on A

π♯
jdh2−j = π♯

j−1dh3−j, k ∈ Z

with hj = 1
j
Tr N j for j 6= 0 and h0 = ln(det(N)), covering an integrable

hierarchy on the base

π♯
jdh2−j = π♯

j−1dh3−j. k ∈ Z

In this hierarchy the Hamiltonians differ by a factor of 2 relative to the
Hamiltonians in the multi-Hamiltonian formulation of the Toda lattice given
by Proposition 16. Although the hierarchy in the Lie algebroid is generated
by a Nijenhuis operator, it is well known that this is not the case with the
Toda lattice in the base manifold.

5. Examples

In this section, we consider 3 examples that illustrates the results above.
The first two examples are the two extreme cases of (i) a Lie algebra over a
point A = g and (ii) the tangent bundle of a manifold A = TM . The third
example, is the Lie algebroid connected with dynamical R-matrices, which is
a product of a tangent Lie algebroid and a Lie algebra, therefore combining
aspects of both.
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5.1. Lie algebras. Let g be a finite dimensional Lie algebra, considered as
a Lie algebroid over a one point space, and let N be a Nijenhuis operator
compatible with a Poisson tensor π ∈ X2(g).

The modular class of g is given by the adjoint character (see, e.g.,[17]):

ξg(X) = Tr(adX), X ∈ g.

where ad denotes the adjoint representation of g.
Now we consider a Nijenhuis tensor N : g → g, i.e., a linear map such that:

N [NX, Y ] + N [X, NY ] − N2[X, Y ] − [NX, NY ] = 0, X, Y ∈ g. (13)

This allows us to deform the Lie bracket on g to the new Lie bracket:

[X, Y ]N := [NX, Y ] + [X, NY ] − N [X, Y ], X, Y ∈ g.

The new Lie algebra gN = (g, [ , ]N) (again viewed as Lie algebroid over a
point) has modular class:

ξgN
(X) = Tr(adN

X), X ∈ g.

where adN denotes the adjoint representation of gN . Since the base manifold
is a single point, Proposition 4 says simply that:

ξgN
= N∗ξg,

which of course maybe checked directly. Similarly, by iteration, we have:

ξg
Nk

= Nk ξg.

Let us denote by r : g∗ → g the skew-symmetric linear transformation
determined by the bivector π ∈ X2(g). The condition that π is Poisson is
just the condition that r is a solution of the Classical Yang-Baxter Equation:

[r, r] = 0 (14)

For this reason, in this example we suppress any mention to the Poisson
structure π, and we use instead the notation r, a solution of (14). We have
also a Lie bialgebra structure (g, g∗), and the bracket on g∗ is given by:

[α, β]∗ = [α, β]r = ad∗(r(α)) · β − ad∗(r(β)) · α, α, β ∈ g∗.

where ad∗ denotes the coadjoint representation of g. The modular class of
g∗ is given by

ξg∗(α) = Tr(adr
α), α ∈ g∗,

where adr is the adjoint representation of (g∗, [ , ]r).
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Let us assume now that we have a triple (g, r, N). Under the compatibility
assumptions,

N ◦ r = r ◦ N∗ and [ad∗
rα, N∗] (β) =

[
ad∗

rβ, N
∗
]
(α), α, β ∈ g∗, (15)

where [ , ] denotes the usual commutator of operators, we obtain a PN-
algebroid (g, r, N), with zero anchor (since the base manifold is a single
point). Then N defines a sequence of modular forms on g∗, which are asso-
ciated with the higher brackets on g∗, and are just related by:

ξg∗
Nk ∗

= Nk ξg∗
N∗

.

This is just an algebraic relation which must be satisfied by any pair of linear
maps N and r which satisfy the algebraic equations (13), (14) and (15).

Obviously, in this case Theorem 9 says nothing, since every function is
constant.

5.2. Tangent bundles. Let us consider now the case of A = TM , the
tangent bundle of some manifold M . Since the anchor on A is the identity
map, Proposition 4 yields the following result of [8]:

Proposition 17. The modular class of (TM, [ , ]N , ρN) is the cohomology
class represented by the 1-form d(TrN).

