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k-SHORTEST PATH ALGORITHMS

JOSÉ LUIS SANTOS

Abstract: This paper focuses on algorithms to solve the k-shortest path prob-
lem. Three codes are described and compared on random generated and real-world
networks. One million paths were ranked in less than 3 seconds (3 microseconds
per path), with at most 1 second of preprocessing, on random generated networks
with 10 000 nodes. For real-world instances with more than one million nodes, the
preprocessing time rises up to 2,7 hours and the CPU time to rank one million paths
is less than 30 seconds (30 microseconds per path).
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1. Introduction
The shortest path problem was one of the first network problems studied

in terms of operations research, [1, 7]. Fixed two specific nodes s and t in
the network, the goal is to find a minimum cost way to go from s to t.

The first papers dealing with this subject appeared in the last years of
the 1950s, [6, 10, 22]. In [9, 16], one can find an extensive bibliography of
published papers about the shortest path problem until 1984.

The k-shortest path problem is a variant of the shortest path problem,
where one intends to determine k paths p1, . . . , pk (in order), between two
fixed nodes. Each path pi should have cost greater or equal than pi−1, 1 <
i ≤ k, and the remainder paths between the fixed nodes should have cost at
least equal to pk. This problem has been well-studied, [4, 14, 15, 17, 19, 20,
21, 24, 25, 26, 27], and many algorithms are known. Dreyfus, [11], and Yen,
[28] cite several additional papers on this subject going back as far as 1957
and Eppstein have an on-line bibliography, [12], with hundreds of references
updated until 2001.

There are several applications on this problems applied to other network
optimization problems. One of them is the restricted shortest path, where
the shortest path that verifies a certain condition is searched. This problem
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can be solved ranking paths until the first one which satisfies the condition
given is found.

However, usually there is no upper bound for the number of paths to be
ranked which constitutes a serious handicap for this method. Depending on
the restriction given, one needs to rank less or more paths and it may be
or not an efficient way to solve it. For instance, when the condition is the
path which passes through all nodes only once (i.e. the shortest Hamiltonian
path), ranking paths does not solve the problem for large networks. On the
other hand, if one is interested on ranking loopless paths (i.e. paths without
repeated nodes), this method produces very good results, [19].

This paper is divided into five sections. Sections 1 and 2 are devoted
to a short background and the mathematical description of the k-shortest
path problem, respectively. In section 3 we give a briefly description of
the algorithms used. Finally, computational results and the conclusion are
reported in sections 4 and 5, respectively.

2. Problem description
A network, G, is defined upon a set of nodes, N = {1, . . . , n}, and a set

of arcs, A = {a1, . . . , am} ⊂ N ×N . An arc links two nodes, i and j, in the
network and mean that one can pass from one node (i or j) to the other.
When the arc is oriented, we can only pass in one direction through this arc
(it will be the case in this paper). So, an arc ak can be represented by a pair
of nodes, ak = (i, j), where i is called the tail and j the head node of the
arc. We will denote by A+

i = {(j, i) : (j, i) ∈ A and j ∈ N} the set of arcs
incoming to node i and by A−

i = {(i, j) : (i, j) ∈ A and j ∈ N} the set of
arcs outgoing node i.

Each arc ak = (i, j) has associated a value, cak
or ci,j, indicating the cost

(or distance, time, etc.) to cross the arc.
A path is a sequence of arcs where the head node of one arc is the tail

node of the next arc in the sequence. If there are no multiple arcs (i.e. arcs
with the same pair of tail and head nodes), a path only can be represented
by the sequence of the nodes wherein the path passes through. For instance,
path p = 〈(v0, v1), (v1, v2), . . . , (v`−1, v`)〉 will be represented only by p =
〈v0, v1, v2, . . . , v`−1, v`〉. The cost of path p is the sum of the arcs cost in p
and it will be denoted by f(p). So, f(p) =

∑
(i,j)∈p ci,j. We fixed two nodes

in the network, the initial node (s) and the terminal one (t) and we denote
by P the set of paths from node s to node t.
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The shortest path problem consists of determining a path p∗ ∈ P such that
f(p∗) ≤ f(q), ∀q ∈ P . In a similar way, in the k-shortest path problem one
is looking for k paths (p1, . . . , pk) verifying f(pi) ≤ f(pi+1), 1 ≤ i < k, and
f(pk) ≤ f(q), ∀q ∈ P − {p1, . . . , pk}.

