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Abstract: The purpose of this paper is to derive and study a new asymptotic
model for the equilibrium state of a thin anisotropic piezoelectric plate in frictional
contact with a rigid obstacle. In the asymptotic process, the thickness of the piezo-
electric plate is driven to zero and the convergence of the unknowns is studied.
This leads to two-dimensional Kirchhoff-Love plate equations, in which mechanical
displacement and electric potential are partly decoupled. Based on this model nu-
merical examples are presented that illustrate the mutual interaction between the
mechanical displacement and the electric potential. We observe that, compared to
purely elastic materials, piezoelectric bodies yield a significantly different contact
behavior.
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1. Introduction

The generation of electric charges in certain crystals when subjected to
mechanical force was discovered in 1880 by Pierre et Jacques Curie and is
nowadays known as piezoelectric effect (or direct piezoelectric effect). The
inverse phenomenon, that is, the generation of mechanical stress and strain in
crystals when subjected to electric fields is called inverse piezoelectric effect
and was predicted in 1881 by Lippmann (see [17]). Piezoelectric materials
are solids exhibiting this kind of interaction between mechanical and elec-
tric properties. This provides them with sensor (direct effect) and actuator
(inverse effect) capabilities making them extremely useful in a wide range of
practical applications in aerospace, mechanical, electrical, civil and biomedi-
cal engineering (see [29]). In many of these applications, additionally contact
phenomena can occur or may be used on purpose, e.g., for measurement de-
vices.
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The aim of this paper is to derive, mathematically justify and numerically
study a new bi-dimensional model for the equilibrium state of an anisotropic
piezoelectric thin plate possibly in frictional contact with a rigid foundation.
The derivation of the reduced (or lower-dimensional) model is done using
an asymptotic procedure. It will turn out that the resulting equations are
defined in the middle plane of the plate.

Let us start with motivating our interest in this problem. It was observed
that, if no contact and friction conditions have to be taken into account,
for certain problems the mechanical and the electric parts of the equations
decouple in an asymptotic process [11, 8, 28, 26] (see [1, 7, 23, 25, 33] for
related results where only partial or no decoupling occurs). In the presence
of contact and friction it is not at all obvious if similar results hold true.
We are also interested in numerically studying the behavior of piezoelectric
materials, and by these means gain a better understanding for their properties
and features.

Asymptotic methods have been widely used to deduce reduced models for
plates, shells or rods. For the main ideas and bibliographic references see [3, 4,
5] for elastic plates, [6] for shells, and [32] for rods. For thin plates, asymptotic
analysis applies to the thickness variable and can be briefly summarized as
follows: Starting with the variational three-dimensional equations for a plate
with thickness h, these equations are scaled to a domain independent of
h. Assuming appropriate scalings for the data and unknowns, one then
lets h → 0 and studies the convergence of the unknowns as well as the
properties of the limit variables. Rescaling to the original domain then results
in reduced model equations. For a general theory of asymptotic expansions
for variational problems that depend on a small parameter we refer to [21].

We consider, in this paper, an anisotropic piezoelectric plate whose me-
chanical displacements are restricted due to possible contact with a rigid
insulated foundation. The contact is unilateral (i.e., the contact region is
not known in advance) and is modelled by the classical Signorini conditions.
For the frictional behavior of the plate, the Tresca friction law is used. The
variational formulation of this plate problem is a variational inequality of the
second kind, see [9, 18]. The unknowns are the mechanical displacement and
the electric potential. The original, three-dimensional plate is subject to con-
tact and friction on a part of its surface. While in the asymptotic procedure
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the system equations become two-dimensional, the contact and friction con-
ditions remain similar to contact conditions occurring in three-dimensional
elasticity.

Note that for modeling friction in physical applications, often the Coulomb
rather than the Tresca friction law is used (see [9]). Since for the numerical
realization of Coulomb friction usually a sequence of Tresca friction problems
is used, Tresca friction is not only of theoretical but also practical relevance.
Such as sequence of Tresca problems is also solved in our numerical study to
discuss a problem with Coulomb friction.

