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Abstract: An odd-quadratic Lie superalgebra is a Lie superalgebra with a non-
degenerate supersymmetric odd invariant bilinear form. In this paper we give exam-
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1. Introduction
A Lie superalgebra g is called quadratic (respectively odd-quadratic) if there

is a bilinear form B on g such that B is non-degenerate, supersymmetric,
even (respectively odd), and g-invariant. In [8], V. Kac has classified finite
dimensional simple Lie superalgebras over an algebraically closed field of
characteristic 0, proving that they have reductive even part if and only if the
action of the even part on the odd part is completely reducible. About the
behaviour of invariant bilinear forms defined in these Lie superalgebras, he
has concluded that we have two possibilities for each one: either all invariant
bilinear forms are even (for example spl(m,n),m 6= n), or all invariant bili-
near forms are odd (for example d(n)/KI2n, n ≥ 3) [11]. Besides, contrary to
what happens in Lie theory where all semisimple Lie algebras are quadratic,
in Lie superalgebra theory this affirmation is not true. Other examples of
quadratic Lie algebras that are not semisimple, were presented by A. Medina
and P. Revoy in [9]. These authors introduced the notion of double extension
to give an inductive classification of quadratic Lie algebras. Motivated by
these results, and since the notion of quadratic Lie superalgebra is a genera-
lization of quadratic Lie algebra, H. Benamor and S. Benayadi, in [3], began
research into finite dimensional quadratic Lie superalgebras over a field of
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characteristic zero. The two authors extended the notion of double exten-
sion to quadratic Lie superalgebras and in [3], it is presented an inductive
classification of quadratic Lie superalgebras g = g0̄⊕g1̄ such that dim g1̄ = 2.
In [4], S. Benayadi obtained an inductive classification of quadratic Lie su-
peralgebras such that the even part is a reductive Lie algebra and the odd
part is a completely reducible module on the even part after had introduced
the notion of elementary double extension. We recall that Lie superalgebras
with semisimple even part were studied by F. A. Berezin and V. S. Retakh
in [6], and more generally in [7], A. Elduque has obtained very interesting
results about the classification of Lie superalgebras with reductive even part
and the action of the even part on the odd part is completely reducible. In
[1] using the notions of double extension and generalized double extension
presented in [2], we gave some examples of solvable and non solvable qua-
dratic Lie superalgebras that have a reductive even part and the action of
the even part on the odd part is not completely reducible and we have clas-
sified inductively this class of Lie superalgebras, improving the theory of S.
Benayadi ([4]).

Motivated by mathematical and physical applications [10], in this paper
we will analyse the class of odd-quadratic Lie superalgebras studying some
properties and looking at non simple examples. We shall give an inductive
classification of odd-quadratic Lie superalgebras such that the even part is
a reductive Lie algebra. We would like to remark that contrary to what we
know in quadratic Lie superalgebras, in odd-quadratic Lie superalgebras with
reductive even part, the odd part must be necessarily a completely reducible
module on the even part. We begin this work presenting a characterization
of odd-quadratic Lie superalgebras. More precisely, we will show that a
Lie superalgebra g = g0̄ ⊕ g1̄ is odd-quadratic if and only if there exists
an isomorphism of g0̄-modules g0̄ −→ (g1̄)

∗ with certain properties. In this
case, dimension of the even part is equal to the dimension of the odd part
(in quadratic case, we know that the dimension of the odd part is even).
All non-abelian odd-quadratic Lie superalgebras of dimension two are iso-
morphic. We will show that, as in case of quadratic Lie superalgebras, we
can reduce the study of odd-quadratic Lie superalgebras (g, B), to the B-
irreducible case. In the third section we will present the construction of odd
double extension of odd-quadratic Lie superalgebras by the one-dimensional
Lie algebra. Further, we will prove that if a B-irreducible odd-quadratic Lie
superalgebra (g = g0̄ ⊕ g1̄, B) (dim g > 1) has non-zero odd elements in the
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centre then g is an odd double extension of an odd-quadratic Lie superalge-
bra h (dim h = dim g − 2) by a one-dimensional Lie algebra. In the fourth
section we will introduce the concept of generalized odd double extension
of an odd-quadratic Lie superalgebra by the one-dimensional Lie superalge-
bra with even part zero. For an odd-quadratic Lie superalgebra (g, B), we
can use an odd skew-supersymmetric superderivation of (g, B) with some
properties to construct a new odd-quadratic Lie superalgebra, namely the
generalized odd double extension of (g, B) by the one-dimensional Lie super-
algebra with even part zero. Conversely, we will show that a B-irreducible
odd-quadratic Lie superalgebra (g, B) submitted to certain conditions is a
generalized odd double extension of an odd-quadratic Lie superalgebra by
the one-dimensional Lie superalgebra with even part zero. Introduced the
notion of generalized double extension we will characterize some classes of ir-
reducible odd-quadratic Lie superalgebras that will be very useful to deduce
an inductive classification of odd-quadratic Lie superalgebras with reductive
even part (and consequently with the action of the even part on the odd
part completely reducible). Section five analyses the particular case of odd-
quadratic Lie superalgebras such that the even part is a reductive Lie algebra.
We will prove that for odd-quadratic Lie superalgebra (g = g0̄ ⊕ g1̄, B) we
have z(g0̄) = z(g) ∩ g0̄. If the even part is a reductive Lie algebra, then the
centre of the even part is zero if and only if the centre of g is zero. Further-
more, if we add the B-irreducibility assumption we will conclude that the
centre of g coincide with the centre of the even part, and it only has even
elements. Contrarily to quadratic case, for odd-quadratic Lie superalgebra
such that the even part is a reductive Lie algebra the action of the even part
on the odd part is completely reducible. We will characterize the minimal
graded ideals of a B-irreducible odd-quadratic Lie superalgebra such that
the even part is a reductive Lie algebra. For a B-irreducible odd-quadratic
Lie superalgebra (g = g0̄ ⊕ g1̄, B) such that g0̄ is a reductive Lie algebra,
we will prove that a graded ideal I of g is minimal if and only if I ⊆ z(g)
and dim I = 1 or I is a non trivial irreducible s-submodule of g1̄ such that
[g1̄, I] = {0}, where s is the greatest semisimple ideal of g0̄. The B-irreducible
odd-quadratic Lie superalgebras with reductive even part, that it is neither
zero nor simple, with the centre zero, are the trivial odd double extensions
of a simple Lie algebra. We will use the results of the preceeding sections
to obtain an inductive classification of odd-quadratic Lie superalgebras such
that the even part is a reductive Lie algebra. Although we will show that the
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action of the even part on the odd part is completely reducible, to give the
classification we will have to use the tool of odd double extension and the
generalized odd double extension of odd-quadratic Lie superalgebras. More
precisely, we will prove that a non-zero odd-quadratic Lie superalgebra of our
type are the simple Lie superalgebras d(n)/KI2n (n ≥ 3), and/or is obtained
by a sequence of generalized odd double extensions by the one-dimensional
Lie superalgebra with even part zero, and/or by trivial odd double extensions
of simple Lie algebra, and/or by orthogonal direct sums of odd-quadratic Lie
superalgebras from a finite number of algebras of the former type. Finally,
in the remaining section we will generalize a result of classical Lie super-
algebras, namely, we will prove that a quadratic Lie superalgebra with the
even part a reductive Lie algebra, with certain conditions, does not admit an
odd-invariant scalar product, and vice versa. Although the results are similar
to the correspondent results for quadratic Lie superalgebras, the techniques
used to obtain them are very different.

2. Basic properties
We will refer to the work due to Scheunert [11] for an exhaustive treatment

of the Lie superalgebra theory. In this paper, we shall consider finite dimen-
sional Lie superalgebras over an algebraically closed commutative field K of
characteristic zero.

Definition 2.1. Let g be a Lie superalgebra. A bilinear form B on g is called

• supersymmetric if B(X, Y ) = (−1)xyB(Y, X), for all X ∈ gx and
Y ∈ gy.

• skew-supersymmetric if B(X,Y ) = −(−1)xyB(Y, X), for all X ∈ gx

and Y ∈ gy.
• non-degenerate if X ∈ g satisfies B(X,Y ) = 0, for all Y ∈ g, then

X = 0.
• invariant if B([X,Y ], Z) = B(X, [Y, Z]), for all X, Y, Z ∈ g.
• even if B(X, Y ) = 0, for all (X, Y ) ∈ gα× gβ, where (α, β) ∈ Z2×Z2,

(with α 6= β).
• odd if B(X, Y ) = 0, for all (X,Y ) ∈ gα × gα, where α ∈ Z2.
• 2-cocycle on g if B is skew-supersymmetric and B verifies:

(−1)xzB(X, [Y, Z]) + (−1)xyB(Y, [Z, X]) + (−1)yzB(Z, [X, Y ]) = 0,

whenever X ∈ gx, Y ∈ gy, and Z ∈ gz. We denote by Z2(g,K) the
set of all 2-cocycles on g.
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We will need the orthogonal direct sum of odd-quadratic Lie superalgebras
to formalize an inductive classification. We recall

Definition 2.2. Let (g, B) and (h, T ) be two odd-quadratic Lie superalge-
bras. It is easy to see that (g ⊕ h, γ) is an odd-quadratic Lie superalgebra
where the odd-invariant scalar product on g⊕ h is defined by

γ |(g×g)= B, γ |(h×h)= T, γ |(g×h)= 0.

It is called the orthogonal direct sum of (g, B) and (h, T ).

Definition 2.3. Let (g, B) be an odd-quadratic Lie superalgebra. A homo-
geneous superderivation D of (g, B) of degree α (where α ∈ Z2) is called
skew-supersymmetric if

B(D(X), Y ) = −(−1)αxB(X, D(Y )), ∀X∈gx,Y ∈g.

It is proved that the vector subspace of Der(g) generated by the set of all
homogeneous skew-supersymmetric superderivations of (g, B) is a Lie subsu-
peralgebra of Der(g) and it is denoted by Dera(g, B).

Definition 2.4. Let (g, B) be an odd-quadratic Lie superalgebra.

• A graded ideal I of g is called non-degenerate if the restriction of B
to I × I is a non-degenerate bilinear form on I. Otherwise, we said
that I is degenerate.

• g is called B-irreducible if g does not have non-zero non-degenerate
graded ideals.

• A graded ideal I of g is called B-irreducible if I is non-degenerate and
I does not have non-zero non-degenerate graded ideals of g.

Definition 2.5. Let g be a Lie superalgebra. A graded ideal I of g is called

• minimal if I /∈ {{0}, g} and if J is a graded ideal of g such that J ⊆ I
then J ∈ {{0}, I}.

• maximal if I /∈ {{0}, g} and if J is a graded ideal of g such that I ⊆ J
then J ∈ {I, g}.