3. Algorithms description
In this section, the algorithms used in this work are described. In order to

simplify this task, it is assumed that there are no arcs with s as head node
nor t as tail node. If it is not the case, one can add two new nodes (S and
T ) to the network and the zero cost arcs (S, s) and (t, T ). The initial and
terminal nodes have to be redefined as S and T , respectively.

3.1. Removing path algorithm. This algorithm was proposed by Martins,
[17, 18], in 1984. The main idea takes into account the following property:
the second shortest path p2 in G is the shortest path in a new network
G′, obtained from G removing the shortest path p1. In addition, the third
shortest path p3 in G corresponds to the shortest path in a network G′′

obtained from G removing p1 and p2, or removing p2 from G′. Consequently,
the general steps of the algorithm are:

• the removal of the shortest path in the current network;
• the determination of the shortest path in the resulting network.

A path p = 〈s = v0, v1, . . . , v` = t〉 can be removed from network G building
a new network G′ as follows:

• transfer the nodes and arcs of G to G′;
• make a copy of path p, creating copies of the internals nodes of p, that

is, N ′ = N ∪{v′1, . . . , v′`−1} (observe that v0 is not copied; however, to
simplify this description we will write v′0 to represent v0);

• join the arcs {(v′i−1, v
′
i)}, 1 < i < `, to the new network G′;

• link each internal node v′i to the original network G. For each arc
(j, vi) ∈ A+

vi
, with i 6= vi−1 and i ∈ {1, . . . , ` − 1}, put a new arc

(j, v′i) ∈ A′+
v′i

with the same cost value. So, A′+
v′i

= {(j, v′i) : (j, vi) ∈
A and j ∈ N − {vi−1}} ∪ {(v′i−1, v

′
i)};

• move the arc (v`−1, v`) to (v′`−1, v`) (consequently, 〈v0, v1, . . . , v`〉 is re-
moved from G′). Thus, A′ = (A\{(v`−1, v`)})∪{(v′`−1, v`)}∪

⋃`−1
i=1 A′+

v′i
.

Let Ts (vs. T ′
s) be the shortest tree rooted at s in network G (vs. G′).

Then, Ts (vs. T ′
s) is formed by shortest paths from s to all nodes of N (vs.



4 J.L. SANTOS

N ′). As there are no arcs from the new nodes v′i to the original ones (except
the arc (v′`−1, t)), then the labels of nodes in N −{t} are kept from Ts to T ′

s.
On the other hand, the new nodes v′i are labelled with πv′i = min{πj + cj,v′i :
(j, v′i) ∈ A+

v′i
}, 1 ≤ i < `, where πj corresponds to the shortest path value

from s to j in G. Hence, T ′
s can be updated quickly at each iteration.

It can be proved, [18, 23], that the set of paths from s to t in G′ corresponds
to P −{p}. Note that, if #A+

v1
= 1, node v′1 will be redundant in G′ because

there are no arcs incoming to this node. The same happen to v′2 when
#A+

v1
= #A+

v2
= 1. Consequently, some improvements were carried out in

order to eliminate redundant nodes, [2, 3, 5, 4], leading to a version where
the shortest path from s to v′i corresponds to the next shortest path from s
to vi.

In 1995, Martins and Santos, [21, 23], noticed that A+
vi

is no longer used
after the creation of node v′i. As a consequence, the information in A+

v′i
can

be stored in A+
vi

, allowing to save a large amount of memory and CPU time.
The last improvement was produced in 1999, [20], sorting the tail nodes of

A+
vi

by the value πj + cj,vi
, for all node j such that (j, vi) ∈ A+

vi
. So, the label

of the node v′i is obtained from the first arc of A+
vi

. Recall that this sorting
needs to be updated when a new copy of vi is made.

3.2. Deviation path algorithm. This algorithm is based upon Eppstein’s
work, [13, 14], describing how to obtain the k-shortest path from deviation
paths of p1, p2, . . . , pk−1. Thus, these deviation paths are candidates for the
next shortest path, being pk the one with minimum cost.