In the literature, several authors deal with asymptotic models for piezoelec-
tric structures. We mention [26] for piezoelectric plates including magnetic
effects, [28] for piezoelectric thin plates with homogeneous isotropic elasticity
coefficients, [23, 25, 33, 11, 12] for anisotropic piezoelectric plates and rods,
[7] for geometrically nonlinear thin piezoelectric shells, and [27] for the mod-
elling of eigenvalue problems for thin piezoelectric shells. However, these
papers do not take into account the effects of possible contact or friction
with a rigid foundation; nevertheless for elastic rods and shells, one finds
asymptotic frictionless contact models in [32] and [20], respectively. On the
other hand, there are papers dealing with contact and friction of piezoelectric
materials that do not use an asymptotic procedure to reduce the model; we
refer to [22], where two different variational formulations for the modelling
of unilateral frictionless contact are established as well as [2] for primal and
dual formulations of frictional contact problems. In [30, 31], mathematical
analysis of frictional contact problems with piezoelectric materials can be
found; for error estimates and numerical simulations we refer to [15]. In all
of the above references either none or only few numerical simulations can be
found.

The main contributions of this paper are twofold: Firstly, the application of
the asymptotic method to the variational inequality of the second kind that
describes the anisotropic piezoelectric plate. Due to the presence of friction
and contact conditions, the convergence proof in the asymptotic procedure is
significantly more involved than in the unconstrained case (see [11, 28]). Our
second main contribution is the numerical study of the limit problem taking
into account contact and friction. These conditions are similar to three-
dimensional elasticity contact problems, where their numerical treatment is
known to be a challenging task.
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We finish this introduction with a sketch of the structure of this paper. In
the next section, the three-dimensional plate model is described. In Section
3, we apply the asymptotic analysis and prove strong convergence of the un-
knowns. Finally, in Section 4 we report on numerical tests for the asymptotic
equations.

2. The 3D plate problem

Notations and geometry. Let ω ⊂ IR
2 be a bounded domain with

Lipschitz continuous boundary ∂ω, γ0, γe subsets of ∂ω with meas(γ0) > 0.
We denote γ1 := ∂ω \ γ0, γs := ∂ω \ γe. For 0 < h ≪ 1, we consider
Ω = ω × (−h, h) a thin plate with middle plane ω and thickness 2h and the
boundary sets

Γ+ = ω × {+h}, Γ− = ω × {−h}, Γ± = Γ+ ∪ Γ−,

ΓD = γ0 × (−h, h), Γ1 = γ1 × (−h, h), ΓN = Γ1 ∪ Γ+,

Γs = γs × (−h, h), Γe = γe × (−h, h).
(1)

For a schematic visualization of Ω with the boundary sets (1) see Figure 1.
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Figure 1. Three-dimensional plate Ω with rectangular middle
plane ω and thickness 2h.

We consider different disjoint partitions ΓeN ,ΓeD of the boundary ∂Ω. The
splitting correspond to different electric boundary conditions and are thus
denoted by (ebci) for i = 1, 2, 3:

(ebc1) : ΓeN = Γs and ΓeD = Γ± ∪ Γe,

(ebc2) : ΓeN = Γs ∪ Γ+ and ΓeD = Γ− ∪ Γe,

(ebc3) : ΓeN = Γs ∪ Γ− and ΓeD = Γ+ ∪ Γe.

(2)

Note that in all partitions, the set ΓeD (where we will assume given Dirichlet
data) contains Γ− or Γ+. The case that neither on Γ− nor on Γ+ Dirichlet
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data for the electric potential are given requires a slightly different treatment
than the one chosen in this paper, see Remark 1 on page 23.

Points of Ω are denoted by x = (x1, x2, x3), where the first two components
(x1, x2) ∈ ω are independent of h and x3 ∈ (−h, h). We denote by n =
(n1, n2, n3) the unit outward normal vector to ∂Ω. Throughout the paper,
the Latin indices i, j, k, l, . . . are taken from {1, 2, 3}, while the Greek indices
α, β, . . . from {1, 2}. The summation convention with respect to repeated
indices is employed, that is, aibi =

∑3
i=1 aibi. Moreover we denote by a · b =

aibi the inner product of the vectors a = (ai) and b = (bi), by Ce = (Cijklekl)
the contraction of a fourth order tensor C = (Cijkl) with a second order
tensor e = (ekl) and by Ce : d = Cijklekldij the inner product of the tensors
Ce and d = (dij). Given a function θ(x) defined in Ω we denote by ∂iθ = ∂θ

∂xi

its partial derivative with respect to xi.
In the sequel, for an open subset Υ ⊂ IR

n, n = 2, 3, we define D(Υ) to be
the space of infinitely often differentiable functions with compact support on
Υ. We denote by D′(Υ) the dual space of D(Υ), often called the space of
distributions on Υ. For m = 1, 2, the Sobolev spaces Hm(Υ) are defined by