Definition 2.6. Let (g, B) be a quadratic (or an odd-quadratic) Lie super-
algebra. If I is a graded ideal of g then we denote by I⊥ (or I⊥B, in case of
ambiguity) the orthogonal of I with respect to B, which means that

I⊥ = {X ∈ g : B(X, Y ) = 0,∀Y ∈I}.
Then I is called isotropic if I ⊆ I⊥.
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Definition 2.7. Let g be a Lie superalgebra. The socle of g is the sum of
all minimal graded ideals of g and it is denoted by soc(g). By convention,
we will suppose that if g is a one-dimensional Lie superalgebra or a simple
Lie superalgebra then soc(g) = {0}.
Proposition 2.8. The Lie superalgebra g = g0̄ ⊕ g1̄ is odd-quadratic if and
only if there exists an isomorphism of g0̄-modules ϕ : g0̄ −→ (g1̄)

∗ such that

ϕ([X, Y ])(Z) = ϕ([Y, Z])(X), ∀X,Y,Z∈g1̄
.

In this case, dim g0̄ = dim g1̄ and dimension of g is even.

Proof : First we assume that (g, B) is an odd-quadratic Lie superalgebra.
Define the linear map ϕ : g0̄ −→ (g1̄)

∗ by ϕ(X) = B(X, .), for all X ∈ g0̄.
As B is an odd non-degenerate bilinear form, it is obvious that ϕ is an
isomorphism of vector spaces. We consider the adjoint representation of g0̄

and the representation of g0̄ denoted by ρ : g0̄ −→ gl((g1̄)
∗) and defined by

ρ(X)(f)(Y ) = −f([X, Y ]), ∀X∈g0̄,Y ∈g1̄,f∈(g1̄)∗.

We can easily see that ϕ([X,Y ]) = ρ(X)(ϕ(Y )), whenever X,Y ∈ g0̄, which
means that ϕ is a homomorphism of g0̄-modules. By invariance and su-
persymmetry of B we infer that ϕ([X, Y ])(Z) = ϕ([Y, Z])(X), for every
X, Y, Z ∈ g1̄.
Conversely, we suppose that there exists an isomorphism of g0̄-modules ϕ :
g0̄ −→ (g1̄)

∗ such that ϕ([X, Y ])(Z) = ϕ([Y, Z])(X), for all X, Y, Z ∈ g1̄.
Let B : g × g −→ K be the supersymmetric bilinear form defined by
B(g0̄, g0̄) = B(g1̄, g1̄) = {0} and B(X, Y ) = ϕ(X)(Y ), for all X ∈ g0̄, Y ∈ g1̄.
Since ϕ is an isomorphism of vector spaces we infer that B is odd and non-
degenerate. Now we ensure the invariance of B. For X,Y ∈ g0̄, Z ∈ g1̄ we
get

B([X, Y ], Z) = ϕ([X,Y ])(Z) = −ϕ([Y, X])(Z) = −ρ(Y )(ϕ(X))(Z)

= ϕ(X)([Y, Z]) = B(X, [Y, Z]).

On the other hand, for X,Y, Z ∈ g1̄ we have

B([X,Y ], Z) = ϕ([X,Y ])(Z) = ϕ([Y, Z])(X) = B([Y, Z], X)

= B(X, [Y, Z]).

Therefore (g, B) is an odd-quadratic Lie superalgebra as required.
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Remark 2.9. As we will see, we can characterize all two-dimensional odd-
quadratic Lie superalgebras. Consider N = N0̄ ⊕ N1̄ an odd-quadratic Lie
superalgebra of dimension 2. By the last result we know that N0̄ = Ke0 and
N1̄ = Ke1, where e0 and e1 are non zero elements of N . We also have the
product defined by [e0, e0] = 0, [e0, e1] = αe1, and [e1, e1] = βe0, for α, β ∈ K.
Define an odd invariant scalar product B on N by

B(e0, e0) = 0, B(e1, e1) = 0, B(e0, e1) = 1.

Using invariance of B we show that α = 0. If β = 0 then N is abelian.
If β = 1, we denote the odd-quadratic Lie superalgebra N of dimension
2 by N. Remark that z(N) = z(N0̄). It is easy to show that every non-
abelian odd-quadratic Lie superalgebra of dimension 2 is isomorphic to N.
Therefore the non-abelian odd-quadratic Lie superalgebra of dimension 2 are
all isomorphic.

Another example of odd-quadratic Lie superalgebra

Example 2.10. Let g be a Lie algebra and g∗ it dual. Consider h = h0̄ ⊕ h1̄

a Lie superalgebra, where h0̄ = g, h1̄ = g∗, and B : h× h −→ K defined by

B(X + f, Y + h) = f(Y ) + (−1)xyh(X), ∀(X+f)∈hx,(Y +h)∈hy
.

It is easy to see that (h, B) is an odd-quadratic Lie superalgebra.

We will need the following lemma whose proof is straightforward,

Lemma 2.11. Let (g, B) be a B- irreducible odd-quadratic Lie superalgebra
not simple. If I is a minimal graded ideal of g then I is isotropic.

As in quadratic case, the next proposition reduces the study of odd-quadratic
Lie superalgebra (g, B) to the B-irreducible case.

Proposition 2.12. Let (g, B) be an odd-quadratic Lie superalgebra. Then
g =

⊕m
k=1 gk, where each gk is a B-irreducible graded ideal of g such that

B(gk, gk′) = {0}, when k, k′ ∈ {1, . . . , m} and k 6= k′.

Proof : We proceed by induction on the dimension d of g. If d = 2 we have
the result with m = 1. Indeed, we know that g = g0̄ ⊕ g1̄ with dim g0̄ = 1
and dim g1̄ = 1. Consider a proper graded ideal I of g, then I = g0̄ or I = g1̄.
Without loss of generality, we can assume that I = g0̄. As B is odd it follows
that B(I, I) = {0}, and so B |I×I is degenerate. Therefore the assertion is
true. To prove the induction step we act as in the Proof of the correspondent
result in quadratic case ([5, Theorem 1.1.])
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Occasionally, we have to change the gradation of Lie superalgebras as we
will describe. Let h = h0̄⊕h1̄ be a Lie superalgebra. Denote by P (h) = V0̄⊕V1̄

the Z2-graded vector space obtained from h with gradation defined by

V0̄ = h1̄ and V1̄ = h0̄.

Clearly, the associative superalgebras Hom(h) and Hom(P (h)) coincide. There-
fore the representations of a Lie superalgebra g in h coincide with represen-
tations of g in P (h). Note that the dual space P (h∗) and h∗ are equal as
Z2-graded vector spaces, however

V ∗̄
0 = h∗̄1 and V ∗̄

1 = h∗̄0.

Denote by πh : h −→ Hom(P (h∗)) the linear map defined for homogeneous
elements as follows

πh(Z)(f)(Y ) = −(−1)zδf([Z, Y ]), ∀f∈(P (h∗))δ,Z∈hz,Y ∈h.

It is quite easy to show that πh is a representation of h in P (h∗), but it is not
the co-adjoint representation of h. Now, we will adapt the [3, Lemma 3.6.]
to the odd-quadratic Lie superalgebras using the new graded vector space
defined just above

Lemma 2.13. Let (g, B) be an odd-quadratic Lie superalgebra.

(i) Let D be a homogeneous skew-supersymmetric superderivation of (g, B)
of degree α ∈ Z2. Then ω : g× g −→ P (K) defined by

ω(X,Y ) = B(D(X), Y ), ∀X,Y ∈g,

is a homogeneous skew-supersymmetric 2-cocycle on (g, B) of degree
α.

(ii) If ω : g × g −→ P (K) is a homogeneous skew-supersymmetric 2-
cocycle on g of degree α then there exists a unique homogeneous skew-
supersymmetric superderivation D of g of degree α such that

ω(X, Y ) = B(D(X), Y ), ∀X∈g,Y ∈g.

Proof : The proof is analogous to that of [3, Lemma 3.6.].
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3. Odd double extension of odd-quadratic Lie superal-
gebras

In this section we will introduce the notion of odd double extension of
odd-quadratic Lie superalgebras.

Proposition 3.1. Let (g, B) be an odd-quadratic Lie superalgebra and h a
Lie superalgebra. Suppose that ψ : h −→ Dera(g, B) is a homomorphism of
Lie superalgebras. Define a bilinear map ϕ : g×g −→ P (h∗) for homogeneous
elements by

ϕ(X, Y )(Z) = (−1)(x+y)zB(ψ(Z)(X), Y ), ∀X∈gx,Y ∈gy,Z∈hz
.

Then the vector space g⊕ P (h∗) endowed with the multiplication defined by

[X + f, Y + h] = [X,Y ]g + ϕ(X, Y ), ∀(X+f),(Y +h)∈(g⊕P (h∗)), (3.1)

is a Lie superalgebra. It is called the central extension of P (h∗) by g (by
means of ϕ).

Proof : We start the proof by showing that g ⊕ P (h∗) equipped with the
multiplication (3.1) is a Lie superalgebra. We choose the gradation

(g⊕ P (h∗))α = gα ⊕ P (h∗)α, ∀α∈Z2.

Set X ∈ (g)x, Y ∈ (g)y, and W ∈ hw. Since B is supersymmetric and ψ(W )
is a skew-supersymmetric superderivation of (g, B) of degree w, we obtain

ϕ(X, Y )(W ) = −(−1)xyϕ(Y, X)(W ),

therefore

ϕ(X, Y ) = −(−1)xyϕ(Y,X), ∀X∈gx,Y ∈gy
.

We also have that

(−1)xzϕ(X, [Y, Z]g) + (−1)xyϕ(Y, [Z,X]g) + (−1)yzϕ(Z, [X,Y ]g) = 0,

for all X ∈ gx, Y ∈ gy, and Z ∈ gz. Meaning that ϕ is a 2-cocycle of g in
the trivial g-module P (h∗). Then g ⊕ P (h∗) with the multiplication (3.1) is
a Lie superalgebra called the central extension of P (h∗) by g (by means of
ϕ) as required.

Now, we will formalize the notion of odd double extension of an odd-
quadratic Lie superalgebra
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Theorem 3.2. Let (g, B) be an odd-quadratic Lie superalgebra and h a Lie
superalgebra. Consider ψ : h −→ Dera(g, B) a homomorphism of Lie super-
algebras. Define the linear map ψ̃ : h −→ Hom(g⊕ P (h∗)) by

ψ̃(Z)(X + f) = ψ(Z)(X) + πh(Z)(f), ∀(X+f)∈(g⊕P (h∗)),Z∈h,

where πh : h −→ Hom(P (h∗)) is the linear map defined for homogeneous
elements as follows

πh(Z)(f)(Y ) = −(−1)zδf([Z, Y ]), ∀f∈(P (h∗))δ,Z∈hz,Y ∈h.

