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A LOGIC OF IMPLICATIONS IN ALGEBRA AND
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ABSTRACT: Implications in a category can be presented as epimorphisms: an ob-
ject satisfies the implication iff it is injective w.r.t. that epimorphism. G. Rocu
formulated a logic for deriving an implication from other implications. We present
two versions of implicational logics: a general one and a finitary one (for epimor-
phisms with finitely presentable domains and codomains). In categories Alg ¥ of
algebras on a given signature our logic specializes to the implicational logic of R.
Quackenbush. In categories Coalg H of coalgebras for a given accessible endofunctor
H of sets we derive a logic for implications in the sense of P. Gumm.

1. Introduction

It has been observed by Bernard Banaschewski and Horst Herrlich [8] that
implications in universal algebra are nothing else than injectivity w.r.t. reg-
ular epimorphisms e in the category. Recall that an object A is injective
w.r.t. e iff hom(A, —) turns e into an isomorphism. Later Grigore Rogu [21]
presented a logic of injectivity (= orthogonality ) w.r.t. epimorphisms in a
category: the aim is to characterize, for a class £ of epimorphisms, all injec-
tivity consequences, i.e., all epimorphisms e such that an object is e-injective
whenever it is f-injective for every f € £.

In the present paper we formulate

(a) a deduction system for injectivity consequences
and

(b) the finitary variation where, as one does in universal algebra, only
epimorphisms whose domains and codomains are finitely presentable
are considered.
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Both are just minor variations of the deduction system of [21]. We prove
that in every cocomplete and cowellpowered category our deduction systems
are sound and complete. Both proofs are easy, and follow from results on
injectivity classes presented in [18] and [23]. We then apply our deduction
system to the category AlgY of algebras of a signature X: if X is finitary,
the obtained logic of implications is that formulated by Robert Quackenbush
[20], the infinitary variation is completely analogous. We also apply our de-
duction system to Coalg H, the category of coalgebras for an endofunctor
H of Set. Assuming that H is k-accessible (i.e., preserves k-filtered colim-
its), covarieties of coalgebras can be presented by subsets of C'(k), a cofree
coalgebra on k colors, see [22]. The satisfaction of an implication

M=N  for N — M C(k)

by a given coalgebra A then means that for any coloring f : A — k by k
colors, the corrresponding homomorphism f* : A — C(k) fulfils

fIA]C M implies  ff[A] C N.

We formulate a deduction system for such implications which is sound and
complete.

Acknowledges Discussions with Michel Hébert improved the presentation
of our paper.

2. Logic of Injectivity
2.1. Definition An epimorphism e : P — () is said to be an injectivity

consequence of a set {e;};er of epimorphisms provided that every object A
injective w.r.t. e; for all 7 € [ is also injective w.r.t. e. Notation:

{ei}ief ): €
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2.2. Injectivity Deduction System consists of one axiom

IDENTITY

id 4
and the following four deduction rules:

/

e, e . . : :
COMPOSITION e”ie if the codomain of e is the domain of ¢’
/-, e
CANCELLATION
LoC

€
PUSHOUT —— for every pushout fi \Lg

‘ S

¢i(i € 1) . .
COINTERSECTION —————— for every cointersection e

e
ofe;: P— Q; (i €1)

2.3. Notation Let £ be a class of epimorphisms of a category A. We use

Ete
to denote the fact that e can be proved from & by using the Injectivity
Deduction System. That is, there exists a list e, e, - - - , €, of morphisms for

some cardinal n such that e, = e and, for every i < n, e; is in &£ or e; is
the conclusion of one of the above rules such that the assumptions are of the
form e; for j <.

2.4. Lemma The deduction system 2.2 is sound, i.e., £ - e implies € = e.
Proof (1) IDENTITY, COMPOSITION and CANCELLATION are obvious.

(2) pusHOUT: Let X be e-injective and let f be an arbitrary morphism
from the domain of ¢’ to X
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X

The e-injectivity of X yields g with ge = fu, and the universal property
yields h with f = he'.
(3) The proof of COINTERSECTION is analogous. O

2.5. Theorem In every cocomplete cowellpowered category the deduction sys-
tem 2.2 is complete: for any set £ of epimorphisms £ |= e implies € F e.

Proof We denote by € the class of all morphisms provable from £. Given
an injectivity consequence e : P — @ of £, we prove e € €. Let f: P —
R be the cointersection of all members of £ with domain P, then f € &£
by COINTERSECTION. From 2.5 in [23], f is a reflection of P in the full
subcategory of A of all £-injective objects. Thus, f = g-e for some g : ) — R,
then CANCELLATION implies e € €. O

2.6. Remark We now turn to the finitary logic. Recall that an object A
is finitely presentable if the hom-functor hom(A, —) preserves filtered col-
imits. In the finitary logic we work with epimorphisms e : P — () which
are finitary by which we mean that P and () are both finitely presentable.
Example: as proved in [8] in universal algebra implications represented by
regular epimorphisms precisely correspond to satisfaction of the formulas of
the form

Nei=e) = \(fi = 1)

1€l jed
(where e; = e; and f; = f} are equations). And implications represented
by finitary regular epimorphisms precisely correspond to the satisfaction of
the first-order formulas as above, in other words, to the case where I and J
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are finite sets. Observe that the formula is then equivalent to finitely many
formulas /\(ei =)= (f=f).
el

We are Zgoing to formulate a finitary logic for deriving injective w.r.t. fini-
tary morphisms. This is a variation of the logic presented by G. Rosu: the
rules, and also the assumptions for proving the completeness, are slightly
different. We use ideas of the classical work [11] of Gabriel and Zisman on
the calculus of fractions, as exploited by Hébert, Adamek and Rosicky in
[18]. We start by recalling that concept.