H1(Υ) =
{

v ∈ L2(Υ) : ∂iv ∈ L2(Υ) for i = 1, . . . , n
}

,

H2(Υ) =
{

v ∈ L2(Υ) : ∂iv, ∂ijv ∈ L2(Υ) for i, j = 1, . . . , n
}

,

where L2(Υ) = {v : Υ → IR,
∫

Υ |v|2dΥ < ∞} and the partial derivatives
are interpreted as distributional derivatives. Moreover, for v ∈ (H1(Ω))3

we denote by vn := v · n and vt := v − vnn the normal and tangential
components of v on the boundary of Ω, respectively. Similarly, for a second
order symmetric tensor field τ = (τij) ∈ (L2(Ω))9 we denote its normal
and tangential components on the boundary of Ω as τn := (τn) · n and
τt := (τn)−τnn, respectively. Using the summation convention, this becomes
τn := τijninj and τt = (τti) where τti := τijnj − τnni. In addition, we denote
by | · | the Euclidean norm in IR

3.
3D plate in frictional contact – classical formulation. We consider

a piezoelectric anisotropic plate which in its reference configuration occupies
the domain Ω. It is held fixed on ΓD and submitted to a mechanical volume
force of density f in Ω and a mechanical surface traction of density g on ΓN .
On its lower face Γ− it may be in frictional contact with the rigid foundation
(which is assumed to be an insulator). We denote by s : Γ− −→ IR

+ the
initial gap between the rigid foundation and the boundary Γ− measured in the
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direction of the outward unit normal vector n. To model the frictional contact
we use the classical Signorini contact conditions and the Tresca friction law
(see [9]).

We assume that the plate is subject to an electric volume charge of density
r. Moreover, we suppose given an electric surface charge of density θ on ΓeN

and an electric potential equal to ϕ0 applied to ΓeD, where the pair ΓeN ,ΓeD

is defined as in one of the cases (ebci), i = 1, 2, 3 above. Note that the lower
subscripts eN and eD in ΓeN and ΓeD refer to electric (e) Neumann (N) and
Dirichlet (D) boundary conditions, respectively, while the lower subscripts N

and D in ΓN and ΓD refer to mechanical (Neumann and Dirichlet) boundary
conditions.

We now give the classical (i.e., strong) equations defining the mechanical
and electric equilibrium state of the plate Ω. The equilibrium is described
by the following five groups of equations and boundary conditions, whose
unknowns are the mechanical displacement vector u : Ω → IR

3 and the
(scalar) electric potential ϕ : Ω → IR.

Mechanical equilibrium equations and boundary conditions






−divσ(u, ϕ) = f (i.e., − ∂jσij(u, ϕ) = fi) in Ω,

σ(u, ϕ)n = g (i.e., σij(u, ϕ)nj = gi) on ΓN ,

u = 0 on ΓD.

(3a)

Maxwell-Gauss equations and electric boundary conditions (ebci), i = 1, 2, 3








divD(u, ϕ) = r (i.e., ∂iDi(u, ϕ) = r) in Ω,

D(u, ϕ)n = θ (i.e., Di(u, ϕ)ni = θ) on ΓeN ,

ϕ = ϕ0 on ΓeD.

(3b)

Constitutive equations
[

σij(u, ϕ) = Cijklekl(u) − PkijEk(ϕ) in Ω,

Dk(u, ϕ) = Pkijeij(u) + εklEl(ϕ) in Ω.
(3c)

Signorini’s contact conditions

un ≤ s, σn ≤ 0, σn(un − s) = 0 on Γ−. (3d)
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Tresca’s law of friction







|σt| ≤ q, and

|σt| < q ⇒ ut = 0,

|σt| = q ⇒ ∃c ≥ 0 : ut = −cσt











on Γ−. (3e)

The mechanical equilibrium equations (3a) express the balance of mechanical
loads and internal stresses. The electric displacement field D is governed
by the Maxwell-Gauss equations (3b), and the constitutive equations (3c)
characterize piezoelectricity. They define the interaction between the stress
tensor σ : Ω → IR

9, the electric displacement vector D : Ω → IR
3, the linear

strain tensor e(u) and the electric field vector E(ϕ), the latter two tensors
given by

e(u) = 1
2

(

∇u+ (∇u)⊤
)

(i.e., eij(u) = 1
2

(

∂iuj + ∂jui))

E(ϕ) = −∇ϕ (i.e., Ei(ϕ) = −∂iϕ).