Then ψ̃(Z) ∈
(
Der(g ⊕ P (h∗))

)
z
, for all Z ∈ hz where g ⊕ P (h∗) is the

central extension of P (h∗) by g (by means of ϕ). Moreover, k = h⊕g⊕P (h∗)
with the multiplication defined by

[Z + X + f, W + Y + h] = [Z,W ]h + [X, Y ]g + ψ(Z)(Y )− (−1)xyψ(W )(X)

+πh(Z)(h)− (−1)xyπh(W )(f) + ϕ(X, Y ), (3.2)

for all (Z + X + f) ∈ kx, (W + Y + h) ∈ ky, where ϕ is defined in Proposi-
tion 3.1, is a Lie superalgebra, more precisely, k is the semi-direct product of
g ⊕ P (h∗) by h by means of ψ̃. Furthermore, let γ be an odd supersymmet-
ric invariant bilinear form on h (not necessarily non-degenerate). Then the
bilinear form B̃ : k× k −→ K defined by

B̃(Z + X + f, W + Y + h) = B(X, Y ) + γ(Z, W ) + f(W ) + (−1)xyh(Z),

whenever (Z + X + f) ∈ kx, (W + Y + h) ∈ ky, is an odd invariant scalar
product on k and (k, B̃) is an odd-quadratic Lie superalgebra. We say that
the odd-quadratic Lie superalgebra (k, B̃) is an odd double extension of (g, B)
by h (by means of ψ).

Proof : First we ensure that ψ̃(Z) is a superderivation of g ⊕ P (h∗), when
Z ∈ hz. Since ψ(Z) is a superderivation of g of degree z, we can easily show
that, for (X + f) ∈ (g⊕ P (h∗))x, (Y + h) ∈ (g⊕ P (h∗))y,

ψ̃(Z)([X + f, Y + h]) = [ψ(Z)(X), Y ]g + (−1)xz[X,ψ(Z)(Y )]g
= +πh(Z)(ϕ(X, Y )).

On the other hand,

[ψ̃(Z)(X + f), Y + h] = [ψ(Z)(X), Y ]g + ϕ(ψ(Z)(X), Y ),
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and

[X + f, ψ̃(Z)(Y + h)] = [X,ψ(Z)(Y )]g + ϕ(X, ψ(Z)(Y )).

We note that

ψ̃(Z)([X + f, Y + h]) = [ψ̃(Z)(X + f), Y + h]

+(−1)xz[X + f, ψ̃(Z)(Y + h)] + πh(Z)(ϕ(X,Y ))

−ϕ(ψ(Z)(X), Y )− (−1)xzϕ(X, ψ(Z)(Y )).

We obtain

πh(Z)(ϕ(X,Y )) = ϕ(ψ(Z)(X), Y ) + (−1)xzϕ(X,ψ(Z)(Y )),

therefore ψ̃(Z) ∈
(
Der(g ⊕ P (h∗))

)
z
. Since ψ̃ is a homomorphism of Lie

superalgebra, it follows that k is a semi-direct product of h and g⊕P (h∗) by
means of ψ̃. Consequently k with the multiplication (3.2) is a Lie superalgebra
(cf. in [2]) Now we will guarantee that B̃ is an odd invariant scalar product
of k. By definition it comes easily that B̃ is odd and supersymmetric. Let us
prove that B̃ is non-degenerate. Set (Z +X + f) ∈ (h⊕g⊕P (h∗)) such that

B̃(Z + X + f,W + Y + h) = 0, ∀(W+Y +h)∈(h⊕g⊕P (h∗)).

In particular, for Y ∈ g we have B̃(Z + X + f, Y ) = 0. Since B is non-
degenerate we conclude that X = 0. On the other hand, B̃(Z + f, h) = 0,
for all h ∈ P (h∗), implies that Z = 0. Similarly, B̃(f,W ) = 0, for all
W ∈ h, leads to f = 0. The invariance of B̃ comes easily by straightforward
calculations. We conclude that B̃ is an odd invariant scalar product as
desired.

Our next goal is to prove the Theorem 3.6 below, where a non-simple
B-irreducible odd-quadratic Lie superalgebra (g, B) is described as an odd
double extension of an odd-quadratic Lie superalgebra. The result is esta-
blished by the next sequence of lemmas. We will prove the lemmas in the
following context. Let (g, B) be a B-irreducible odd-quadratic Lie superal-
gebra. Consider that I is a maximal graded ideal of g such that there exists
a sub-superalgebra V of g which satisfies g = I ⊕ V .

Lemma 3.3. Let (g, B) be a non-simple B-irreducible odd-quadratic Lie su-
peralgebra. If I is a maximal graded ideal of g then I/I⊥ equipped with the
structure inherited from g is an odd-quadratic Lie superalgebra.
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Proof : By assumption I is a maximal graded ideal of g. Then I⊥ is a minimal
graded ideal of g. Due to the B-irreducibility of g we have that I⊥ ⊆ I. It
is immediate that I/I⊥ with the natural multiplication

[X + I⊥, Y + I⊥] = [X,Y ] + I⊥, ∀X,Y ∈I ,

is a Lie superalgebra. Define a bilinear form B̃ : I/I⊥ × I/I⊥ −→ K by

B̃(X + I⊥, Y + I⊥) = B(X, Y ), ∀X,Y ∈I .

It is clear that B̃ is well defined. And we can easily prove the non degeneracy
of B̃. The bilinear form B̃ is an odd invariant scalar product of I/I⊥.

Lemma 3.4. Let (g, B) be a non-simple B-irreducible odd-quadratic Lie su-
peralgebra. Consider I a maximal graded ideal of g such that there exists a
subsuperalgebra V of g which satisfies g = I ⊕ V . Then W = I⊥ ⊕ V is a
vector subspace of g and W⊥ is an odd-quadratic Lie superalgebra. Moreover,
the map θ : W⊥ −→ I/I⊥ defined by

θ(X) = X + I⊥, ∀X∈W⊥, (3.3)

is an isomorphism of Lie superalgebras.

Proof : As in the proof of Lemma 3.3 we see that I⊥ ⊆ I. From g = I ⊕ V
we get that W = I⊥⊕ V is a sub-vector space of g. We can easily show that
B |W×W is non-degenerate. Furthermore, g = W ⊕ W⊥ = V ⊕ W⊥ ⊕ I⊥

and the restriction of B to W⊥ is non-degenerate. In order to provided
W⊥ with a structure of Lie superalgebra, we proceed as follows: choose
X, Y ∈ W⊥. Since W⊥ is a subset of the graded ideal I of g then [X,Y ] ∈
I = W⊥⊕I⊥. We can write [X, Y ] = α(X, Y )+β(X,Y ), with α(X,Y ) ∈ W⊥

and β(X, Y ) ∈ I⊥. It is clear that W⊥ with the multiplication α is a Lie
superalgebra. Denote [, ]W⊥ = α. The restriction BW⊥ = B |W⊥×W⊥ is W⊥-
invariant. Consequently BW⊥ is an odd invariant scalar product of W⊥ and
(W⊥, BW⊥) is an odd-quadratic Lie superalgebra. Finally, it is easy to prove
that the linear map θ defined by 3.3 is an isomorphism of Lie superalgebras,
completing the Proof.

Lemma 3.5. Let (g, B) be a non-simple B-irreducible odd-quadratic Lie su-
peralgebra. Consider I a maximal graded ideal of g such that there exists a
sub-superalgebra V of g which satisfies g = I ⊕ V . Then g is isomorphic to
the odd double extension of I/I⊥by V .
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Proof : Define the map ν : I⊥ −→ P (V ∗) by ν(X) = B(X, .), for all X ∈ I⊥,
that is linear. The non degeneracy of B entails that ν is injective. Similarly,
it is easy to prove that the linear map δ : P (V ) −→ (I⊥)∗ defined by δ(X) =
B(X, .), for all X ∈ P (V ), is injective. Therefore dim I⊥ = dim P (V ∗) and ν
is an isomorphism of Z2-graded vector spaces. Now consider the linear map
ψ : V −→ Der(I/I⊥) defined by

ψ(Y )(X + I⊥) = [Y,X] + I⊥, ∀Y ∈V,X∈I .

Using invariance of B and graded Jacobi identity we have that ψ is a homo-
morphism of Lie superalgebras and ψ(Y ) ∈ Dera(I/I⊥, B̃), for all Y ∈ V .
According to Theorem 3.2 we conclude that h = V ⊕ I/I⊥ ⊕ P (V ∗) is
the odd double extension of I/I⊥ by V by means of ψ. Finally, we define
τ : g = V ⊕W⊥ ⊕ I⊥ −→ h = V ⊕ I/I⊥ ⊕ P (V ∗) by

τ(X + Y + Z) = X + θ(Y ) + ν(Z), ∀(X+Y +Z)∈g=(V⊕W⊥⊕I⊥),

where the map θ is defined in Lemma 3.4. Since θ and ν are bijectives, then
so is τ . It remains to prove that τ is a homomorphism of Lie superalgebras.
Using the structure of V -module of P (V ∗), ρ : V −→ Hom(P (V ∗)) defined
by

ρ(X)(f)(Y ) = −(−1)xγf([X, Y ]), ∀X∈Vx,f∈(P (V ∗))γ ,Y ∈P (V ),

we easily see that τ preserves the structure of Lie superalgebra, which means
that τ is a homomorphism of Lie superalgebras.

By the results of Lemma 3.3 to Lemma 3.5 we can conclude

Theorem 3.6. Let (g, B) be a B-irreducible odd-quadratic Lie superalgebra.
Suppose that I is a maximal graded ideal of g such that there exists a sub-
superalgebra V of g which satisfies g = I ⊕ V . Then the odd-quadratic Lie
superalgebra (g, B) is an odd double extension of the odd-quadratic Liesuper-
algebra (I/I⊥, B̃) by V .

The next fundamental result, which is the converse of Theorem 3.2, is a
immediate consequence of the previous theorem

Corollary 3.7. Suppose that (g = g0̄⊕g1̄, B) is a B-irreducible odd-quadratic
Lie superalgebra. If z(g) ∩ g1̄ 6= {0} then g is an odd double extension of an
odd-quadratic Lie superalgebra h (such that dim h = dim g − 2) by the one-
dimensional Lie algebra (Ke)0̄.
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Proof : Since z(g)∩g1̄ 6= {0} we can choose a non-zero element X ∈ z(g)∩g1̄.
Then I = KX is a minimal graded ideal of g and I⊥ is a maximal graded
ideal of g. Since X ∈ g1̄ and B is odd it follows that g1̄ ⊆ I⊥. As B is
non-degenerate there exists Y ∈ g0̄ such that B(X,Y ) 6= 0. Therefore we
have that g = I⊥⊕KY , where the vector subspace KY is a subsuperalgebra
of g. Define ψ : KY −→ Der(I⊥/I) by

ψ(Y )(X + I) = [Y, X] + I, ∀X∈I⊥,

and B̃ : I⊥/I × I⊥/I −→ K by

B̃(X + I, Y + I) = B(X,Y ), ∀X,Y ∈I⊥.