2.7. Definition A class £ of morphisms in a category A is said to admit a
left calculus of fractions provided that

(i) £ contains all identity morphisms,
(ii) & is closed under composition,

(iii) for every span
4 f
ec
/ \
B C

there exists a commutative square
A
</ N\
B C
f\« ;/e’eé
D

and

(iv) given parallel morphisms hy, hy : B — C in A such that hie = hoe
for some morphism e € £ then there exists ¢’ € £ with €'h; = € ho.

2.8. Remark (a) In particular, whenever a category has pushouts, every
class £ of epimorphisms containing all identity morphisms and closed under
composition and pushout admits a left calculus of fractions.

(b) If £ is a class of epimorphisms, the condition (iv) can be omitted: from
hie = hoe we conclude hy = hs.

2.9. Notation Given a category A, we denote by Ay, a full subcategory
representing up to isomorphism all finitely presentable objects.
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2.10. Proposition (see [18]) Let A be a cowellpowered category with colimits,
and let € be a class of epimorphisms of Ay, admitting a left calculus of
fractions in Ag,. Then every finitely presentable object A in A has an E-
injective reflectionrs : A — A* obtained by a filtered colimit of all morphisms
e:A— X of & with X € Ay,.

More detailed: let A | £ be the full subcategory of the comma category
A | Ay, (of all morphisms with domain A and codomain in Ay,) formed by
members of £. Then the diagram

Dy:A|lE—Ae— X

is filtered, and if A* is the colimit of D4 with the colimit cone e* : X — A*
(fore: A — X in A | &) then ry = id’ is the reflection of A in the full
subcategory of A of all £-injective objects. This means that A* is £-injective,
and given a morphism f : A — B such that B is £-injective, then f factorizes
through 4. This was proved in [18] assuming that A is a finitely accessible
category. But finite accessibility was only used to make the diagram D4
essentially small. Since in the present paper &£ is a class of epimorphisms,
this follows from A being cowellpowered.

2.11. Remark The above proposition implies that for finitary epimorphisms
the deduction system 2.2 minus the last (nonfinitary) deduction rule COIN-
TERSECTION gives a sound and complete logic:

2.12. Definition The Finitary Injectivity Deduction System is the deduction
system of
IDENTITY, COMPOSITION, CANCELLATION and PUSHOUT in 2.2.

2.13. Finitary Completeness Theorem In every cocomplete cowellpow-
ered category the Finitary Injectivity Deduction System is complete for sets £
of finitary epimorphisms: whenever a finitary epimorphism e is an injectivity
consequence of £, then e has a (finite) proof from .

Proof Let £ denote the set of all epimorphims e in Ay, such that e has a
finite proof from £. Clearly £ contains all identity morphisms and is closed
under composition and pushout. By 2.8(a), & satisfies the calculus of frac-
tions. By 2.4, E-injectivity implies £ -injectivity.

Given a logical consequence ey : A — B of £ in Ay, let r4 : A — A* be the
E-injective reflection of 2.10. Since A* is eg-injective, we have a morphism f
with rq4 = f - €.
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Since B is finitely presentable, hom(B,—) preserves the filtered colimit
A* = ColimD . Thus, f factorizes as f = e* - f’, for some colimit morphism
e*: X — A* of Dy:

A-—2-B

|l

XA

The diagram D4 is filtered and the colimit morphism e* : X — A* merges
the pair e, f' - eg : A — X. Since A is finitely presentable, this implies the
existence of an object of A | £ (i.e., a morphism d : A — Y in £) and a
morphism ¢g : X — Y such that g-e = d and g also merges the above pair.
Hence g - f' - ey = d, and then

E + d implies E F ¢,

by CANCELLATION. O

2.14. Remark (i) Our assumptions differ from those used by G. Rosu in [21]
for his completeness theorem: he only required the morphism ey : A — B
to be finitely presentable as an object of the comma category A | A, which
is strictly weaker than our assumption that ey and all morphisms of £ have
finitely presentable domains and codomains. However G. Rosu assumed that
the domains of his epimorphisms are projective, which is a strong assumption
that our intended application (to quasivarieties) does not fulfill. Furthermore,
instead of composition in 2.8 G. Rosu uses “union” stating that a pushout of
two morphisms derived from £ is derived from £. This follows clearly from
Pushout and Composition in 2.2. On the other hand, our formulation of the
pushout rule is somewhat more restrictive than that used by G. Rosu : in
applications of the above rule Pushout, e is any morphism derived from &,
whereas Rosu’s rule works with e € £.