From now on, let us denote the shortest tree rooted at t by Tt and the
shortest path from i to t in Tt by Tt(i). The keyword of this algorithm is the
computation of deviation paths from a path p = 〈v0, . . . , v`〉 in the network.
We say that q = 〈u0, . . . , uw〉 is a shortest deviation path of p if there is
x ∈ IN0 such that

• x < ` and x < w;
• vi = ui, 0 ≤ i ≤ x;
• vx+1 6= ux+1;
• 〈ux+1, . . . , uw = t〉 is the shortest path from ux+1 to t, that is, Tt(ux+1).

In this case, we say (ux, ux+1) is the deviation arc and ux the deviation node
of q from p. We will denote p (the deviation path that produces q) by ψ(q),
ux by φ(q) and (ux, ux+1) by θ(q).
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To guarantee that each candidate is determined no more than once, it is
imposed that deviations paths can only be generated from nodes following
the deviation node.

The reduced cost of an arc (i, j) relatively to Tt, c̄i,j, makes easier the
computation of the cost of deviation paths. Indeed, denoting by πx the value
of the shortest path from x to t, the reduced cost of arc (i, j) is defined by
c̄i,j = ci,j + πj − πi and satisfies the following properties:

(1) c̄i,j ≥ 0, ∀(i, j) ∈ A;
(2) c̄i,j = 0, ∀(i, j) ∈ Tt;
(3) f̄(q) =

∑w
i=1 c̄ui−1,ui

= πt − πs +
∑w

i=1 cui−1,ui
= πt − πs + f(q).

The last property assures that ranking paths by f value is identical from
the rank obtained with f̄ value. In addition, the second property tells us
that if q is a deviation path from p with deviation arc (ux, ux+1), then f̄(q) =
f̄(p) + c̄ux,ux+1.

The deviation path algorithm starts with the determination of Tt, and put
the shortest path from s to t in a set of candidates for the next shortest path
denoted by X. So, initializing k with 0, the general steps of this algorithm
consist of:

• k = k + 1;
• let pk be the path with minimum f̄ value in X;
• remove pk from X;
• join all shortest deviation paths from pk to X.

We can decrease the number of elements in X if we sort A−
i by the value

of the reduced cost, [19]. We would like to emphasize that the first arc of A−
i

must be the one belonging to Tt.
In this way, supposing that pk = 〈v0, . . . , v`〉 and φ(pk) = vy (for some

y ∈ {1, . . . , `− 1}), we have to compute a unique shortest deviation path for
each node vx ∈ Tt(vy) = 〈vy, . . . , v`〉, using the arc following (vx, vx+1) in A−

vx
,

y ≤ x < `. Note that the candidate determined at node φ(pk) is the next
shortest deviation path from ψ(pk) at node φ(pk).

3.3. Deviation path algorithm - a new improvement. In this paper,
we propose a new variant for the deviation path algorithm, computing only
two candidates for each path ranked. In fact, in the previous algorithm
we compute one shortest deviation path for each node of pk starting at its
deviation node. However, only one of these candidates is needed at each
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Figure 1. (a) Network (G) to simulate the new algorithm.
(b) The shortest tree rooted at t = 6 (Tt)

i πi sub-set of arcs and reduced cost
1 4 A−

1 (1,2) → (1,4) → (1,3)
c̄ 0 1 10

2 3 A−
2 (2,5) → (2,3) → (2,4)
c̄ 0 2 5

3 5 A−
3 (3,5) → (3,6) → (3,2)
c̄ 0 3 7

4 3 A−
4 (4,5) → (4,2) → (4,6)
c̄ 0 6 8

5 2 A−
5 (5,6) → (5,4) → (5,2)
c̄ 0 4 9

Table 1. Reduced cost and the shortest tree Tt for the network
in Figure 1.

iteration. So, the shortest deviation paths of a generic path p should be
sorted. This can be accomplished sorting the arcs of

⋃
i∈Tt(y) A−

i by the
reduced cost, where y is the head node of the deviation arc of p, that is,
θ(p) = (φ(p), y). We would like to emphasize that the sort ”changes” with
node y. To illustrate this, let us consider the network depicted in Figure 1.
The reduced cost of the arcs for this example are reported in Table 1. When
y = 2 we desire to sort A−

2 ∪ A−
5 and then, some arcs of A−

2 may appear in
the middle of A−

5 . However, the arcs of A−
2 should be ignored for y = 5. In

order to know which arcs are available for some value y, the sort must be
restricted to the arcs which tail node belongs to Tt(y).