Now a Poisson-Nijenhuis structure on A is just an ordinary Poisson-Ni-
jenhuis manifold (M, π, N). Note, however, that the modular vector field
associated with a Poisson manifold, as originally defined by Weinstein in
[17], differs from ξT ∗M,π by a factor of 1/2. For this reason, the modular class
of a Poisson-Nijenhuis manifold was defined in [8] as

X(N,π) =
1

2
ξT ∗MN∗

−
1

2
NξT ∗M =

1

2
dπ(TrN).

Then Theorem 9 immediately yields the main result of [8]:

Theorem 18. Let (M, π, N) be a Poisson-Nijenhuis manifold and assume
that N is non-degenerate. Then the modular vector field XN is bi-Hamilto-
nian and hence determines a hierarchy of flows which are given by:

Xi+j = π♯
idhj = π♯

jdhi (i, j ∈ Z)

where

h0 = −
1

2
log(detN), hi = −

1

2i
TrN i (i 6= 0).
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In [8] the authors show that many known hierarchies of integrable systems
can be obtained in this manner, therefore providing a new approach to the
integrability of those systems.

5.3. Dynamical Lie Algebroid. Let us start by describing the Lie bialge-
broids that arise in connection with the dynamical Yang-Baxter equation.

Let g be a Lie algebra and h ⊂ g an abelian Lie subalgebra of dimension
l. We let A = Th∗ × g be the direct product of Lie algebroids, where Th∗ is
the tangent algebroid of the manifold h∗ and g is viewed as a Lie algebroid
over a point. More explicitly, the anchor ρ : Th∗× g → Th∗ is the projection
on the first factor, while the bracket between two sections of A is given by:

[(v, f), (w, g)]A = ([v, w], v(g)− w(f) + [f, g]g),

where v, w ∈ X(h∗) are vector fields in h∗ and f, g : h∗ → g are smooth
g-valued functions on h∗.

Let {h1, . . . hl} be a basis of h and (q1, . . . , ql) the dual system of linear
coordinates on h∗. Then we have a constant bivector field π0 ∈ X2(A) defined
by:

π0 =
l∑

i=1

hi ∧
∂

∂qi

.

Since h is an abelian subalgebra of g, it follows that π0 is in fact a Poisson
structure on A. Now we recall (see [4]):

Definition 19. A triangular dynamical r-matrix on g is an h-equiva-
riant function r : h∗ → g ∧ g satisfying the classical dynamical Yang-Baxter
equation

l∑

i=1

hi ∧
∂r(q)

∂qi

+
1

2
[r, r](q) = 0. (16)

Its well known (see [2, 18]) that any triangular dynamical r-matrix on g,
defines a new Poisson bivector on the Lie algebroid A by:

πr(q) =

l∑

i=1

hi ∧
∂

∂qi

+ r(q).
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Thus r determines a Lie bialgebroid structure on (A, A∗). The Lie bracket
on the sections of A∗ is given by

[
hq, h

′
q

]
∗

= 0

[εq, hq]∗ = ad∗
hq

εq[
εq, ε

′
q

]
∗

= − ad∗
rεq

ε′q + ad∗
rε′q

εq + dr(εq, ε
′
q),

for hq, h
′
q ∈ h and εq, ε

′
q ∈ g∗, where ad∗ is the co-adjoint representation of g

〈ad∗
X ε, Y 〉 = 〈ε, [X, Y ]〉, X, Y ∈ g, ε ∈ g∗.

The modular class of the Lie algebroid A∗ is represented by

ξA∗(hq, εq) = Tr adhq
−Tr [(δr(q))∗εq], (17)

where δr(q) is the 1-cocycle on g defined by the anti-symmetric bivector r(q).
Now, if N is a Nijenhuis operator on A compatible with πr, then the mod-

ular vector field of this Poisson-Nijenhuis Lie algebroid is

dπr
(TrN) = dπ0

(TrN) =
l∑

i=1

∂ Tr N

∂qi

∂

∂qi

.
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