Invoking Theorem 3.6 we conclude that the odd-quadratic Lie superalge-
bra (g, B) is an odd double extension of the odd-quadratic Lie superalgebra
(I⊥/I, B̃) by KY (by means of ψ).

Definition 3.8. Consider h a Lie superalgebra. By a trivial odd double
extension of h we mean an odd double extension (k = h ⊕ P (h∗), B̃) of {0}
by h.

Lemma 3.9. Let h be a Lie superalgebra and (k = h⊕P (h∗), B̃) a trivial odd
double extension of h. Then

z(k) = z(h)⊕
{

f ∈ P (h∗) : f([h, h]) = {0}
}

. (3.4)

In particular, if h verifies z(h) = {0} and [h, h] = h then z(k) = {0}.

Proof : Let (X + f) ∈ (h⊕ P (h∗))x, which means that,

[X + f, Y + h] = 0, ∀(Y +h)∈(h⊕P (h∗))y
,

more explicitly,

[X,Y ]h + πh(X)(h)− (−1)xyπh(Y )(f) = 0, ∀(Y +h)∈(h⊕P (h∗))y
.

Therefore X ∈ z(h) and f([h, h]) = {0}, which implies the assertion 3.4.
Moreover, if z(h) = {0} and [h, h] = h, clearly z(k) = {0} as required.

Example 3.10. We easily see that the abelian two-dimensional odd-quadratic
Lie superalgebra is a trivial odd double extension of the one-dimensional Lie
algebra.
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Example 3.11. Let sl (2) be the special Lie algebra with its standard basis
{h, e, f} such that

[h, e] = e [h, f ] = −f [e, f ] = 2h,

and {h∗, e∗, f ∗} is the correspondent basis of the dual sl (2)∗. It is easy to
show that on the trivial odd double extension (g = sl (2) ⊕ P ( sl (2)∗), B)
of the simple Lie algebra sl (2), the graded skew-symmetric multiplication is
calculated for the elements of the basis by

[h, e] = e [h, e∗] = −e∗ [e, e∗] = h∗

[h, f ] = −f [h, f ∗] = f ∗ [f, h∗] = 2e∗

[e, f ] = 2h [e, h∗] = −2f ∗ [f, f ∗] = −h∗,

and the others are zero. And the supersymmetric bilinear form B is given by

B(h, h∗) = B(e, e∗) = B(f, f ∗) = 1,

and the rest are zero.

4. Generalized odd double extension of odd-quadratic
Lie superalgebras

Now we will present the concept of generalized odd double extension of
an odd-quadratic Lie superalgebras by the one-dimensional Lie superalgebra
Ke = (Ke)1̄. This notion will have an important role in an inductive clas-
sification of odd-quadratic Lie superalgebras with even part a reductive Lie
algebra. In the first step, we will obtain the central extension of P (Ke∗) by
an odd-quadratic Lie superalgebra (we consider e∗ the dual basis element of
Ke).

Proposition 4.1. Let (g, B) be an odd-quadratic Lie superalgebra. Let D
be an odd skew-supersymmetric superderivation of (g, B). Define a bilinear
map ϕ : g× g −→ P (K) by

ϕ(X,Y ) = B(D(X), Y ), ∀X,Y ∈g.

Then the vector space g⊕P (Ke∗) endowed with the multiplication defined by

[X + αe∗, Y + βe∗] = [X, Y ]g + ϕ(X,Y )e∗, (4.5)

whenever (X + αe∗), (Y + βe∗) ∈ (g ⊕ P (Ke∗)), is a Lie superalgebra. It is
called the central extension of P (Ke∗) by g (by means of ϕ).



16 H. ALBUQUERQUE, E. BARREIRO AND S. BENAYADI

Proof : We will show that g⊕P (Ke∗) endowed with the multiplication defined
by (4.5) is a Lie superalgebra. Since D is odd and skew-supersymmetric we
infer that

ϕ(X, Y ) = −(−1)xyϕ(Y,X), ∀X∈gx,Y ∈gy
.

As D is an odd skew-supersymmetric superderivation of (g, B) and applying
Lemma 2.13 we have that

(−1)xzϕ(X, [Y, Z]g) + (−1)xyϕ(Y, [Z,X]g) + (−1)yzϕ(Z, [X,Y ]g) = 0,

for all X ∈ gx, Y ∈ gy, and Z ∈ gz. Meaning that ϕ is a 2-cocycle of g on
P (K). Then g ⊕ P (Ke∗) with the multiplication (4.5) is a Lie superalgebra
called the central extension of P (Ke∗) by g (by means of ϕ) as desired.

For an odd-quadratic Lie superalgebra (g = g0̄ ⊕ g1̄, B) we can use an
odd skew-supersymmetric superderivation of (g, B) with certain properties to
construct a new odd-quadratic Lie superalgebra, namely the generalized odd
double extension of (g, B) by the one-dimensional Lie superalgebra (Ke)1̄.

Theorem 4.2. Let (g = g0̄ ⊕ g1̄, B) be an odd-quadratic Lie superalgebra.
Consider D an odd skew-supersymmetric superderivation of (g, B), X0 ∈ g0̄,
and λ0 ∈ K such that

D(X0) = 0, (4.6)

D2 =
1
2

[X0, .]g. (4.7)

Define a map Ω : (Ke)1̄ −→ Der(g ⊕ P (Ke∗)) by Ω(e) = D̃, where D̃ :
g⊕ P (Ke∗) −→ g⊕ P (Ke∗) satisfies D̃(e∗) = 0 and

D̃(X) = D(X)− (−1)xB(X,X0)e
∗, ∀X∈gx

.

Consider the map ζ : Ke×Ke −→ g⊕P (Ke∗) defined by ζ(e, e) = X0 +λ0e
∗.

Then k = Ke ⊕ g ⊕ P (Ke∗) endowed with the even skew-symmetric bilinear
map [, ] : k× k −→ k defined by

[e, e] = X0 + λ0e
∗,

[e,X] = D(X)− (−1)xB(X,X0)e
∗, ∀X∈gx

, (4.8)

[X, Y ] = [X, Y ]g + B(D(X), Y )e∗, ∀X,Y ∈g,

[e∗, k] = {0},
is a Lie superalgebra. More precisely is the generalized semi-direct product of
g ⊕ P (Ke∗) by the one-dimensional Lie superalgebra (Ke)1̄ (by means of Ω
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and ζ). Moreover, the supersymmetric bilinear form B̃ : k× k −→ K defined
by

B̃ |g×g = B,

B̃(e, e∗) = 1,

B̃(g, e) = B̃(g, e∗) = {0},
is an odd-invariant scalar product on k. In this case, we say that (k, B̃) is
the generalized odd double extension of (g, B) by the one-dimensional Lie
superalgebra (Ke)1̄ (by means of D, X0, and λ0).

Proof : We start by proving that D̃ ∈ D(g⊕P (Ke∗))1̄. First, for every X ∈ gx

and Y ∈ gy, we have to show that

D̃([X, Y ]g⊕P (Ke∗)) = [D̃(X), Y ]g⊕P (Ke∗) + (−1)x[X, D̃(Y )]g⊕P (Ke∗),

which is equivalent to

D([X, Y ]g)− (−1)x+yB([X, Y ]g, X0)e
∗ =

= [D(X), Y ]g + (−1)x[X, D(Y )]g

+
{

B(D2(X), Y ) + (−1)xB(D(X), D(Y ))
}

e∗.

Since D is an odd superderivation of g it remains to see that

−(−1)x+yB([X,Y ]g, X0) = B(D2(X), Y ) + (−1)xB(D(X), D(Y )).

¿From (4.7), as B is supersymmetric, D is an odd skew-supersymmetric
superderivation of (g, B), and B is invariant, we obtain that

(1 + (−1)x+y)B([X, Y ]g, X0) = 0, ∀X∈gx,Y ∈gy
. (4.9)

As B is odd then condition (4.9) is verified for every X ∈ gx and Y ∈ gy.
The others cases are trivial. So we conclude that D̃ is an odd superderivation
of g⊕P (Ke∗). We easily show that ζ is a skew-supersymmetric even bilinear
map. Doing some calculations, it is elementary to see that conditions (4.6)
and (4.7) imply that k = Ke ⊕ g ⊕ P (Ke∗) equipped with multiplication
defined by (4.8) is the generalized semi-direct product of g⊕ P (Ke∗) by the
one dimensional Lie superalgebra (Ke)1̄ (by means of Ω and ζ).

Now, we will show the converse of Theorem 4.2
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Proposition 4.3. Suppose that (g = g0̄ ⊕ g1̄, B) is a B-irreducible odd-
quadratic Lie superalgebra such that dim g > 1. If z(g)∩g0̄ 6= {0} then (g, B)
is a generalized odd double extension of an odd-quadratic Lie superalgebra
(h, B̃) (such that dim h = dim g−2) by the one-dimensional Lie superalgebra
(Ke)1̄.

We will prove the result by showing the following sequence of claims. We
will present a broad outline of the proof: first, we will determine the odd-
quadratic Lie superalgebra (h, B̃); then we will show that the odd-quadratic
Lie superalgebra (g, B) is the generalized odd-double extension of (h, B̃) by
the one-dimensional Lie superalgebra (Ke)1̄. To undertake the proof, let us
assume that (g, B) is a B-irreducible odd-quadratic Lie superalgebra such
that dim g > 1 and z(g)∩g0̄ 6= {0}. We set e∗ a non-zero element of z(g)∩g0̄

and denote I = Ke∗. As B is odd we have g0̄ ⊆ J , where J is the orthogonal
of I with respect to B. Since B is non-degenerate and odd then there exists
e ∈ g1̄ such that B(e∗, e) 6= 0. We may assume that B(e∗, e) = 1. As
e /∈ J and dim J = dim g − 1 we infer that g = J ⊕ Ke. Consider the
two-dimensional vector subspace A = Ke∗ ⊕ Ke of g. Since B |A×A is non-
degenerate we have g = A ⊕ h, where h is the orthogonal of A with respect
to B. It comes that B̃ = B |h×h is non-degenerate. As B is odd we have
Ke∗ ⊆ J , and so Ke∗ ⊕ h ⊆ J . ¿From dim (Ke∗ ⊕ h) = dim g− 1 = dim J it
comes that J = Ke∗ ⊕ h. So h is a graded vector subspace of g contained in
the graded ideal J = h⊕Ke∗ of g. Then we have

[X,Y ] = α(X,Y ) + ϕ(X,Y )e∗, ∀X,Y ∈h,

where α(X,Y ) ∈ h and ϕ(X, Y ) ∈ K. Further,

[e,X] = D(X) + ψ(X)e∗, ∀X∈h,

where D(X) ∈ h and ψ(X) ∈ K.