(ii) Every cowellpowered category with colimits has a factorization system
(epi, strong mono), see [3]. Theorem 2.13 can be generalized to any co-
complete and E-cowellpowered category with a factorization system (E, M),
which is the approach taken in [21].

2.15. Example Here we demonstrate that in Completeness Theorem 2.13
we cannot weaken the assumptions that the domains and codomains of mor-
phisms £ U {ep} be finitely presentable to the assumption, used in [21], that
these morphisms are finitely presentable. Recall from [17] that a morphism
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f P — @ is finitely presentable if it is finitely presentable as an object of
the slice category P | A.

In fact, in the category Alg(X), where ¥ consists of nullary symbols a,,n €
N, we exhibit finitely presentable epimorphisms £ U {e} with

EEebut EFe.

A Y-algebra A is finitely presentable iff

(i) all but finitely many elements of A have the form a’

and
(ii) there are only finitely many pairs m # n with a/ # a?.

, for some n € N

An epimorphism h : A — B in Alg(X) is finitely presentable iff there are
only finitely many pairs m,n with a? # a2 and o = aP.

Denote by 1 the terminal ¥-algebra, by I = {ag, a1, as,- -} the initial X-
algebra and by C' the algebra C' = {0, 1} having a§ = 0 and ¢;© = 1 for all
1> 1.

Let

ep:C — 1

be the trivial epimorphism and for every k > 1 define the quotient
6k21—>[k:[/~k

of I modulo the least congruence ~ with a; congruent to ag.q.

For

E = {60,61,62,"'}

an algebra is £-injective iff all constants of ¥ in it are equal. Thus if

e:l -1/~

denotes the quotient modulo the least congruence with ay ~ a;, we have that

EEe.

We will prove that £ ¥ e by finding a set £ of epimorphisms with
{ids|A € Alg(X)}UECE but egé&

which is closed under pushout, composition and left cancellation. This proves
that £ contains all consequences of &, thus £ ¥ e.
Let & be the set of all epimorphisms ¢ : B — B’ such that

(1) g is a finitely presentable morphism,
(2) if g(z) = g(2') and z # 2’ then x = af and 2" = af for some 4, j, and
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(3) if B is finitely presentable and af # af for all j > 1, then aff # af/

for all j > 1.

It is clear that £ contains {id4|A € Alg(X)} U £ but it does not contain e
(since e does not fulfil (3)).

a. £ is closed under pushout. In fact, let

B—1-p

g

D—1D

be a pushout with g € £. It is easy to see that, since g is finitely
presentable, so is f. Thus it remains to verify (2) and (3). By the
description of pushouts (in Set, hence in Alg(X)) f merges a pair of
elements x # 2’ of D iff there exist the following zig-zag of elements
T =m0, ,Tpe1 =« of D and elements yg, -+ , Y241 of B

Yo Y1 Yo Yon—1 Yon Yon+1

SN T

b.

such that zp = h(ya_1) = h(yax) for & = 1,...,n, and g(yax) =
9(Yor+1), with yor # yorqr, for all k =0,--- | n.

To prove (2), let f(z) = f(2') with x # 2’ and let us choose a zig-zag
as above. Since g fulfils (2), the equality g(yo) = g(y1) implies yo = aP
for some i, thus 2 = h(y) = a”. Analogously with 2.

To prove (3), we assume that there exists a k > 1 with al” = a’, but
ab # ajD , for all 5 > 1, then we verify that D is not finitely presentable.
We have af # af , for all j > 1, and we will prove that af" = a for
some [ > 1: it then follows that B is not finitely presentable, since ¢
fulfils (3). Consequently, there exist infinitely many pairs (u,v) with

aP = aP but u # v. For each such pair we have a? = o, thus D is

(A U
not finitely presentable.
£ is closed under composition. In fact, given two composable mor-

phisms
B-'-p - pr

in £ it is easy to see that ¢’ - g is finitely presentable. It fulfils (2)
because, given ¢'(g(z)) = ¢'(g(2')) and = # ', then either g(x) =
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g(z") and we apply (2) to g, or g( ) # g(«’) and then (2) applied to
g vields g(z) = a? and g(2') = a , and then, again, we apply (2) to
g. Finally, ¢’ - ¢ fulfils (3): assume

af" = aP" for some k, but af # a for all 7 > 1.

If af = af for some I > 1, then B is not finitely presentable due
to (3) applied to g. If af 7é a? for all [ > 1 then B’ is not finitely
presentable, due to (3) applied to ¢’. The latter implies again that
B is not finitely presentable: recall that g : B — B’ is a finitely
presentable morphism, thus, B is a finitely presentable object iff B’ is
one.

c. £ is closed under left cancellation. Given

Bt L g
with ¢’ - g in &, then g clearly fulfils (1) and (2). It fulfils (3) because
g - g does.

3. Implications in Algebra

3.1. Assumption X denotes a finitary, one-sorted signature. We assume
a fixed countable set V' of variables. A free Y-algebra on a set W C V
is denoted by ¢(W). We are going to show that the Finitary Deduction
System 2.12 is equivalent to the logic of implications presented by Robert
Quackenbush [20].

Recall that an equation is a pair of elements of ¢(V'), notation: © = v. An
implication is a formal expression

P=u=v
where P is a finite set of equations.