So, in the new algorithm, the A is sorted by the reduced cost value (ir-
respective of its tail node), assuming that the first n − 1 arcs are the ones
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belonging to Tt. Let us denote by S the sequence of arcs after the sorting
have been accomplished.

In the general step of the new algorithm, we pickup as pk the minimum
deviation path stored in X. This path produces two new candidates for pk+1

which are added to X:

• the shortest deviation path from pk that uses the first arc (u, v) ∈ S\Tt

verifying u ∈ Tt(x), where x is the head node of the deviation arc of
pk (i.e. θ(pk) = (φ(pk), x));

• the shortest deviation path from ψ(pk) that uses the first arc (w, z) of
S\Tt after θ(pk) verifying w ∈ Tt(y), where y is the head node of the
deviation arc of ψ(pk) (i.e. θ(ψ(pk)) = (φ(ψ(pk)), y));

Due only two candidates are generated per each path ranked, the new
algorithm is very promissory. If a proper data structure is used to get quickly
the next arc in S, this algorithm will have a hight performance. Two data
structure can be easily used:

• a simple list containing the sequence stored in S. This data structure
is very efficient in terms of memory space, but it may be necessary to
search the entire list to find the desire arc;

• a n-dimensional vector of list, putting the sublist of S with the ele-
ments of

⋃
j∈Tt(i)

A−
j in the i-th component of the vector.

Table 2 shows the above mentioned data structures for the network of
Figure 1. The simulation of the new algorithm for this example to rank the
first five shortest path is reported in Table 3. In this paper, we use a data
structure similar to the simple list presented in Table 2, where additional
links were added in order to shortcut the access to some elements in S.

4. Computational results
The computational experiment was carried out on a Intel(R) Pentium(R) 4

CPU 3.00GHz personal computer with 512 MB RAM and 1 MB cache size at
the Laboratory for Computational Mathematics of Centre for Mathematics
of the University of Coimbra. Codes was written in C language and com-
piled using the ”cc” compiler of Linux system (Suse 9.3 version) without any
optimization option.

In this section, we study the performance of the codes ”rem”, ”dev” and
”new”, corresponding to implementations of the removing path, the deviation
path and the new algorithms, respectively. The three codes for solving the
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simple list
(5,6) → (4,5) → (3,5) → (2,5) → (1,2) → (1,4) →

→ (2,3) → (3,6) → (5,4) → (2,4) → (4,2) →
→ (3,2) → (4,6) → (5,2) → (1,3)

n-dimensional vector of list
node i set of arc

⋃
j∈Tt(i)

A−
j ordered

1 (5,6) → (2,5) → (1,2) → (1,4) → (2,3) →
→ (5,4) → (2,4) → (5,2) → (1,3)

2 (5,6) → (2,5) → (2,3) → (5,4) → (2,4) → (5,2)
3 (5,6) → (3,5) → (3,6) → (5,4) → (3,2) → (5,2)
4 (5,6) → (4,5) → (5,4) → (4,2) → (4,6) → (5,2)
5 (5,6) → (5,4) → (5,2)

Table 2. Two possible data structures to keep A order as re-
quested in the new algorithm.

new shortest deviation paths
k pk X path q ψ(q) θ(q) φ(q) f̄(q)
0 — {q1} q1 = 〈1, 2, 5, 6〉 the shortest s− t path in Tt

1 q1 {q2} q2 = 〈1, 4, 5, 6〉 q1 (1, 4) 1 1
2 q2 {q3, q4} q3 = 〈1, 2, 3, 5, 6〉 q1 (2, 3) 2 2

q4 = 〈1, 4, 5, 4, 5, 6〉 q2 (5, 4) 5 5
3 q3 {q5, q4, q6} q5 = 〈1, 2, 5, 4, 5, 6〉 q1 (5, 4) 5 4

q6 = 〈1, 2, 3, 6〉 q3 (3, 6) 3 5
4 q5 {q4, q6, q7, q8} q7 = 〈1, 2, 4, 5, 6〉 q1 (2, 4) 2 5

q8 = 〈1, 2, 5, 4, 5, 4, 5, 6〉 q5 (5, 4) 5 8
5 q4 {q6, q7, q9, q8, q10} q9 = 〈1, 4, 2, 5, 6〉 q2 (4, 2) 4 7

q10 = 〈1, 4, 5, 4, 5, 4, 5, 6〉 q4 (5, 4) 5 9
Table 3. Simulation of the new algorithm for the network de-
picted in Figure 1.

k-shortest path problem were compared in two classes of problems: randomly
generated and real-world instances. The CPU time was measured in seconds.