Claim 4.4. The Lie superalgebra (h, α = [, ]h, B̃) is odd-quadratic.

Proof : ¿From graded skew-symmetry on g it comes that

α(X, Y ) = −(−1)xyα(Y,X), ∀X∈hx,Y ∈hy
, (4.10)

ϕ(X, Y ) = −(−1)xyϕ(Y, X), ∀X∈hx,Y ∈hy
.
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Moreover, by the graded Jacobi identity on g it follows that

(−1)xzα
(
X, α(Y, Z)

)
+ (−1)xyα

(
Y, α(Z, X)

)
+ (−1)yzα

(
Z, α(X,Y )

)
= 0,(4.11)

(−1)xzϕ
(
X, ϕ(Y, Z)

)
+ (−1)xyϕ

(
Y, ϕ(Z,X)

)
+ (−1)yzϕ

(
Z,ϕ(X,Y )

)
= 0,

for X ∈ hx, Y ∈ hy, and Z ∈ hz. By (4.10) and (4.11) we conclude that (h, α)
is a Lie superalgebra. By invariance of B in g it comes straightforward that

B̃
(
α(X,Y ), Z

)
= B̃

(
X,α(Y, Z)

)
, ∀X,Y,Z∈h,

which means that B̃ is invariant in h. Therefore it is immediate that B̃ is an
odd-invariant scalar product on h as desired.

Since e ∈ g1̄ then [e, e] is not necessarily zero, and we can write

[e, e] = X0 + λ0e
∗,

where X0 ∈ g0̄ and λ0 ∈ K.

Claim 4.5. Then D is an odd skew-supersymmetric superderivation of (h, B̃)
such that

D(X0) = 0,

D2 =
1
2

[X0, .]h.

Moreover, (g, B) is the generalized odd double extension of (h, B̃) by the one-
dimensional Lie superalgebra (Ke)1̄ (by means of D, X0, and λ0).

Proof : We start by proving that D is an odd skew-supersymmetric superderiva-
tion of (h, B̃). It is immediate that D is a homogeneous linear map of degree
1̄. Using graded Jacobi identity

(−1)y[e, [X,Y ]] + (−1)x[X, [Y, e]] + (−1)xy[Y, [e,X]] = 0, ∀X∈hx,Y ∈hy
,

it comes that

D
(
[X,Y ]h

)
= [D(X), Y ]h + (−1)x[X, D(Y )]h, ∀X∈hx,Y ∈hy

, (4.12)

ψ
(
[X,Y ]h

)
= ϕ

(
D(X), Y

)
+ (−1)xϕ

(
X,D(Y )

)
, ∀X∈hx,Y ∈hy

.

¿From (4.12) we say that D ∈
(
Der(h)

)
1̄
. Using successively the invariance

of B, from

B([e,X], Y ) = −(−1)xB(X, [e, Y ]), ∀X∈hx,Y ∈h,
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we obtain

B̃
(
D(X), Y

)
= −(−1)xB̃

(
X,D(Y )

)
, ∀X∈hx,Y ∈h,

which means that D ∈
(
Dera(h, B̃)

)
1̄
. From

B([e,X], Y ) = B(e, [X, Y ]), ∀X,Y ∈h,

we infer that

ϕ(X, Y ) = B(D(X), Y ), ∀X,Y ∈h.

And, using

B([e,X], e) = −(−1)xB(X, [e, e]), ∀X∈hx
,

we conclude that

ψ(X) = −(−1)xB(X,X0), ∀X∈hx
.

¿From graded Jacobi identity [e, [e, e]] = 0 we have D(X0) = 0. Furthermore

(−1)x[e, [e,X]]− [e, [X, e]] + (−1)x[X, [e, e]] = 0, ∀X∈hx
,

leads to

D2(X) =
1
2

[X0, X]h, ∀X∈hx
,

which we extend by linearity to all h, completing the proof.

Example 4.6. The two-dimensional odd-quadratic Lie superalgebra N de-
fined in Remark 2.9 is a generalized odd double extension of {0} by the one-
dimensional Lie superalgebra (Ke)1̄.

To the inductive classification of odd-quadratic Lie superalgebras with re-
ductive even part, it is important to present a generalized odd double ex-
tension of the trivial odd double extension of a simple Lie algebra by the
one-dimensional Lie superalgebra (Ke)1̄ which it is not a direct sum of two
non-degenerate graded ideals. Let (g = s⊕P (s∗), B) be the trivial odd double
extension of a simple Lie algebra s. We seek for an odd skew-supersymmetric
superderivation of (g, B) such that

D(s) = {0},
D(P (s∗)) ⊆ s.



ODD-QUADRATIC LIE SUPERALGEBRAS 21

Suppose that there exists a superderivation D of g with the conditions men-
tioned above. Define a linear map φ : s −→ s by

φ(X) = D
(
κ(X, .)

)
, ∀X∈s,

where κ is the Killing form on the simple Lie algebra s. Considering the
s-modules s and P (s∗), since κ is invariant, we have

κ(X.Y, Z) =
(
X.κ(Y, .)

)
(Z), ∀X,Y,Z∈s,

or equivalently,

κ
(
[X,Y ], .

)
=

[
X, κ(Y, .)

]
, ∀X,Y ∈s.

As D is an odd superderivation on g and D(s) = {0}, we obtain

D
(
κ
(
[X,Y ], .

))
=

[
X,D

(
κ(Y, .)

)]
, ∀X,Y ∈s,

which means that

φ
(
[X,Y ]

)
=

[
X, φ(Y )

]
, ∀X,Y ∈s.

Invoking Schur’s Lemma, since φ is an even s-invariant linear map of s, we
conclude that there exists λ ∈ K such that φ(X) = λI(X), for all X ∈ s, or
equivalently,

D
(
κ(X, .)

)
= λX, ∀X∈s.

We can consider, for example, λ = 1. Define a linear map ψ : s −→ P (s∗) by

ψ(X) = κ(X, .), ∀X∈s.

Since s is a simple Lie algebra then the Killing form κ on s is non-degenerate
and ψ is bijective. We can make an identification of f ∈ P (s∗) and Xf ∈ s
by the relation f = κ(Xf , .), and define a superderivation in the following
auxiliary result

Lemma 4.7. Consider the trivial odd double extension (g = s⊕P (s∗), B) of
a simple Lie algebra s. Define a linear map D : g −→ g by

D(s) = {0},
D(f) = Xf , ∀f∈P (s∗),

where Xf ∈ s is determined by the relation f = κ(Xf , .). Then D is an odd
skew-supersymmetric superderivation on (g, B) such that it is not inner and
D2 = 0.
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Proof : It is immediate that D2 = 0. On the trivial odd double extension
g = s⊕ P (s∗) the multiplication is defined for homogeneous elements by

[X, Y ] = [X,Y ]s, ∀X,Y ∈s

[X, f ] = πs(X)(f), ∀X∈s,f∈P (s∗)

[f, h] = 0, ∀f,h∈P (s∗),

where πs : h −→ Hom(P (s∗)) is defined for homogeneous elements as follows

πs(Z)(f)(Y ) = −(−1)zδf([Z, Y ]), ∀f∈(P (s∗))δ,Z∈sz,Y ∈s,

and extended by linearity. We start by proving that D is an odd superderiva-
tion of g. From D(s) = {0} it is obvious that

D
(
[X,Y ]

)
=

[
D(X), Y

]
+

[
X,D(Y )

]
, ∀X,Y ∈s.

Let X ∈ s and f ∈ P (s∗). As the Killing form is s-invariant we obtain

[X, f ](Y ) = κ
(
[X, Xf ]

)
(Y ), ∀Y ∈s.

Since D(s) = {0}, we conclude that

D
(
[X, f ]

)
=

[
D(X), f

]
+

[
X,D(f)

]
, ∀X∈s,f∈P (s∗).

Finally, as the Killing form on s is invariant and D(P (s∗)) ⊆ s, we infer that[
D(f), h

]
(X) =

[
f, D(h)

]
(X), ∀X∈s,f,h∈P (s∗),

which yields that[
D(f), h

]− [
f,D(h)

]
= D

(
[f, h]

)
, ∀f,h∈P (s∗).

Now we ensure that the odd superderivation D is skew-supersymmetric on
(g, B). As D(s) = {0} we obtain

B
(
D(X), Y

)
= −B

(
X, D(Y )

)
, ∀X,Y ∈s.

Since D(s) = {0}, D(P (s∗)) ⊆ s, and B is odd it comes

B
(
D(X), f

)
= −B

(
X,D(f)

)
, ∀X∈s,f∈P (s∗).

By definition of the odd invariant scalar product on g, since the Killing form
is symmetric, and B is supersymmetric we infer that

B
(
D(f), h

)
= B

(
f,D(h)

)
, ∀f,h∈P (s∗).

Finally, we suppose that D is a inner derivation, meaning that, there exist
X ∈ s and f ∈ P (s∗) such that D = ad (X + f). From D(s) = {0}, we get

[X,Y ]− πs(Y )(f) = 0, ∀Y ∈s,
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then

[X,Y ] = 0 and πs(Y )(f) = 0, ∀Y ∈s.

As s is simple then z(s) = {0}. From [X,Y ] = 0, for every Y ∈ s, we
conclude that X = 0. On the other hand, since s is simple then [s, s] = s.
Due to f([Y, Z]) = 0, whenever Y, Z ∈ s, we state that f = 0. Therefore the
superderivation D is not inner and the proof is complete.