3.2. Remark (a) f P = {s1 =t1,...,s, =t,} and {x1,..., 21} is the set of
all variables which appear in the implication, then the implication

=(P=u=v)

is a shorthand for the first-order formula

(V.Il Vl‘k (/\Slt )) .
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Thus a Y-algebra A satisfies I iff for every interpretation of variables, i.e.,
every homomorphism f : ¢(W) — A, where W contains the variables
x1,...,T, we have:

f(s;) = f(t;) fori =1,...,n implies f(u) = f(v).

(b) Below we work with a (non specified) finite set W C V of variables. Since
we always deal with finitely many implications at a time, some set W like
that is always sufficient.

3.3. Notation Given an implication
I=(P=u=vw),

we denote by ~p the congruence on ¢(W) generated by the equations in P
with the corresponding quotient map

gp : 9(W) — o(W)/ ~p .

And we denote by ~; the congruence on ¢(W) generated by the equations
in P U {u = v} with the corresponding quotient map

q: p(W) — W)/ ~1 .
We obtain a quotient map
er: p(W)/ ~p— d(W)/ ~;
such that the triangle

(W)
/ ~p o(W

(W) o )/ ~r

commutes.

3.4. Notation A substitution is a function assigning to every variable a term
or, equivalently, a homomorphism o : ¢(W) — ¢(W). We write u” instead of
o(u), for every equation u = v we denote by (u = v)? the equation u’ = v7,
and we use the notation P? = {e? : e € P}.

3.5. Remark It has been first observed by B. Banaschewski and H. Herrlich
[8] that a X-algebra satisfies an implication [ iff it is injective w.r.t. the
regular epimorphism e;. And conversely: for every regular epimorphism e in
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Alg Y whose domain and codomain are finitely presentable, e-injectivity can
be expressed by a finite family of implications.

3.6. Deduction System for Implications The deduction system of [20]
consists of two axioms

Aziom 1: P J— if P contains u = v

Axiom 2:

P=u=u
and the following deduction rules

Symmetry: P=u=v
P=v=u

Transitivity: P =>u=v,P=>v=w

P=u=w
Congruence: P=u=v,..., P=u,=uv,
S P = flur, . un) = f(or, e, 0n)
for all n-ary symbols f in 3.
: P=u=v
Invariance: ~ ~ ~
P =u’ =wv
for all substitutions o.
Cut: P=s=t(i=1,...,n), {si=t},=>u=v

P=u=v

In all these axioms and rules u, v and w, with additional indices and
primes, denote arbitrary terms in ¢(V') and P denotes an arbitrary finite set
of equations.

3.7. Remark This deduction system extends naturally Birkhoft’s equational
logic (consisting of Axiom 2 and the first four deduction rules with P = ).
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3.8. Notation For a given set E of implications and an implication I, we
write

EEI

if I is a logical consequence of F, i.e., whenever an algebra satisfies all im-
plications in F, then it satisfies I. And we write

Er1T
if there exists a finite proof of I from £ using the Deduction System 3.6.

3.9. Lemma If P is a finite set of equations in ¢(W) then for every pair
u ~p v of congruent terms we have a proof of P = u = v. Shortly
(P = u =v) whenever u ~p v.

The proof is easy.

3.10. Lemma Given homomorphisms

W)/ ~p —=6(W)/ ~pug

|

¢(W)/ ~p

for some finite sets P, Q and P’ of equations, where e is the canonical quotient
morphism, there exists a substitution o with

~

P included in ~pr

such that the canonical quotient homomorphism e’ : ¢(W)/ ~pr— (W) /[ ~piupeuge
forms a pushout of e along f:

S(W)/ ~p ——=d(W)/ ~pug

| i

W)/ ~pr —= ¢(W)/ ~pipougr

~

Proof For the given homomorphism

froW)/) ~p— o(W)/ ~p
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find a substitution ¢ such that the square

(W) —Z p(W)/ ~p

| |

OW) —5, o(W)/ ~p

qp!

commutes. (To do so, choose a function ¢ splitting g, i.e., gp - @ = id. The
morphism

W " 9(W) —2 W)/ ~vp —= §(W)/ ~pr = S(W)

has a unique extension to a substitution, i.e., a homomorphism o : ¢(W) —
®(W) such that o -n =i f-qp-n. Composed with gp this yields (gp: -
o)-n = (f-qp)-n, thus the square above commutes due to the universal
property of n.) Observe that a pushout of the quotient map e : p(W)/ ~p—
d(W)/ ~pug along f is a quotient map q : ¢(W)/ ~p— ¢(W)/ ~, where
~ is the smallest congruence containing P’ and such that ¢-f : p(W)/ ~p—
»(W)/ = factorizes through e. The latter condition is equivalent to saying

that given t, s € (W) with e-gp(t) = e-gp(s) then q- f-qgp(t) = q- - gp(s).
Now e - gp is the quotient map of ~pyo and q- f - gp = q- gp' - 0 Where q - gpr
is the quotient map of ~. Thus, the latter condition states that

t ~pug s implies t7 ~ 5.
In other words, ~ is the smallest congruence containing
P UPTUQ°.
Thus, a pushout of e and f has the form
$(W)/ ~p —= W)/ ~pug