4.1. Randomly generated instances. In this section, two families of net-
works ”rand” and ”grid” were produced with the random network generators
”sprand.exe” and ”spgrid.exe”, respectively, available online in [8]. For each
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network family, two kinds of arc cost were considered: randomly arc cost
chosen in the interval [1, 1000] (”rand-C” and ”grid-C”) and unitary arc cost
(”rand-1” and ”grid-1”). The presented values correspond to the average re-
sults for 1000 queries pairs. The performance of the algorithms is evaluated
for different values of paths ranked (k) and for several values of the number
of nodes (n) and the density (d = number of arcs/n) of the underlying graph.

Table 4 - 8 summarizes our computational experiment for randomly gener-
ated instances, determining one million path in less than 3 seconds of CPU
time, after a preprocessing time less than 0,66 seconds. The computational
results show that unitary arc cost instances are easier to solve than randomly
arc cost for ”rand” instances. However, the arc cost distribution seems not
affect significatively the results on ”grid” networks. Finally, ”rem” algorithm
has the lowest preprocessing time while ”dev” is the fastest to do the rank.
Although ”new” to be the slowest code, it produces the smallest number of
candidates for the next shortest path, allowing to solve the biggest problems
(see Table 9).

The preprocessing time increases with n and d, being the results for the
new algorithm in randomly arc cost instances the one where the preprocessing
time enlarges quickly. The CPU time to accomplish the rank of the k shortest
paths enhances with k and n, but decreases with d (except for the new
algorithm where the time to rank one million paths also rises with d).

We would like to point out that ”new” computes, at most, two candidates
for each path ranked. On the other hand, the number of candidates created
by ”rem” and ”dev” is not predictable (for the ”rem” code, the number of
candidates corresponds to the number of ranked shortest sub-paths deter-
mined). This value is affected by the number of paths to rank (k) only in
grid networks. On the other hand, it increases with n (slightly in ”rand”
networks and faster in ”grid” ones) and decreases with d (stressed results for
unitary cost instances). Note that n can be taken as an upper bound for the
number of candidates generated for each path ranked, but it is too large to
be used.

4.2. Real-world instances. In this section, we use the ”TIGER/Line”
collection of real-world instances available for the ”9th DIMACS Implemen-
tation Challenge - Shortest Paths”, [8] which corresponds to the (undirected)
road networks of the 50 US States and the District of Columbia (USA-road-d
package).
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rand-C networks
code pp k = 100 200 300 400 500 600 700 800 900 1000
rem 0,04 rank 0,30 0,57 0,81 1,04 1,26 1,48 1,69 1,90 2,11 2,31

ratio 8,91 8,86 8,85 8,84 8,83 8,83 8,83 8,82 8,82 8,82
dev 0,05 rank 0,17 0,34 0,51 0,68 0,85 1,01 1,18 1,34 1,50 1,66

ratio 9,81 9,81 9,81 9,81 9,81 9,81 9,81 9,81 9,81 9,81
new 0,45 rank 0,31 0,61 0,91 1,20 1,48 1,76 2,03 2,30 2,57 2,84

ratio 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00

rand-1 networks
code pp k = 100 200 300 400 500 600 700 800 900 1000
rem 0,01 rank 0,09 0,17 0,24 0,32 0,39 0,46 0,53 0,60 0,67 0,74

ratio 4,76 4,77 4,77 4,76 4,73 4,70 4,69 4,68 4,67 4,67
dev 0,01 rank 0,08 0,16 0,25 0,33 0,42 0,50 0,59 0,67 0,76 0,84

ratio 5,52 5,52 5,52 5,51 5,52 5,52 5,52 5,52 5,52 5,52
new 0,03 rank 0,12 0,24 0,36 0,48 0,60 0,73 0,85 0,97 1,09 1,21

ratio 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00
pp = preprocessing time (sec); rank = CPU time (sec) for ranking one million paths;
ratio = average number of candidates per path ranked.