In (3c), C = (Cijkl) is the elastic fourth order, P = (Pijk) the piezoelectric
third order and ε = (εij) is the dielectric second order tensor field. The
Signorini law (3d) describes the contact and frictional behavior of the plate
with a rigid foundation. If the plate is not in contact with the rigid foundation
(i.e., un < s), the normal stress vanishes, i.e., σn = 0. For un = s, that
is, the plate is in contact with the obstacle, the normal stress component
σn is nonpositive. These conditions are the complementarity conditions for
contact. Finally, the conditions (3e) model the frictional behavior of the
plate, where q ≥ 0 is a function representing the prescribed friction bound.
Briefly, (3e) expresses the fact that on the contact boundary Γ− the Euclidean
norm of the tangential stress component cannot exceed the given friction
bound q, that slip occurs if this norm equals q, and stick if it is smaller than
q. Moreover, slip can only occur in the negative direction of σt. Note that
the regions where contact and slip or stick occur are not known a priori.
This makes contact problems with friction free boundary problems, which
are theoretically and practically challenging.

We assume the following hypotheses on the data

f ∈
(

L2(Ω)
)3
, g ∈

(

L2(ΓN)
)3
, r ∈ L2(Ω), θ ∈ L2(ΓeN),

ϕ0 ∈ H1/2(ΓeD), s ∈ H1/2(Γ−), q ∈ L2(Γ−).
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Moreover, the tensor fields C = (Cijkl), P = (Pijk) and ε = (εij) are defined
on ω̄ × [−1, 1] for x = (x1, x2,

x3

h ). Defining them on the reference plate
ω̄ × [−1, 1] makes them independent of h in the transformed variables also
used in the next section. The tensors Cijkl, Pijk, εij are assumed to be
sufficiently smooth functions that satisfy the following symmetries Cijkl =
Cjikl = Cklij, Pijk = Pikj, εij = εji. Moreover, C and ε are assumed to be
coercive, that is there exist c1, c2 > 0 such that

Cijkl(x)MklMij ≥ c1

3
∑

i,j=1

(Mij)
2 and εij(x)θiθj ≥ c2

3
∑

i=1

θ2
i

for every symmetric 3 × 3 real valued matrix M , every vector θ ∈ IR
3 and

every x ∈ ω̄ × [−1, 1].
3D-plate in frictional contact – weak formulation. We now give

the weak or variational formulation of (3a)-(3e). We define the space of
admissible mechanical displacements

V :=
{

v ∈
(

H1(Ω)
)3

: v|ΓD
= 0

}

that we endow with the norm ‖v‖V = ‖∇v‖(L2(Ω))9, which, due to the Poincaré
inequality is equivalent to the usual H1-norm. Moreover, we introduce the
convex cone

K :=
{

v ∈ V : vn ≤ s on Γ−
}

, where vn = −v3,

as well as the space of admissible electric potentials

Ψ :=
{

ψ ∈ H1(Ω) : ψ|ΓeD
= 0

}

,

in which we use the norm ‖ψ‖Ψ = ‖∇ψ‖(L2(Ω))3 (which is also equivalent to
the usual H1-norm).

Next, we briefly sketch how the variational formulation of (3a)-(3e) is ob-
tained. Using the Green formula in (3a), we obtain for any v ∈ K

∫

Ω

σij eij(v − u) dx−
∫

∂Ω

σij nj (vi − ui) dΓN =

∫

Ω

fi(vi − ui) dx. (4)

Since v = u = 0 on ΓD, σij nj = gi on ΓN , ∂Ω = ΓD ∪ ΓN ∪ Γ− and due to

σij nj (vi − ui) = σt (vt − ut) + σn (vn − un)

= σt (vt − ut) + σn (vn − s) − σn (un − s),
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(4) becomes, using σn(vn − s) ≥ 0 and σn(un − s) = 0 on Γ−,
∫

Ω

σij eij(v−u) dx−
∫

Ω

fi(vi−ui) dx−
∫

ΓN

gi(vi−ui) dΓN ≥
∫

Γ−

σt (vt−ut) dx.

(5)
Adding j(v) − j(u) to both sides of (5), where

j(v) :=

∫

Γ−

q |vt| dΓ−, with vt = v − vnn = (v1, v2, 0),

and using
∫

Ω

(

σt (vt − ut) + q|vt| − q|ut|
)

dx ≥ 0,

we obtain
∫

Ω

σij eij(v−u) dx+j(v)−j(u)−
∫

Ω

fi(vi−ui) dx−
∫

ΓN

gi(vi−ui) dΓN ≥ 0. (6)