fl lg

¢(W)/ ~Pp i’,Qb(W)/ ~NPuUPeUQe

where ¢’ is the canonical quotient morphism.
Moreover P is included in ~p because ¢qpr - 0 = f - g¢p implies that

given u = v in P then u’ ~p v°. O

3.11. Remark It is well known that the finitely presentable objects of Alg X
are precisely those isomorphic to the quotient algebras ¢(W)/ ~p where
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W C V is a finite set of variables and P a finite set of equations in ¢(W).
And it is easy to verify that, analogously, the epimorphisms between finitely
presentable objects are precisely those isomorphic (in the arrow-category)
to the canonical quotient maps e : ¢(W)/ ~p— ¢(W)/ ~pug (where P
and Q are finite sets of equations in ¢(W)). The set of all these canonical
epimorphisms is denoted by £¢,. Taking into account that £y, is closed under
composition and left-cancellable, and using Lemma 3.10, it is obvious that
the Completeness Theorem 2.13 remains true if we apply it (instead of to all
epimorphisms of Ay,) just to the set £y,

3.12. Theorem (see [20]) The deduction system of 3.6 is sound and com-
plete. That is:
EEl iff EFI

for every set E of implications and every implication I.

Proof It is easy to verify the soundness. Completeness can be derived from
Theorem 2.13 by translating 2.12 to the deduction system 3.6. For doing so
we are going to work with finite nonempty sets F' of implications having the
same antecedent,
F={P=u=uv,..., P=u,=u,}.
We denote by [ the set of all such sets /' and put
Pr=P and Qp ={uy =01, ..., Uy =y}

which are finite sets of equations in ¢(W) (for some finite set W C V of
variables).

An implication I = (P = u = v) is considered as a member of F by
identifying it with the corresponding singleton set I. We write

F+G (F, GeF)

if every member of GG can be derived from the finite set F' by applying the
rules of 3.6.
For every F' € F we form the canonical epimorphism

er: 9(W)/ ~p— ¢(W)/ ~pug
(where P = Pr and Q@ = Qp, we drop the index F' whenever no confusion

can arise). This is consistent with Notation 3.3. Let A be the category of
Y-algebras and let Ay, be the category of finitely presentable algebras of the
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form ¢(W)/ ~p, where W C V is a finite set of variables and P is a finite
set of equations (with ~p denoting the congruence generated by P). By
Theorem 2.13 and Remark 3.11, the Finitary Injectivity Deduction System
is complete for epimorphisms in &,, and we will use this completeness to
prove the present theorem by verifying the following:

(A) an application of the rules of 2.12 to morphisms ep,, -+, ep, (F; € F)
always lead to a conclusion of the form ep (F € F) with

OEI—F
i=1

and
(B) if ep = ep (F,F/ E]F) then F'+ F”.

By proving (A) and (B), the completeness of 3.6 follows: given a set E of
implications with a logical consequence I,

EEI

we know from Remark 3.5 that the injectivity w.r.t. e; is a logical conse-
quence of the injectivity w.r.t. E = {e;, I € E}. By the Completeness
Theorem 2.13 we conclude that a formal proof of e; from E exists in the de-
duction system 2.12, that is, there are implications Iy, - -- , [,, € E such that
er, -+, er, - erin Finitary Injectivity Deduction System. Due to (A), every
step in that proof is of the form ep for some F' such that {[, ---, I,} - F.
In particular, the last line, e, is equal to some such ep, which by (B) im-
plies F' F I. Consequently, we obtain {Iy, ---, I,} F I, and thus E F I, as
required.

The statement (B) follows immediately from 3.9.

Proof of (A). Our task is to prove for every rule of 2.12 that if the premises
have the form ep,, --- , ep, then the conclusion has the form e where UF; -
F.

We proceed by inspecting the rules individually.

(1) IDENTITY: Suppose that ep is an identity morphism. Then the two
congruences ~p and ~pg coincide, thus for each ©v = v in Q we have

u~pv
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and Lemma 3.9 gives us F P = u = v.

(2) COMPOSITION: Let er and e be two morphisms in £, which compose,
with F' and F’" members of F:

o(W)/ ~prugp= W)/ ~p,,
d(W)/ ~p, . dW)/ ~pu0m

Since Pr U Qp generates the same congruence as Ppr, it follows that Pp U
QOr U QO generates the same congruence as Pr U Qp, consequently,

e = eF//

for
F'=FU{Pr=u=v;u=vin Qp}.
It is our task to prove that
FUF +F".

That is, given u = v in Qp, we are going to derive the implication Pr =
u=wv from FUF".
Using Lemma 3.9 on any s =t in Pp, we get

FPrUQr =s=t,
therefore, by Cut,
Fr(Pp=s=t) (forall s=tin Pp).
Since for © = v in Qp we have, trivially,
F'+ (Pp = u=0)
we conclude, again by Cut, that
FUF'F (Pr=u=v)

as requested.
(3) CANCELLATION: We are given a commutative diagram

GW)/ ~op —"= ¢(W)/ ~pig -
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Then e = ep for
F'={P=wu=v;u=vin R}

We now have to prove that F' = F’, i.e., for every u = v in R we have to
verify

FEP=u=w.