Table 4. Computational results for ranking k thousands paths
in ”rand” networks with 10000 nodes and 100000 arcs.

rand-C networks rand-1 networks
code n 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

pp 0,00 0,00 0,01 0,03 0,04 0,00 0,00 0,00 0,01 0,01
rem rank 1,42 1,78 1,98 2,17 2,31 0,60 0,66 0,69 0,71 0,74

ratio 7,13 7,96 8,24 8,63 8,82 4,04 4,35 4,47 4,57 4,67
pp 0,00 0,00 0,01 0,03 0,05 0,00 0,00 0,00 0,00 0,01

dev rank 1,05 1,26 1,40 1,55 1,66 0,54 0,64 0,72 0,79 0,84
ratio 8,12 8,96 9,23 9,62 9,81 4,82 5,11 5,28 5,42 5,52
pp 0,02 0,09 0,17 0,29 0,45 0,00 0,01 0,01 0,02 0,03

new rank 1,53 2,01 2,36 2,62 2,84 0,71 0,90 1,06 1,15 1,21
ratio 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00

pp = preprocessing time (sec); rank = CPU time (sec) for ranking one million paths;
ratio = average number of candidates per path ranked.

Table 5. Computational results in ”rand” networks with n
nodes and 10n arcs.

The values presented in Table 9 correspond to the average results for some
aleatory query pairs (see column ”q”). We would like to emphasize that the
”new” code is the only one which ranks one million paths in all the cases.
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rand-C networks rand-1 networks
code d 2 4 6 8 10 2 4 6 8 10

pp 0,00 0,01 0,02 0,03 0,04 0,00 0,00 0,01 0,01 0,01
rem rank 2,87 2,61 2,43 2,35 2,28 1,47 1,06 0,87 0,79 0,74

ratio 9,49 9,22 8,79 8,74 8,77 9,79 7,06 5,73 5,07 4,67
pp 0,00 0,01 0,02 0,03 0,05 0,00 0,00 0,01 0,01 0,01

dev rank 1,71 1,63 1,63 1,65 1,66 1,33 1,07 0,96 0,89 0,84
ratio 11,89 10,30 9,80 9,78 9,81 10,67 7,74 6,53 5,90 5,52
pp 0,00 0,03 0,07 0,17 0,45 0,00 0,01 0,01 0,02 0,03

new rank 2,63 2,64 2,76 2,80 2,84 1,80 1,44 1,31 1,23 1,21
ratio 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00

pp = preprocessing time (sec); rank = CPU time (sec) for ranking one million paths;
ratio = average number of candidates per path ranked.

Table 6. CPU time for ranking one million paths in rand net-
works with 10000 nodes and 10000d arcs.

grid-C networks
code pp k = 100 200 300 400 500 600 700 800 900 1000
rem 0,00 rank 0,26 0,51 0,75 0,99 1,22 1,45 1,68 1,91 2,13 2,34

ratio 17,32 16,66 16,32 16,09 15,91 15,77 15,66 15,57 15,40 15,25
dev 0,02 rank 0,19 0,37 0,54 0,71 0,88 1,05 1,22 1,39 1,55 1,70

ratio 18,21 17,61 17,28 17,05 16,89 16,75 16,64 16,55 16,38 16,20
new 0,66 rank 0,30 0,59 0,87 1,15 1,42 1,69 1,95 2,22 2,48 2,74

ratio 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00

grid-1 networks
code pp k = 100 200 300 400 500 600 700 800 900 1000
rem 0,00 rank 0,26 0,51 0,74 0,97 1,20 1,43 1,66 1,88 2,11 2,33

ratio 16,17 15,57 15,21 15,00 14,84 14,71 14,61 14,51 14,44 14,37
dev 0,02 rank 0,18 0,35 0,53 0,70 0,86 1,03 1,19 1,35 1,52 1,68

ratio 16,98 16,42 16,13 15,92 15,76 15,64 15,54 15,46 15,38 15,32
new 0,66 rank 0,26 0,50 0,73 0,96 1,19 1,41 1,63 1,85 2,07 2,28

ratio 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00
pp = preprocessing time (sec); rank = CPU time (sec) for ranking one million paths;
ratio = average number of candidates per path ranked.

Table 7. Computational results for ranking k thousand paths
in square grid networks with 10000 nodes.