Next, from (3b) we have for any ψ ∈ Ψ

−
∫

Ω

Di ∂iψ dx+

∫

ΓeN

θ ψ dΓeN =

∫

Ω

r ψ dx, (7)

where Di ni = θ on ΓeN and ψ = 0 on ΓeD have been used. Summing (6) and
(7), using the constitutive equations (3c) and the transformation ϕ = ϕ̄+ϕ0,
we obtain as weak formulation of (3a)-(3e) the following elliptic variational
inequality of the second kind [13, 14]






Find (u, ϕ̄) ∈ K × Ψ such that:

b
(

(u, ϕ̄), (v − u, ψ)
)

+ j(v) − j(u) ≥ l
(

(v − u, ψ)
)

∀(v, ψ) ∈ K × Ψ,

(8)
where

b
(

(u, ϕ̄), (v, ψ)
)

:=
∫

ΩCe(u) : e(v) dx+
∫

Ω εij ∂iϕ̄ ∂jψ dx

+
∫

Ω Pijk

(

∂iϕ̄ejk(v) − ∂iψejk(u)
)

dx,

and

l
(

(v, ψ)
)

:=
∫

Ω f · v dx+
∫

ΓN
g · v dΓN +

∫

Ω r ψ dx−
∫

ΓeN
θ ψ dΓeN

−
∫

Ω εij ∂iϕ0 ∂jψ dx−
∫

Ω Pijk ∂iϕ0 ejk(v) dx.
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3. Asymptotic analysis

In this section, we use an asymptotic method, which is mainly due to
[3, 4, 5], to derive two-dimensional plate equations from the three-dimensional
system of equations (3a)-(3e). The principal idea is letting the plate’s thick-
ness h tend to zero, after rescaling the 3D variational inequality (8) to a fixed
reference domain that does not depend on h. We investigate the convergence
of the unknowns as h→ 0 and analyze the resulting system of equations.

3.1. Scaling of the 3D-equations to a fixed domain. Here, we redefine
the 3D variational problem (8) in the h-independent domain Ω̂ = ω×(−1, 1).

To each x = (x1, x2, x3) ∈ Ω̂ we associate the element x = (x1, x2, hx3) ∈ Ω,
through the isomorphism π(x) = (x1, x2, hx3) ∈ Ω . We consider the subsets
defined in (1) for the choice h = 1, that is

Γ̂± = ω × {±1}, Γ̂D = γ0 × (−1, 1),

Γ̂1 = γ1 × (−1, 1), Γ̂N = Γ̂1 ∪ Γ̂+,

Γ̂s = γs × (−1, 1), Γ̂e = γe × (−1, 1),

and the disjoint partitions Γ̂eN , Γ̂eD of ∂Ω̂ defined by consequently replacing
Γ by Γ̂ in (2).

We denote by n = (n1, n2) = (nα) the unit outer normal vector along ∂ω,
by t = (t1, t2) = (tα), with t1 = −n2 and t2 = n1, the unit tangent vector
along ∂ω, by ∂θ

∂ν = να∂αθ the outer normal derivative of the scalar function
θ along ∂ω. For the asymptotic process we need the data to satisfy the
following hypotheses

fα ◦ π = h2f̂α, f3 ◦ π = h3f̂3 in Ω,

gα ◦ π = h2ĝα, g3 ◦ π = h3ĝ3 in Γ̂1,

gα ◦ π = h3gα, g3 ◦ π = h4ĝ3, in Γ̂+,

ϕ0 ◦ π = h3ϕ̂0, r ◦ π = h r̂ in Ω

s ◦ π = h ŝ, q ◦ π = h3q̂ in Γ̂−,

θ ◦ π = h θ̂ in Γ̂s ∪ Γ̂e, θ ◦ π = h2θ̂ in Γ̂±.

(9)

Above, we assume that f̂α ∈ H1(Ω), f̂3 ∈ L2(Ω), ĝα ∈ H1(Γ̂N), ĝ3 ∈ L2(Γ̂N),

r̂ ∈ L2(Ω), θ̂ ∈ L2(Γ̂eN), ϕ̂0 ∈ H1(Ω), q̂ ∈ L2(Γ̂−) and ŝ ∈ L2(Γ̂−) with ŝ ≥ 0.
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In addition, we denote by ĝ+
3 = ĝ3|