Since ep = €’ - epr, we conclude u ~pyg v, thus, by Lemma 3.9,
FPUQ = u=nw.
Therefore, Cut yields

FEFP=u=v
as requested.
(4) PUSHOUT: Let
W)/ ~p — - 6(W)/ ~puc (3.1)
/| E
SW")/ ~p——— B

be a pushout where F' € F (and we put Pp =P and Qp = Q), and €’ € &),
By Lemma 3.10 we have a substitution ¢ with P? included in ~p/, and

¢ =ep for F'={P =u" =v";u=vin PUQ}
Thus, we need to show that F'+ F’. First for every u = v in P we have
FP = u” =0,

since v = v in P implies u? ~p v7, see Lemma 3.9. Secondly, for every s = ¢
in Q we verify

FFEP =357 =t°.
In fact, from Invariance in 3.6 we know that
FE=P7 =57 =1

and since - P’ = u? = v (for all u7 = v7 in P7), this yields by Cut the
desired statement F' + P’ = s = t?. Consequently, F' - F". O
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4. Implications in Coalgebra

4.1. Assumption Throughout this section we work with coalgebras over a
functor H : Set — Set. We assume that H is accessible, i.e., there exists an
infinite cardinal k£ such that H preserves k-filtered colimits. More detailed,
we say that H is k-accessible.

A coalgebra is a pair (A,«) where A is a set and o : A — HA is a
function. Homomorphisms from (A, a) to another coalgebra (B, 3) are the
functions f : A — B with 8- f = Hf -«a. We interpret coalgebras as systems
with a set A of states and a set HA of possible observations we make. And
homomorphisms express functions simulating the observations in a different
system.

We denote by Coalg H the category of coalgebras and homomorphisms.

4.2. Examples (see [22]) A sequential automaton with a state set A and
input set I can be viewed as a coalgebra of the functor

H = (=)' x {tt, ff}
In fact, a sequential automaton is specified by the next-state map Ax 1 — A
which in the curried form yields 6 : A — A, and by the predicate “accepting
state” given by a : A — {#t, ff}. This defines a coalgebra

<8, a> A— AL x {tt, ff}
(ii) The coalgebras over
HX =XxX+1

are dynamic systems with binary input {0, 1} and with deadlock states (not
reacting to input). Given a state set A, the coalgebra structure

a:A—-AxA+1

maps deadlock states to the right-hand summand, and non-deadlock states
to the pair of next states corresponding to input 0 and 1, respectively.

(iii) Generalizing the previous examples, let 3 be a signature (possibly
infinitary) and let Hy, be the corresponding polynomial functor

Hy X = H X" n = arity of o.
o€eY

A coalgebra is given by a set A of states and an assignment « which to
every state a yields an output ¢ € ¥ and an n-tuple (of “next states”) for
n = ar(o).
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(iv) The finite-power-set functor Py, has as coalgebras all finitely branching
graphs A. Here a: A — PxnA assigns to every node the set of all neighbor
nodes. Coalgebra homomorphisms f : A — B are those graph homomor-
phisms such that for every node a € A and every edge f(a) — b in B there
exists an edge a — o’ in A with b = f(d').

4.3. Notation For every cardinal k£ we denote by C(k) a cofree coalgebra on
k colors. Thus, considering the cardinal k (as usual) as the set of all smaller
ordinals, C'(k) is given by a coalgebra structure

7:C(k) — HC(k)
and a coloring
£ . C(k) — k

universal in the following sense:

For every coalgebra A and every coloring f : A — k
there exists a unique homomorphism f* : A — C(k)

such that f =¢ - f%

4.4. Examples (i) If £k = 1 then C(1) is simply a terminal coalgebra which
we denote by

7:T — HT

In the example of sequential automata we have
T =PI (the set of formal languages)

with

7 PI* — (PI*)! x bool
given by the automaton structure of PI* where a formal language L C I* is
accepting iff it contains the empty word, and the reaction of L to an input
i € I is the Brzozowski derivative {u € I*; iu € L}.

For every sequential automaton A the unique coalgebra homomorphism
f*: A — T assigns to every state a the language f*(a) C I* accepted by A
with the initial state a.

(ii) A terminal coalgebra of Hy is the coalgebra Ty, of all 3-trees, that is,
trees labelled in Y so that a node with an n-ary label has precisely n children.
More generally: the cofree coalgebra on k colors

Cs(k)
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consists of all X-trees with an additional coloring of nodes by k colors. Here

7 Cx(k) — ] Cu(k)"
oEY
assigns to a tree t whose root is labelled by an n-ary operation ¢ € ¥ and
has color 7 € k the n-tuple of the maximum subtrees of ¢ in the o-summand
Cy(k)", whereas € : Cx(k) — k maps t to the colors of its root,

e(t) =1.

For example the functor H = X x X + 1 of 4.2(ii) has Cx(k) equal to all
k-colored trees such that each node has zero or two children.

4.5. Remark (i) Every accessible functor has cofree coalgebras. In other
words, the canonical forgetful functor from Coalg H to Set is a left adjoint.
See [9].