Proposition 4.8. Let (g = s⊕P (s∗), B) be the trivial odd double extension of
a simple Lie algebra s. Consider λ0 ∈ K and the odd derivation D : g −→ g
of g defined by

D(s) = {0},
D(f) = Xf , ∀f∈P (s∗),

where Xf is the element in s determined by the relation f = κ(Xf , .). In this
case, k = Ke ⊕ g ⊕ P (Ke∗) endowed with the even skew-symmetric bilinear
map [, ] : k× k −→ k given by

[e, e] = λ0e
∗,

[e, s] = {0},
[e, f ] = Xf , ∀f∈P (s∗),

[X, Y ] = [X, Y ]s, ∀X,Y ∈s,

[X, f ] = πs(X)(f), ∀X∈s,f∈P (s∗),

[f, g] = B(Xf , g)e∗, ∀f,g∈P (s∗),

[e∗, k] = {0},
and with the supersymmetric bilinear form B̃ : k× k −→ K defined by

B̃(s, s) = B̃(P (s∗), P (s∗)) = {0},
B̃ |s×P (s∗) = B,

B̃(e, e∗) = 1,

B̃(g, e) = B̃(g, e∗) = {0},
is the generalized odd double extension of (g = s ⊕ P (s∗), B) by the one-
dimensional Lie superalgebra (Ke)1̄ (by means of D, X0 = 0, and λ0). More-
over, z(k) = Ke∗ and k is B̃-irreducible.
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Proof : Applying Lemma 4.7, we infer that D is an odd skew-supersymmetric
superderivation on (g, B) such that D2 = 0. Therefore the conditions of
Theorem 4.2 are satisfied. Doing straightforward calculations we conclude
that (k = Ke ⊕ g ⊕ P (Ke∗), B̃) is the generalized odd double extension of
(g = s⊕P (s∗), B) by the one-dimensional Lie superalgebra (Ke)1̄ (by means
of D, X0 = 0, and λ0). Now let us show that z(k) = Ke∗. Let

X = x + f + λe + βe∗ ∈ z(k),

with x ∈ s, f ∈ P (s∗), and λ, β ∈ K. We have [X, y] = 0, for all y ∈ s,
meaning that [x, y]− πs(y)(f) = 0, for all y ∈ s, then

[x, y] = 0, ∀y∈s, (4.13)

f([y, z]) = 0, ∀y,z∈s. (4.14)

As s is simple, we have that z(s) = {0} and from (4.13) it comes that x = 0.
We also have [s, s] = s and using (4.14) we obtain that f = 0. Therefore
X = λe + βe∗ ∈ z(k). Moreover, from [X, h] = 0, for all h ∈ P (s∗), we have
that λXh = 0, for all h ∈ P (s∗). Since Xh 6= 0, for some h ∈ P (s∗), then
λ = 0. Consequently, z(k) ⊆ Ke∗. As [e∗, k] = {0} we infer that z(k) = Ke∗.
Finally, we prove that k is B̃-irreducible. Let us assume that k = k1 ⊕ k2,
where k1, k2 are ideals of k. Since B̃ |k1×k1 and B̃ |k2×k2 are non-degenerate we
have that (k1)0̄ 6= {0} and (k2)0̄ 6= {0}. From (k) = (k1)0̄ ⊕ (k2)0̄ = s ⊕ Ke∗,
we infer that (k1)0̄ = s and (k2)0̄ = Ke∗, or (k1)0̄ = Ke∗ and (k2)0̄ = s. We
suppose the former case (the second case is proved in a similar way). Since
k1 is an ideal, (k1)0̄ = s, and [k1, k2] = {0} then

[s, k] = [s, k1]⊕ [s, k2] ⊆ k1.

As s is simple then z(s) = {0} and [s, s] = s, by Lemma 3.9 we infer that
z(g) = {0} and so [g, g] = g. Since [s, s] = s and [P (s∗), P (s∗)] = {0}, from

g = [g, g] = [s, s] + [s, P (s∗)] + [P (s∗), P (s∗)],

it comes that [s, P (s∗)] = P (s∗). Due to (k1)0̄ = s and P (s∗) ⊆ (k)1̄ we get

P (s∗) = [s, P (s∗)] ⊆ (k1)1̄.

So s ⊕ P (s∗) ⊆ k1. Consequently dim k2 ≤ 2. Since k2 is odd-quadratic is
comes that dim k2 = 2. We write k2 = Ke∗ ⊕ KX, meaning that e∗, X are
linearly independent vectors. Let

X = x + f + λe + βe∗,
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with x ∈ s, f ∈ P (s∗), and λ, β ∈ K. In view of [k1, k2] = {0} and (k1)0̄ = s
we have that [X, y] = 0, for all y ∈ s, meaning that [x, y]s − πs(y)(f) = 0,
for all y ∈ s, then

[x, y]s = 0, ∀y∈s, (4.15)

f([y, z]) = 0, ∀y,z∈s. (4.16)

Again, as s is simple, from (4.15) we have that x = 0 and due to (4.16)
it comes that f = 0. Then X = λe + βe∗. Moreover, as k2 = Ke∗ ⊕ KX
and [k1, k2] = {0} we conclude that λ[e, h] = {0}, for all h ∈ P (s∗). Let
h ∈ P (s∗) \ {0} then [e, h] = Xh 6= 0 and λ = 0. Consequently X = βe∗,
contradicting the fact that e∗, X are linearly independent vectors. Therefore
k is B̃-irreducible as required.

Example 4.9. Consider the trivial odd double extension (g = sl (2) ⊕
P ( sl (2)∗), B) of the simple Lie algebra sl (2), where sl (2) is equipped with
its standard basis {h, e, f} and the dual basis {h∗, e∗, f ∗} (see Example 3.11).
It is easy to see that the Killing form on sl (2) is given in the elements of
the basis by

κ(h, h) = 2 κ(e, f) = κ(f, e) = 4,

and the rest are zero. Moreover, the odd skew-supersymmetric superderiva-
tion D on (g = sl (2) ⊕ P ( sl (2)∗), B) defined in Proposition 4.8 is deter-
mined by

D(h∗) = 1
2h D(e∗) = 1

4f D(f ∗) = 1
4e.

Consider the one-dimensional abelian Lie superalgebra (Ki)1̄ with even part
zero. From Proposition 4.8, the generalized odd double extension of (g =
sl (2) ⊕ P ( sl (2)∗), B) by the one-dimensional Lie superalgebra (Ki)1̄ (by

means of D, X0 = 0, and λ0 ∈ K) is an odd-quadratic Lie superalgebra (k =
Ki⊕ sl (2)⊕P ( sl (2)∗)⊕P (Ki∗), B̃) with even part generated by 〈i∗, h, e, f〉
and the odd part by 〈i, h∗, e∗, f ∗〉 equipped with the structures defined explicitly
as follows: the graded skew-symmetric multiplication is given for the elements
of the basis by

[h, e] = e [h, e∗] = −e∗ [h∗, h∗] = 1
2i
∗

[h, f ] = −f [h, f ∗] = f ∗ [h∗, i] = 1
2h

[e, f ] = 2h [e, h∗] = −2f ∗ [e∗, f ∗] = 1
4i
∗

[f, h∗] = 2e∗ [e∗, i] = −1
4f

[e, e∗] = −[f, f ∗] = h∗ [f ∗, i] = −1
4e,
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and the others are zero. Moreover, the non-zero values of the supersymmetric
bilinear form B̃ are

B̃(i∗, i) = B̃(h, h∗) = B̃(e, e∗) = B̃(f, f ∗) = 1.

5. Odd-quadratic Lie superalgebras with reductive even
part

This section analyses the particular case of odd-quadratic Lie superalgebras
such that the even part is a reductive Lie algebra. We will give examples of
this class of Lie superalgebras.

Examples 5.1.

(1) The superalgebra d(n)/KI2n (with n ≥ 3), isomorphic to the (f, d) al-
gebra of Gell-Mann, Michel, and Radicati, is the unique odd-quadratic
Lie superalgebra with even part reductive that is simple [11].

(2) The Lie superalgebra N of the Remark 2.9 (N is abelian).
(3) The trivial odd double extension g = s⊕P (s∗) of a simple Lie algebra

s. This Lie superalgebra is perfect, however since P (s∗) is an abelian
ideal, g is not semisimple.

(4) Examples constructed in Proposition 4.8.

Proposition 5.2. If (g = g0̄ ⊕ g1̄, B) is an odd-quadratic Lie superalgebra
then z(g0̄) = z(g) ∩ g0̄. Moreover, if g0̄ is a reductive Lie algebra, then
z(g0̄) = {0} if and only if z(g) = {0}.

Proof : It is clear that z(g) ∩ g0̄ ⊆ z(g0̄). Let us prove the opposite inclusion.
From invariance of B we get B([g1̄, z(g0̄)], g0̄) = {0}. On the other hand, since
B is odd we infer that B([g1̄, z(g0̄)], g1̄) = {0}. As B is non-degenerate we get
[g1̄, z(g0̄)] = {0}. Due to [g0̄, z(g0̄)] = {0} we infer that [g, z(g0̄)] = {0}, which
means that z(g0̄) ⊆ z(g), and so z(g0̄) ⊆ z(g)∩g0̄. Furthermore, consider that
g0̄ is a reductive Lie algebra. From the above if z(g) = {0} it is obvious that
z(g0̄) = {0}. Conversely, we assume that z(g0̄) = {0}. Since z(g)∩ g0̄ = z(g0̄)
we obtain z(g) ∩ g1̄ = z(g). Choose X ∈ z(g). As X ∈ g1̄ and B is odd it
follows that B(g1̄, X) = {0}. By assumption g0̄ is a reductive Lie algebra,
so we can have g0̄ = s⊕ z(g0̄), where s is the greatest semisimple ideal of g0̄.
Using invariance of B and as s = [s, s] we get that B(g0̄, X) = {0}. Since B
is non-degenerate we conclude that X = 0, and consequently z(g) = {0}.
Corollary 5.3. Let (g = g0̄ ⊕ g1̄, B) be a B-irreducible odd-quadratic Lie
superalgebra such that g0̄ is a reductive Lie algebra. Suppose that g is neither
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simple with dim g 6= 2 nor abelian of dimension 2. Then z(g) = z(g0̄) =
z(g) ∩ g0̄.

Proof : From Proposition 5.2 we have immediately that z(g0̄) = z(g)∩ g0̄ and
z(g0̄) ⊆ z(g). It remains to see that z(g) ⊆ z(g0̄). Let us suppose that there
exists a non-zero element X ∈ z(g) ∩ g1̄. Then I = KX is a graded ideal
of g. Since g0̄ is a reductive Lie algebra then g0̄ = s ⊕ z(g0̄), where s is the
greatest semisimple ideal of g0̄. As s is semisimple we have s = [s, s]. By
invariance of B, s = [s, s], and X ∈ z(g) we infer that B(X, s) = {0}. On
the other hand, as B is odd and X ∈ g1̄ we get that B(X, g1̄) = {0}. By
the non degeneracy of B we conclude that there exists Y ∈ z(g0̄) such that
B(X,Y ) 6= 0. Since z(g0̄) ⊆ z(g) then J = KX ⊕ KY is an abelian graded
ideal of g. As g is B-irreducible and B |J×J is non-degenerate then g = J .
By assumption dim g 6= 2, therefore we obtain a contradiction. We conclude
that z(g) ∩ g1̄ = {0} and consequently z(g) ⊆ z(g0̄) as required.