Γ̂+

, ϕ̂+
0 = ϕ̂0|

Γ̂+

, ϕ̂−
0 = ϕ̂0|

Γ̂−
and we assume

that ϕ̂+
0 − ϕ̂−

0 ∈ H1(ω). The unknowns are rescaled as follows

uα ◦ π = h2uh
α, u3 ◦ π = huh

3 and ϕ ◦ π = h3ϕh in Ω̂, (10)

and analogous scalings to (10) hold for the test functions v and ψ in (8).
At this point, we briefly comment on the choice (9)-(10) for the scalings of

data, unknowns and test functions. For the mechanical forces and displace-
ments we assume the scalings also used in [5] for linearly elastic plates. In
[24] it is shown that these are (up to a multiplicative power of h) “the only
possible scalings” that lead to a linear Kirchhoff-Love theory in the asymp-
totic analysis. Regarding the scalings for the electric variables ϕ0, r, θ, ϕ and
ψ our scalings are chosen such that we are able to compute the limit as h→ 0
of the model (14) given below. We also refer to [25, 11, 28], where scalings as
given by (9)-(10) are used as well. However, different electric scalings have
to be used if other electric boundary conditions are chosen, see the remark
on page 23.

The scaled spaces for the admissible mechanical and electric potential dis-
placements are given by

V̂ :=
{

v ∈
(

H1(Ω̂)
)3

: v|Γ̂D
= 0

}

,

Ψ̂ :=
{

ψ ∈ H1(Ω̂) : ψ|Γ̂eD
= 0

}

.

As before, the spaces are endowed with the norms ‖v‖V̂ = ‖∇v‖(L2(Ω̂))9 and

‖ψ‖Ψ̂ = ‖∇ψ‖(L2(Ω̂))3, respectively. The scaled convex cone needed for the

Signorini contact conditions is given by

K̂ :=
{

v ∈ V̂ : vn = −v3 ≤ s on Γ̂−
}

.

For any v ∈ V̂ we define the second order symmetric tensor field κh(v) =
(κh

ij(v)) by

κh
αβ(v) := eαβ(v) = 1

2(∂βvα + ∂αvβ),

κh
α3(v) := 1

h
eα3(v) = 1

2h
(∂3vα + ∂αv3),

κh
33(v) := 1

h2e33(v) = 1
h2∂3v3.

(11)

As a consequence of the scalings (10) we have for the strain tensors e(u), e(v)
with v ∈ V

e(u) = h2κh(uh) and e(v) = h2κh(v ◦ π) with v ◦ π ∈ V̂ .
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For the stress tensor and the electric displacement vector we obtain the scal-
ings

σh
ij(u

h, ϕh) = h−2σij(u, ϕ), Dh
i (u

h, ϕh) = h−2Dh
i (u, ϕ), (12)

where

σh
ij(u

h, ϕh) = Cijlm κ
h
lm(uh) + hPαij ∂αϕ

h + P3ij ∂3ϕ
h,

Dh
i (u

h, ϕh) = Pilm κ
h
lm(uh) − h εiα ∂αϕ

h − εi3 ∂3ϕ
h.

(13)

Weak formulation of the 3D scaled plate problem. Using the above
scalings and assumptions (9) on the data, we obtain for each h > 0 a problem

on the fixed domain Ω̂ that is equivalent to (8):















Find (uh, ϕ̄h) ∈ K̂ × Ψ̂ such that:

bh
(

(κh(uh), ϕ̄h), (κh(v) − κh(uh), ψ)
)

+ j(v) − j(uh) ≥ lh
(

(v − uh, ψ)
)

∀(v, ψ) ∈ K̂ × Ψ̂,
(14)

where ϕ̄h = ϕh − ϕ̂0, and for κ, ϑ in (L2(Ω̂))9 and ϕ, ψ in Ψ,

bh
(

(κ, ϕ), (ϑ, ψ)
)

:=











































∫

Ω̂Cκ : ϑ dx+
∫

Ω̂ ε33 ∂3ϕ∂3ψ dx

+
∫

Ω̂ P3jk

(

∂3ϕϑjk − ∂3ψ κjk

)

dx

+h
∫

Ω̂ ε3α

(

∂αϕ∂3ψ + ∂3ϕ∂αψ
)

dx

+h
∫

Ω̂ Pαjk

(

∂αϕϑjk − ∂αψ κjk

)

dx

+h2
∫

Ω̂ εαβ ∂αϕ∂βψ dx,

j(v) :=

∫

Γ̂−

q̂ |vt| dΓ̂− with vt := v − vnn = (v1, v2, 0),

lh
(

(v, ψ)
)