”rem” and ”dev” can rank one million paths just in a few percentage of
instances (see column ”%”) and only for small values of k they find the k
shortest paths in all the problems (column ”k”). Consequently, the results
presented in column ”ratio” and ”rank” are referred to the value of k pre-
sented in column k. The last column (k-new) indicates the CPU time used
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grid-C networks grid-1 networks
` 20 40 60 80 100 20 40 60 80 100

code n 400 1600 3600 6400 10000 400 1600 3600 6400 10000
pp 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00

rem rank 0,75 1,11 1,44 1,87 2,34 0,78 1,17 1,51 1,97 2,34
ratio 5,02 7,42 9,66 12,48 15,25 5,02 7,42 9,66 12,48 14,42
pp 0,00 0,00 0,00 0,00 0,02 0,00 0,00 0,00 0,00 0,02

dev rank 0,66 0,91 1,13 1,41 1,72 0,68 0,96 1,20 1,49 1,68
ratio 5,99 8,40 10,65 13,46 16,38 5,99 8,40 10,65 13,46 15,32
pp 0,00 0,01 0,06 0,22 0,66 0,00 0,01 0,06 0,22 0,69

new rank 0,81 1,15 1,58 2,17 2,74 0,83 1,20 1,64 2,25 2,63
ratio 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00

pp = preprocessing time (sec); rank = CPU time (sec) for ranking one million paths;
ratio = average number of candidates per path ranked.

Table 8. Computational results for ranking one million paths
in square grid networks with n = `2 nodes.

by ”new” algorithm to rank the same number of paths found by ”rem” or
”dev” code, respectively.

On this class of instances, the number of candidates generated per each
path ranked is much greater than for the randomly generated instances (see
column ”ratio”). Consequently, ”new” code outperforms ”rem” (see column
”k-new”) in all instances and ”dev” for the ”NY” and ”COL” network. How-
ever, ”new” algorithm have an huge preprocessing time.

5. Conclusion
Three codes for solving the k-shortest path problem are described in this

work. All of them are rather efficient, computing one million path in less
than 3 seconds of CPU time in randomly generated networks (after .

The removing path algorithm has the lowest preprocessing time while de-
viation paths algorithm is the fastest to do the rank in randomly generated
instances (where the number of deviation paths generated per each path
ranked is small). The proposed algorithm have huge preprocessing time
and is the slowest code in randomly generated instances. However, it pro-
duces the smallest number of candidates for the next shortest path (only
two candidates), allowing to solve efficiently the biggest problems considered
(real-world networks). In fact, it takes less than 30 seconds (CPU time) to
rank one million paths in a real-world network with more than one million
of nodes (after 2.7 hours of preprocessing).
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Name n m q code % k pp rank ratio k-new
NY 264345 734610 50 ”rem” 46,00 50 0,30 0,88 128,50 0,82

”dev” 42,00 100 10,36 0,97 100,40 1,60
”new” 100,0 1000 463,82 14,87 2,00 —

BAY 321269 801264 379 ”rem” 30,87 50 0,65 0,62 126,14 0,39
”dev” 33,77 50 6,74 0,42 103,05 0,39
”new” 100,0 1000 260,42 7,10 2,00 —

COL 435665 1059582 100 ”rem” 23,00 <50 0,75 1,15 240,17 0,50
”dev” 28,00 100 16,45 1,15 275,92 0,98
”new” 100,0 1000 553,90 9,53 2,00 —

FLA 1070375 2720400 5 ”rem” 0,00 <50 5,55 0,55 118,56 1,07
”dev” 20,00 300 124,96 3,33 105,28 5,68
”new” 100,0 1000 9498,5 27,66 2,00 —

n: number of nodes; m: number of arcs; q: number os pairs queries used; %:
percentage of instances for which one million paths were ranked; k: last values of k
(thousands) for which all instances were solved; pp: preprocessing time (sec); rank:
CPU time (sec) for ranking k thousands shortest paths; ratio = average number of
candidates for the first k paths ranked.

Table 9. Computational results on USA road network.

Future work on this subject will focus on a more appropriated data struc-
ture in order to sort the set of arcs in a more efficient manner leading to the
reduction of the preprocessing time.
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[18] E.Q. Martins. Determinação de Caminhos Óptimos em Redes Orientadas. PhD thesis, Depar-
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