Corollary 5.4. Let (g = g0̄ ⊕ g1̄, B) be an odd-quadratic Lie superalgebra
such that g0̄ is a reductive Lie algebra. Then z(g) = z(g0̄) if and only if g
does not contain any proper non-degenerate abelian graded ideal of dimension
2.

Proof : To start we assume that g does not contain any proper non-degenerate
abelian graded ideal of dimension 2. By Proposition 2.12, g =

⊕n
k=1 gk, where

gk is a B-irreducible non-degenerate graded ideal of g, for all k ∈ {1, . . . , n}.
Then gk is not abelian of dimension 2, for all k ∈ {1, . . . , n}. We have to
consider two cases. If gk is simple, then z(gk) = {0}. While, if gk is not
simple, since gk is B-irreducible with (gk)0̄ reductive Lie algebra then, by
Corollary 5.3, we infer that z(gk) = z((gk)0̄). Therefore

z(g) = z(g1)⊕ . . .⊕ z(gn) = z(g0̄).

Suppose now that z(g) = z(g0̄). Let us assume that g contains a proper non-
degenerate abelian graded ideal I = I0̄ ⊕ I1̄ of dimenion 2. Then dim I0̄ =
dim I1̄ = 1 and I1̄ ⊆ z(I). As g = I ⊕ I⊥, we have

z(g) = z(I)⊕ z(I⊥).

Consequently z(g) * g0̄, which contradicts the hypothesis.

As we will show, it is remarkable that, for odd-quadratic Lie superalgebra
with even part a reductive Lie algebra, the action of the even part in the
odd part is completely reducible. Notice that in quadratic case the situation
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is very different. In fact, if (g = g0̄ ⊕ g1̄, B) is a quadratic Lie superalgebra
such that g0̄ is a reductive Lie algebra the action of g0̄ in g1̄ is not necessarily
completely reducible (see examples in [1]).

Lemma 5.5. Consider (g = g0̄ ⊕ g1̄, B) an odd-quadratic Lie superalgebra
such that g0̄ is a reductive Lie algebra. Then g1̄ is a g0̄-module completely
reducible.

Proof : We consider ρ : g0̄ −→ Hom(g1̄) the representation of g0̄ defined by
ρ(X) = [X, .] |g1̄

, for all X ∈ g0̄. According to Proposition 5.2, it is clear that
z(g0̄) ⊆ Kerρ. To show the other inclusion, we fix X ∈ Kerρ. By invariance
of B we get B([X, g0̄], g1̄) = {0}. On the other hand, as B is odd it leads
to B([X, g0̄], g0̄) = {0}. Since B is non-degenerate we infer that X ∈ z(g0̄).
Therefore we show that Kerρ = z(g0̄). By assumption g0̄ is a reductive Lie
algebra, so we ca have g0̄ = s⊕z(g0̄), where s is the greatest semisimple ideal
of g0̄. Consequently ρ |s: s −→ Hom(g1̄) is also a representation of s. As s
is semisimple, we invoke Weyl’s Theorem to conclude that ρ |s is completely
reducible, therefore g1̄ is a g0̄-module completely reducible.

Now we will characterize the minimal graded ideals of the B-irreducible
odd-quadratic Lie superalgebras such that the even part is a reductive Lie
algebra.

Proposition 5.6. Let (g = g0̄ ⊕ g1̄, B) be a non-simple B-irreducible odd-
quadratic Lie superalgebra such that g0̄ is a reductive Lie algebra. Then a
graded ideal I of g is minimal if and only if I ⊆ z(g) and dim I = 1 or I is
a non trivial irreducible s-submodule of g1̄ such that [g1̄, I] = {0}, where s is
the greatest semisimple ideal of g0̄.

Proof : Assume that I ⊆ z(g) and dim I = 1. It is obvious that I is a
minimal graded ideal of g. Now we suppose that I is a non trivial irreducible
s-submodule of g1̄. Let J be a graded ideal of g such that J ⊆ I. It follows
that [s, J ] ⊆ J , and so J is a s-submodule of I. Since I is an irreducible
s-submodule we have that J = {0} or J = I, consequently I is minimal.
Conversely, Let I be a minimal graded ideal of g. We know that I is isotropic,
hence [I, I] = {0}. So the ideal I is abelian. As I is graded we can write
I = I0̄ ⊕ I1̄, where I0̄ = I ∩ g0̄ and I1̄ = I ∩ g1̄, and so I0̄ is abelian. As
we are supposing that g0̄ is a reductive Lie algebra, we have g0̄ = s⊕ z(g0̄),
where s is the greatest semisimple ideal of g0̄. Therefore I0̄ = I ∩ z(g0̄), and
so applying Proposition 5.2 we have that I0̄ ⊆ z(g). We have to consider
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two cases. If I0̄ 6= {0}. Then I is minimal and I0̄ is a non zero graded ideal
of g contained in I, we conclude that I = I0̄. Consequently I ⊆ z(g) and
dim I = 1. If I0̄ = {0}, is clear that I = I ∩ g1̄ and [g1̄, I] = {0}. On the
other hand, using Proposition 5.2 we have [z(g0̄), I] = {0}. If [s, I] = {0} we
have I ⊆ z(g) and dim I = 1. While if [s, I] 6= {0}, it is elementary to prove
that [s, I] is a graded ideal of g. Indeed, [[s, I], g1̄] = {0}, [[s, I], s] ⊆ [s, I]
and [[s, I], z(g0̄)] = {0}. Then [s, I] is a non zero graded ideal of g contained
in I. Using minimality of I we conclude that [s, I] = I. Now according
to Lemma 5.5, g1̄ is a g0̄-module completely reducible. Since I0̄ = {0} and
[s, I] = I it follows that I is a s-submodule of g1̄. Finally, let us prove that
I is irreducible. We assume that there exists I ′ a S-submodule of I. Hence
[s, I ′] ⊆ I ′. In view of Proposition 5.2 we get [z(g0̄), I

′] = {0} and we also have
[g1̄, I

′] = {0}. Then I ′ is a graded ideal of g contained in I. From minimality
of I we have I ′ = {0} or I ′ = I, which guarantees the irreducibility of I.

The next auxiliary lemma will help us to prove the following proposition.

Lemma 5.7. Let (g = g0̄⊕g1̄, B) be a non-simple B-irreducible odd-quadratic
Lie superalgebra such that g0̄ is a semisimple Lie algebra. Suppose that I is
a non trivial irreducible g0̄-submodule of g1̄ such that [g1̄, I] = {0}. If we
denote s′ = g0̄ ∩ I⊥ then g0̄ = s′ ⊕ s, where s is a semisimple ideal of g0̄.
Moreover, [s, I] = I and dim I = dim s = dim [s, g1̄].

Proof : Set s′ = g0̄ ∩ I⊥ = {X ∈ g0̄ : B(X, I) = {0}}. Since B is invariant
and I a graded ideal of g we infer that s′ is a graded ideal of g0̄. Therefore
g0̄ = s′ ⊕ s, where s is a semisimple ideal of g0̄. Furthermore, since g0̄ is
semisimple so is s. Consequently I⊥ = s′ ⊕ g1̄. To proceed the Proof, we
define the linear map ϕ : [s, g1̄] −→ s∗ by ϕ(X) = B(X, .), for all X ∈ [s, g1̄].
Let us show that ϕ is injective. As B is odd we have B([s, g1̄], g1̄) = {0}.
From [s, s′] = {0} and invariance of B we obtain B([s, g1̄], s

′) = {0}. Since B
is non-degenerate we infer the injectivity of ϕ. Therefore dim [s, g1̄] ≤ dim s.
We also have that [s, I] = I. Indeed, since B is odd we get B([s′, I], g1̄) = {0}.
As s′ is an ideal of g0̄ and by the invariance of B we obtain B([s′, I], g0̄) =
{0}. Due to the non degeneracy of B we infer that [s′, I] = {0}. As I is
irreducible and [g0̄, I] is a non trivial g0̄-submodule of I then [g0̄, I] = I, and
so [s, I] = I. Consequently dim I ≤ dim[s, g1̄]. From g = I⊥ ⊕ s we get that
dim s = dim g− dim I⊥ = dim I, hence dim I = dim s = dim [s, g1̄].
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We will see that the B-irreducible odd-quadratic Lie superalgebras with
reductive even part, that it is neither zero nor simple, with the centre zero,
are precisely the trivial odd double extensions of a simple Lie algebra.

Proposition 5.8. Consider (g = g0̄ ⊕ g1̄, B) a B-irreducible odd-quadratic
Lie superalgebra such that g0̄ is a reductive Lie algebra, that it is neither zero
nor simple. Then the following assertions are equivalent:

(i) z(g) = {0};
(ii) z(g0̄) = {0};
(iii) g = s⊕ P (s∗), where s is a simple Lie algebra.

Proof : According to Proposition 5.2 we have that (i) is equivalent to (ii).
Now we suppose that (i) and (ii) are true. As z(g0̄) = {0} and we know that
g0̄ is a reductive Lie algebra it follows that g0̄ is a semisimple Lie algebra.
Applying Proposition 5.6 and due to z(g) = {0} there exists a minimal
graded ideal I of g such that it is a non trivial irreducible g0̄-submodule
of g1̄ and [g1̄, I] = {0}. Set s′ = {X ∈ g0̄ : B(X, I) = {0}}. By Lemma
5.7, g0̄ = s′ ⊕ s, where s is a semi-simple ideal of g0̄. Invoking Weyl ’s
Theorem we show that g1̄ is a s-module completely reducible. We know that
[s, I] = I then I is a s-submodule of g1̄. Therefore g1̄ = I ⊕ M , where
M is a s-submodule of g1̄. We also have that M = M s ⊕ [s,M ], where
M s = {X ∈ M : [s,X] = {0}}. Using Lemma 5.7 and [s, g1̄] = [s, I]⊕ [s,M ]
we obtain that dim [s,M ] = dim [s, g1̄]− dim I = 0. Therefore g1̄ = I ⊕M s,
and so

g = g0̄ ⊕ I ⊕M s = (s⊕ I)⊕ (s′ ⊕M s). (5.17)

Our next aim is to prove that s⊕ I is a non-degenerate graded ideal of g. As
s is semisimple, [s′, I] = {0}, and [s, I] = I we obtain [g0̄, s⊕ I] = s⊕ I. On
the other hand, [g1̄, s⊕ I] = [I ⊕M s, s⊕ I] ⊆ I. Then s⊕ I is a graded ideal
of g. We also have that s⊕I is non-degenerate. In fact, since s is semisimple,
[s, I] = I and by invariance of B we obtain that B(s ⊕ I, s′ ⊕ M s) = {0}.
Due to non degeneracy of B we conclude that s⊕ I is non-degenerate. From
(5.17) we get that s ⊕ I is a non trivial non-degenerate graded ideal of g.
Since g is B-irreducible we infer that g = s⊕ I. Now it is clear that I = I⊥,
and so I is a maximal ideal of g. Since s ' g/I with I maximal ideal of g
then s is semisimple. Invoking Theorem 3.6 we conclude that (g, B) is an
odd double extension of I/I⊥ = {0} by s, which means that g = s⊕ P (s∗),
where s is a simple Lie algebra as desired.
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6. Inductive classification of odd-quadratic Lie superal-
gebras with reductive even part

We are now ready to formalize our must important result about odd-
quadratic Lie superalgebras, namely an inductive classification of odd-quadratic
Lie superalgebras such that the even part is a reductive Lie algebra. Let V
be the set consisting by {0} and the simple Lie superalgebras d(n)/KI2n

(n ≥ 3).