:=































∫

Ω̂ f̂ · v dx+
∫

Γ̂N
ĝ · v dΓ̂N +

∫

Ω̂ r̂ ψ dx−
∫

Γ̂eN
θ̂ ψ dΓ̂eN

−
∫

Ω̂ ε33 ∂3ϕ̂0 ∂3ψ dx− h
∫

Ω̂ εα3

(

∂αϕ̂0 ∂3ψ + ∂3ϕ0 ∂αψ
)

dx

−h2
∫

Ω̂ εαβ ∂αϕ̂0 ∂βψ dx

−
∫

Ω̂ P3ij ∂3ϕ̂0 κ
h
ij(v) dx− h

∫

Ω̂ Pαij ∂αϕ̂0 κ
h
ij(v) dx.
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Using the relation (11) between κh(v) and v, in the sequel (mainly in the
proof of Theorem 1), we abbreviate

bh
(

(κh(uh), ϕ), (κh(v), ψ)
)

by bh
(

(uh, ϕ), (v, ψ)
)

.

In contrast to (8), where the dependence on the parameter h is implicit (by
means of the domain Ω), problem (14) now depends explicitly on h, but is
defined on a domain independent of h.

3.2. Convergence as h → 0+. The aim of this section is to study the
limit behavior of the sequences (uh) and (ϕh) as h → 0+. We are able to
prove strong convergence of these sequences and give a limit problem that
characterizes these limits. It will turn out that the limit displacement is an
element of V̂KL, the Kirchhoff-Love mechanical displacement space defined
by (see also [5])

V̂KL :=
{

v = (v1, v2, v3) ∈
(

H1(Ω̂)
)3

: v|
Γ̂D

= 0, ei3(v) = 0
}

=
{

v = (v1, v2, v3) ∈
(

H1(Ω̂)
)3

: ∃η = (η1, η2, η3) ∈
(

H1(ω)
)2 ×H2(ω),

∂νη3|γ0
= 0, η1|γ0

= η2|γ0
= η3|γ0

= 0,

vα(x) = ηα(x1, x2) − x3∂αη3(x1, x2), v3(x) = η3(x1, x2)
}

.

(15)

Moreover, Ψ̂l and Ψ̂l0 are the spaces for the admissible electric potentials
defined by

Ψ̂l :=
{

ψ ∈ L2(Ω̂) : ∂3ψ ∈ L2(Ω̂)
}

and (16a)

Ψ̂l0 :=
{

ψ ∈ L2(Ω̂) : ∂3ψ ∈ L2(Ω̂), ψ|S = 0
}

, (16b)

where S =







Γ̂± for (ebc1),

Γ̂− for (ebc2),

Γ̂+ for (ebc3).

(16c)

As usual, V̂KL is endowed with the norm ‖v‖V̂KL
:= ‖eαβ(v)‖(L2(Ω̂))4, which

is equivalent to the
(

H1(Ω̂)
)3

-norm for elements in V̂KL, see [5]. For the

space Ψ̂l we use the norm ‖ψ‖Ψ̂l
:=

(

‖ψ‖2
L2(Ω̂)

+ ‖∂3ψ‖2
L2(Ω̂)

)1/2
. Finally, Ψ̂l0
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is endowed with the norm ‖ψ‖Ψ̂l0
:= ‖∂3ψ‖L2(Ω̂), which is equivalent to the

norm defined in Ψ̂l for elements in Ψ̂l0.

Theorem 1. As h → 0+, the sequence {(uh, ϕh)}h converges strongly to

(u⋆, ϕ⋆) ∈ V̂KL × Ψ̂l. This limit pair is characterized as the unique solution
of the variational problem















Find (u⋆, ϕ⋆) ∈ V̂KL ∩ K̂ × Ψ̂l such that:

a
(

(u⋆, ϕ⋆), (v − u⋆, ψ)
)

+ j(v) − j(u⋆) ≥ l
(

(v − u⋆, ψ)
)

∀(v, ψ) ∈ V̂KL ∩ K̂ × Ψ̂l0, ϕ
⋆ = ϕ̂0, on S,

(17)

where S ⊂ ∂Ω is defined in (16) and a
(

· , ·
)

and l(·) are given by

a
(

(u⋆, ϕ⋆), (v, ψ)
)

:=
∫

Ω̂Aαβγρeαβ(u⋆)eγρ(v) dx+
∫

Ω̂ p33 ∂3ϕ
⋆ ∂3ψ dx

−
∫

Ω̂ p3αβ

(

eαβ(u⋆)∂3ψ − eαβ(v)∂3ϕ
⋆
)

dx,

l
(

(v, ψ)
)

:=

∫

Ω̂

f̂ · v dx+

∫

Γ̂N

ĝ · v dΓ̂N +

∫

Ω̂

r̂ ψ dx−
∫

Γ̂eN

θ̂ ψ dΓ̂N , (18)

where Aαβγρ, p3αβ and p33 are modified material parameters (see part A of
the appendix for details).