(ii) If H preserves k-filtered colimits then the cofree coalgebra C'(k) was
used by Jan Rutten [22] for presentation of classes of coalgebras precisely
dual to equational presentation of algebras (via quotients of a free algebra
on k generators):

4.6. Definition [22] For a k-accessible functor H a coequation is a subset
m : M — C(k) of a cofree coalgebra on k colors. A coalgebra A satisfies
the coequation iff for every coloring f of A by k colors the homomorphism
f* factors through the subobject

|
A — C(k)
4.7. Theorem [22]| For a class A of coalgebras the following statements are
equivalent:
(i) A is closed under coproducts, subcoalgebras and quotients

and
(ii) A can be presented by a coequation.

4.8. Examples (i) All sequential automata such that from each state a final
state is reachable (in finitely many steps) are presented by the one color
coequation

PI*— {0} — PI*.
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The coequation {L;e € L} — PI*, where ¢ denotes the empty word,
presents all automata where each state is accepting.

(ii) Given a coalgebra A of the polynomial functor Hy, see 4.2(iii), all states
mapped by a to the summand of Hy,A corresponding to a nullary operation
are called deadlock states. The coequation

{t;t is a finite colored X-tree} — Cx(k)

presents all coalgebras without deadlock states.
(iii) For the dynamic systems of example 4.2(ii) the coequation

Cy(k) — {t} — Cx(k)

where ¢ is the tree
1

VAW

presents all subsystems A such that if a state a reaches deadlock states by
both inputs, then those deadlock states are equal.

4.9. Remark A logic of coequations has been presented in [1]. We now
generalize this to implications, as introduced by Peter Gumm:

4.10. Definition (see [14]) By an implication for coalgebras is meant an
expression
M = N

where
N — M — C(k)

are subsets of the free coalgebra. A coalgebra A is said to satisfy the impli-
cation M = N provided that for coloring f : A — k such that f* factors
through m it follows that f* factors through m - h:

A

/:// ifﬁ
(

NE M« C]C)

n m

4.11. Example For sequential automata, the implication

{Lie e L} = {{c}}
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presents all automata which either have a non-final state, or there are no
transitions (from a state to a different one).

4.12. Theorem [2| For a class A of coalgebras the following statements are
equivalent:

(i) A is closed under coproducts and quotients
and
(ii) A can be presented by a collection of implications.

4.13. Notation For every coequation m : M — C(k) we denote by

(i) i : M — C(k) the largest subcoalgebra of C(k) contained in m :
M — C(k)
and
(ii) m? : M? — C(k), where o : C(k) — C(k) is an endomorphism of the
cofree coalgebra, the inverse image of M under o.

4.14. Remark (i) As proved in [15], every subset M has a largest subcoal-
gebra contained in it.

The passage from M to M is dual to the passage, used in universal algebra,
from an equivalence relation ~ on a free algebra to the congruence that ~
generates.

(ii) The passage from M to M7 is dual to the passage, used in universal
algebra, from a set of equations to that set obtained via a given substitution
x +— o(x) for all variables x € X; here ¢ is an endomorphism of F'(X).

4.15. Example For H = Hy, the subcoalgebra M consists precisely of all
trees t € M such that every subtree of ¢ lies in M. And M? is the set of all
trees in whose recoloring via a given coloring Cx,(k) — k (which is equivalent
to giving an endomorphism o of Cy(k)) yields a tree in M, see [1].

4.16. Lemma If N C M and M = N then the implication M = N s
satisfied by any coalgebra.

Proof As proved in [4], the image of a coalgebra homomorphism A : A — B
is always a subcoalgebra of B.

Let M and N be under the above conditions, and, for A a coalgebra,
consider a coloring f : A — k with f*A] C M. Since f*[4] is a subcoalgebra

~

of C'(k), it is contained in M, then also in N, because M = N C N. O
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4.17. Notation For every implication h = (M = N), the subcoalgebra N
is (due to N C M) contained in the subcoalgebra M and we denote by

h:N— M
the homomorphism which is the codomain restriction of the embedding N <

C(k).
The following corollary is easily derived from 4.16.

4.18. Corollary A coalgebra satisfies an implication h = (M = N) iff it is
projective w.r.t. h.

4.19. Remark (i) The homomorphism his a regular monomorphism. In
fact, regular monomorphisms in Coalg H are precisely the homomorphisms
which are one-to-one functions, i.e. monomorphisms in Set, see [16].

(ii) We thus can apply the deduction system 2.2 to the category (Coalg H )P .
In contrast, the finitary deduction system 2.12 is not relevant here since in
general (Coalg H)P does not have nontrivial finitely presentable objects. In
fact, if H is the constant functor with value 1 then Coalg H = Set and in
(Set)?? no object of more than one element is finitely presentable.

(iii) An implication M = N is called a consequence of a set H of implica-
tions provided that, given a coalgebra A satisfying every implication in H,
then A satisfies M = N. Example: M= Nisa consequence of M = N.