Theorem 6.1. Let (g = g0̄ ⊕ g1̄, B) be an odd-quadratic Lie superalgebra
such that g0̄ is a reductive Lie algebra. Then either g is an element of V,
and/or g is obtained by a sequence of generalized odd double extensions by
the one-dimensional Lie superalgebra, and/or by trivial odd double extensions
of simple Lie algebra, and/or by orthogonal direct sums of odd-quadratic Lie
superalgebras from a finite number of element of V.

Proof : We proceed by induction on the even dimension of g. If dim g = 0
then g = {0} ∈ U. If dim g = 2 by Remark 2.9, either g is the abelian
two-dimensional odd-quadratic Lie superalgebra which is a generalized odd
double extension of {0} by the one-dimensional Lie superalgebra (Ke)1̄ (by
means of (0, 0)) or the two-dimensional odd-quadratic Lie superalgebra N
which is a generalized odd double extension of {0} by the one-dimensional
Lie superalgebra (Ke)1̄. Suppose that the theorem is true for dim g < n, with
n ≥ 4. We consider dim g = n. We have to analyse two cases.

First case: Suppose that g is B-irreducible. If z(g) = {0} we apply Propo-
sition 5.8 to infer that g is a trivial odd double extension of simple Lie
algebras, so an element of V. If z(g) 6= {0}, by Corollary 5.3 we infer that
z(g) ∩ g0̄ 6= {0}. Applying Proposition 4.3 we get that g is a generalized
odd double extension of an odd-quadratic Lie superalgebra h by the one-
dimensional Lie superalgebra. In this case, dim h = dim g − 2 < n, and
applying the induction hypothesis to h we infer the theorem for g.

Second case: Now we assume that g is not B-irreducible. In view of Propo-
sition 2.12, g =

⊕m
k=1 gk, where {gk|1 ≤ k ≤ m} is a set of B-irreducible

graded ideals of g such that B(gk, gk′) = {0}, for all k, k′ ∈ {1, . . . , m} and
k 6= k′, and (gk)0̄ is a reductive Lie algebra, whenever k ∈ {1, . . . , m}. We
apply the result to gk, for all k ∈ {1, . . . , m}.
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7. Incompatibility of quadratic and odd-quadratic struc-
tures

It is fairly known the following fact for classical Lie superalgebras (we recall
that by a classical Lie superalgebra we mean a simple Lie superalgebra such
that the even part is a reductive Lie algebra)[11]

Proposition 7.1. The invariant bilinear forms on a classical Lie superalge-
bra are either all even or else all odd.

Our next goal is the generalization of this result, in the sense that our Lie
superalgebras are not necessarily simple. First, we will prove the auxiliary
lemma.

Lemma 7.2. Let h be a Lie algebra not abelian. Then the trivial odd double
extension of h is not quadratic.

Proof : Set the Lie superalgebra g = h⊕P (h∗). Since h is a Lie algebra then
g = g0̄ ⊕ g1̄, where g0̄ = h and g1̄ = P (h∗). As g is the trivial odd double
extension of h then P (h∗) is an ideal of g such that [P (h∗), P (h∗)] = {0}.
In terms of the odd part of g, this means that g1̄ is an ideal of g such that
[g1̄, g1̄] = {0}. Let us suppose that there exists a bilinear form B on g that
is an invariant scalar product on g. Since B is even and non-degenerate then
B restricted to g1̄ × g1̄ is non-degenerate and so g1̄ is a B non-degenerate
ideal of g. It follows that g = g1̄ ⊕ g⊥̄1 , where g⊥̄1 is the orthogonal of g1̄

with respect to B. Since B is even then g0̄ ⊆ g⊥̄1 , therefore g0̄ = g⊥̄1 and so
[g0̄, g1̄] = {0}. Which means that

[X, f ] = 0, ∀X∈h,f∈(P (h∗)).

Using the expression of multiplication on the trivial odd double extension of
h, we obtain

f([X, Y ]) = 0, ∀X∈h,Y ∈h,f∈(P (h∗)),

and so

[X,Y ] = 0, ∀X∈hx,Y ∈h.

So h is abelian, which is not true by assumption. Therefore the Lie superal-
gebra g is not quadratic as required.

We will prove that, with certain conditions, a quadratic Lie superalgebra
g = g0̄ ⊕ g1̄ with reductive Lie algebra g0̄ does not admit an odd-invariant
scalar product, and vice-versa.
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Proposition 7.3. Let (g = g0̄ ⊕ g1̄, B) be a quadratic (respectively, odd-
quadratic) Lie superalgebra such that g0̄ is a reductive Lie algebra. If [g, g] = g
(i.e. g is perfect) then there is not any odd-invariant (respectively, invariant)
scalar product on g.

Proof : Let (g = g0̄ ⊕ g1̄, B) be a quadratic Lie superalgebra such that g0̄

is a reductive Lie algebra. Let us assume that (g, B′) is an odd-quadratic
Lie superalgebra. By Proposition 2.12, g =

⊕n
k=1 gk, where gk is a B′-

irreducible B′-non-degenerate graded ideal of g, for all k ∈ {1, . . . , n}. Since
g0̄ is a reductive Lie algebra then (gk)0̄ is a reductive Lie algebra, and so
(gk)0̄ = sk ⊕ z((gk)0̄), where sk is the greatest semisimple ideal of (gk)0̄. As
[gk, gk] = gk and [gk, g

′
k] = {0} if k 6= k′ then B(gk, g

′
k) = {0}, for all distinct

elements k, k′ ∈ {1, . . . , n}. Consequently,if k ∈ {1, . . . , n} then gk is B-non-
degenerate. On the other hand, if gk is simple, since (gk)0̄ is a reductive Lie
algebra and gk is B′-non-degenerate, then gk is not quadratic, which is false.
Further, if gk is not simple, since [g, g] = g then z(g) = {0}. From

z(g) = z(g1)⊕ . . .⊕ z(gn)

we infer that z(gk) = {0}. By Proposition 5.8, since gk is B′-irreducible,
(gk)0̄ is a reductive Lie algebra, and z(gk) = {0}, then gk = sk ⊕ (P (s∗k)),
where sk is a simple Lie algebra. So sk is non-abelian. Applying Lemma 7.2,
gk is not quadratic, which is false. Moreover, if (g, B) is an odd-quadratic
Lie superalgebra, in a similar way we prove that there is not any invariant
scalar product on g.

Proposition 7.4. Let (g = g0̄ ⊕ g1̄, B
′) be an odd-quadratic (respectively,

quadratic) Lie superalgebra such that g0̄ is a reductive Lie algebra. If g does
not contain any proper non-degenerate abelian graded ideal of dimension 2
then there is not any invariant (respectively, odd-invariant) scalar product on
g.

Proof : Let (g = g0̄ ⊕ g1̄, B
′) be an odd-quadratic Lie superalgebra such that

g0̄ is a reductive Lie algebra. Let us assume that (g, B) is a quadratic Lie
superalgebra. Since g0̄ is a reductive Lie algebra then g0̄ = s⊕ z(g0̄), where
s is the greatest semisimple ideal of g0̄. As z(g0̄) is a B-non-degenerate ideal
of g then

g =
[
z(g0̄)

]⊥B

⊕ z(g0̄).
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Denote J =
[
z(g0̄)

]⊥B

= s ⊕ g1̄. Applying Corollary 5.4 we infer that

z(g) = z(g0̄). Then [J, z(g0̄)] = {0} and z(g) = z(g0̄) imply that z(J) = {0}.
Therefore [J, J ] = J , because J is B-non-degenerate ideal of g. From
z(g) = z(g0̄) and [J, J ] = J it comes that B′(J, z(g0̄)) = {0}. Since B′ is odd
then B′(z(g0̄), z(g0̄)) = {0}, therefore B′(g, z(g0̄)) = {0}. Now, by B′-non-
degeneracy we infer that z(g0̄) = {0}, in conclusion z(g) = {0}. By Propo-
sition 2.12, g =

⊕n
k=1 gk, where gk is a B′-irreducible B′-non-degenerate

graded ideal of g, for all k ∈ {1, . . . , n}. Since g0̄ is a reductive Lie algebra
then (gk)0̄ is a reductive Lie algebra, for all k ∈ {1, . . . , n}. Moreover, from
z(g) = {0} and

z(g) = z(g1)⊕ . . .⊕ z(gn)

we infer that z(gk) = {0}, and so [gk, gk] = gk, for all k ∈ {1, . . . , n}. Conse-
quently, B(gk, gk′) = {0}, for all distinct elements k, k′ ∈ {1, . . . , n}, and so
B |gk×gk

is non-degenerate, for k ∈ {1, . . . , n}. This contradicts, by Proposi-
tion 7.3, the fact that B′ |gk×gk

is non-degenerate, for k ∈ {1, . . . , n}. Finally,
if (g, B) is a quadratic Lie superalgebra, similarly we prove that there is not
any odd-invariant scalar product on g, and the Proof is complete.

Remark 7.5. Notice that there are Lie superalgebras with reductive even part
that admit simultaneously a quadratic and an odd-quadratic structures. For
example, let us consider the abelian Lie superalgebra g = g0̄ ⊕ g1̄, where
g0̄ = 〈X,Z〉 and g1̄ = 〈Y, T 〉. Then the supersymmetric bilinear form B :
g×g −→ K such that the non-zeros values are B(X, Z) = B(Y, T ) = 1, is an
invariant scalar product on g. On the other hand, the symmetric bilinear form
B′ : g×g −→ K such that the non-zeros values are B′(X, Y ) = B′(Z, T ) = 1,
is an odd-invariant scalar product on g. So, to generalize the Proposition 7.1
for Lie superalgebras with reductive Lie algebra not necessarily simple, we
have to impose always certain conditions to the superalgebra.
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Säıd Benayadi
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