(iv) We now reformulate the deduction system 2.2 in the languague of
implications:

4.20. Definition The Deduction System for Coalgebraic Implications con-
sists of the following deduction rules

(1) M= M
2) M=N N=P
M= P
3) ?j:év N =P N=QandQCP

M= N, (iel
(4) M:ﬂNi

el
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M = N

' -
O Jrswvon,  TheM

(6) M= N
MNP=NNP

(7) M= N
M° = N°

for all homomorphisms

o:C(k)— C(k)

4.21. Remark The soundness of the rule (3) is Corollary 4.18. All other

rules, possibly with the exception of (7), are obviously sound. To verify (7),
let A be a coalgebra satisfying M = N for subsets

N — M — C(k).
Recall that (—)? denotes the preimage under the given homomorphism o :
C(k) — C(k). Thus, in the following diagram

nG’ lea

N7 - M7 = C(k)

L

N M C(k)

n m

the right-hand square and the outer square are pullbacks in Set. Conse-
quently, the left-hand square is a pullback in Set too.

Suppose that the coalgebra A satisfies M = N. Let f : A — k be a coloring
with f*[A] € M?. Then f* has a codomain restriction to a homomorphism
u:A— M

For the coloring € - o - f* : A — k, the corresponding homomorphism is
¢" =0 - f%, and we see that p-u: A — M is its codomain restriction. Thus,
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¢*[A] € M, which implies that ¢*[A] C N. Let v : A — N be the codomain
restriction of ¢f. Then, the universal property of the left-hand pullback above
yields w : A — N with f* = m?-n? -w. That is f*[A] C N°. Therefore, A
satisfies M7 = N°.

4.22. Remark Recall that a functor is said to preserve inverse images pro-
vided it preserves pullbacks of monomorphisms along any morphism. This is
a usual property of set functors: Hy, P and Pg, are examples of functors pre-
serving inverse images. And any composite, product, coproduct and subfunc-
tor “inherits” the property of preserving inverse images. It is easy to verify
that if H preserves inverse images then the forgetful functor Coalg H — Set
lifts them.

4.23. Completeness Theorem Let H be an accessible functor preserving
inverse images. Then the deduction system 4.20 is complete: every conse-
quence of a set of implications has a proof from that set.

Proof Let
k= (M = N)

be a consequence of a set H of implications. By 4.18, the morphism kN <
M is, in (Coalg H)P, an injectivity consequence of the set

7:[ - {B}heH-

By 2.5, we have a proof of k from H using the deduction system 2.2 in its dual
form. If « is the length of the proof and the line i is the formula f; (i < «),
we have that

fo = k.
We now translate this proof into a proof of k£ from H in the deduction

system 4.20. Our translation will be such that, whenever a part f; (i < ()
has been already translated, then for every line

fi:P—@Q wherej <p
the translation contains the line
Q = P.

This will finish the proof: at the end of the translation the last line f, : N —
M guarantees that one line of the translated proof is M = N. We then



A LOGIC OF IMPLICATIONS IN ALGEBRA AND COALGEBRA 27

add the line M = N (using Rule (3)), thus concluding the formal proof of
M = N from H.

The translation is performed by transfinite induction: given f < « such
that the preceding lines f; (i < ) have already been translated, we translate
fs as follows.

(i) If f3 = h : Q — P is one of the assumptions, where h = (P = Q) lies
in H, we translate f3 by two lines:

P = (@ (assumption in H)

P = Q (by Rule (3))
(This second line is needed for our assumption about the translation, see

above. )
(ii) If f3 = idy; our translation is

M = M by Rule (1).
(iii) If fg = fi - f; for some i, j smaller than [

fi i
p--Q-l-R
then our translation contains () = P and R = () and we translate f3 as
R= P by Rule (2).

(iv) If f3: P — @ is an intersection of the preceding lines f«): P — @
for £ € T, then our translation contains the implications @ = Py, cor-
responding to these lines, and P = MyerP;). Thus, our translation of fg
1S

QQ = P by Rule (4).
(v) If f5 is obtained by right cancellation:

PQ

N lf@

R

for some i, 57 smaller than 3, then our translation contains R = P, and we
see that P C (). Therefore, we translate fz as
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R =@ by Rule (5).
(vi) If f3 is obtained from a line f;(i < () via a pullback

P-e

we decompose h as an epimorphism e : N — Q' followed by a monomorphism
u: @ — @Q and form the appropriate pullbacks

N
P
’U\L iu

P=e

We start the translation of fz by writing

Ql = Pl
by Rule (6) applied to @ = P via the intersection with @’. Next, express N
and ) as subcoalgebras of C'(k)

N 2 C(k)

e o
4

Q’jC(k)

and find a homomorphism o : C'(k) — C(k) with the above square commut-
ing. This is trivial if N = (). Assuming that N # (), we choose u : C'(k) — N
with v - j = id and we extend j - e - u to an homomorphism o satisfying

e-o=c¢c-j -e-u.

Therefore,

e-(o-j)=c-(j" e



A LOGIC OF IMPLICATIONS IN ALGEBRA AND COALGEBRA 29
Since o -7 and j' - e are homomorphisms, the last equation implies that the
square above commutes. We conclude that
Q = o[N] and M = o [P']

since e is an epimorphism.
We continue the translation of f;: from o[N] = Q' = P’ we derive

clo[Nl=oc ' (P)=M by Rule (7).
Consequently
o 'o[NJNN = MNN by Rule (6)
and, since M C N C o~ '¢g[N], we conclude

N = M.
O
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