Proof : For convenience of the reader, we split the proof into five steps.

Step 1 - Existence of weak limits u⋆, κ⋆ and ϕ⋆ of subsequences of (uh),

(κh(uh)) and (ϕh), respectively. We first choose (v, ϕ) ∈ K̂ × Ψ̂ in (14) such
that vα = uh

α, v3 = 0 and ψ = −ϕ̄h. This results in j(v)− j(uh) = 0 and thus
(14) becomes

bh
(

(uh, ϕ̄h), ((0, 0, uh
3), ϕ̄

h)
)

≤ lh
(

((0, 0, uh
3), ϕ̄

h)
)

. (19)

Next, choosing (v, ϕ) ∈ K̂ × Ψ̂ as vα = −uh
α, v3 = uh

3 and ψ = −2ϕ̄h, again
j(v) − j(uh) = 0 and from (14)

bh
(

(uh, ϕ̄h), ((−2uh
1,−2uh

2, 0),−2ϕ̄h)
)

≥ lh
(

((−2uh
1,−2uh

2, 0),−2ϕ̄h)
)

,

which is equivalent to

bh
(

(uh, ϕ̄h), ((uh
1, u

h
2, 0), ϕ̄h)

)

≤ lh
(

((uh
1, u

h
2, 0), ϕ̄h)

)

. (20)
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Adding (19) and (20) results in

bh
(

(uh, ϕ̄h), (uh, ϕ̄h)
)

≤ lh
(

(uh, ϕ̄h)
)

,

from which we can deduce

‖uh‖2
V̂
+

∫

Ω̂

κh(uh) : κh(uh)dx+‖h ∂1ϕ̄
h‖2

L2(Ω̂)
+‖h ∂2ϕ̄

h‖2
L2(Ω̂)

+‖∂3ϕ̄
h‖2

L2(Ω̂)
< c,

(21)
where c > 0 is a constant independent of h (see also [28]). Consequently,
there are weakly convergent subsequences of (uh), (κh(uh)) and (ϕh) with

uh ⇀ u⋆ in
(

H1(Ω̂)
)3
,

κh(uh) ⇀ κ⋆ in
(

L2(Ω̂)
)9
,

ϕ̄h ⇀ ϕ̄⋆ = ϕ⋆ − ϕ̂0 in L2(Ω̂),

ϕh ⇀ ϕ⋆ in L2(Ω̂),

(h∂1ϕ
h, h∂2ϕ

h, ∂3ϕ
h) ⇀ (0, 0, ∂3ϕ

⋆) in
(

L2(Ω̂)
)3
.

(22)

The first two weak convergences follow directly from (21). The existence of
the third and fourth weak limit in (22) follows from (21) using the fact that

ϕ̄h(x1, x2, x3) =

{ ∫ x3

−1 ∂3ϕ̄
h(x1, x2, y3)dy3 for S = Γ̂± or S = Γ̂−

−
∫ +1

x3
∂3ϕ̄

h(x1, x2, y3)dy3 for S = Γ̂+,
(23)

which results in

‖ϕ̄h‖L2(Ω̂) ≤
√

2 ‖∂3ϕ̄
h(x1, x2, x3)‖L2(Ω̂) ≤ c (24)

with c > 0 independent of h. This implies the L2(Ω̂)-boundedness of ϕ̄h and

ϕh = ϕ̄h + ϕ̂0. In particular, ϕ⋆ = ϕ̂0 on S because ϕ̄h = 0 on Γ̂eD ⊇ S.
Finally, the last convergence in (22) is a consequence of (21), which implies
that

(h∂1ϕ
h, h∂2ϕ

h, ∂3ϕ
h) ⇀ (ϑ1, ϑ2, ϑ3) in

(

L2(Ω̂)
)3
.

The weak convergence of ϕh to ϕ⋆ yields ∂iϕ
h ⇀ ∂iϕ

⋆ in L2(Ω̂), and thus
ϑα = 0 for α = 1, 2, and ϑ3 = ∂3ϕ

⋆.
Moreover, from (22) we can also deduce that u⋆ ∈ V̂KL. In fact, from

(21) we obtain boundedness of the sequence κh
i3(u

h) in L2(Ω̂). Consequently,

eα3(u
h) = hκh

α3(u
h) and e33(u

h) = h2κh
33(u

h) → 0 strongly in L2(Ω̂). Thus,
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ei3(u
⋆) := 1

2(∂iu
⋆
3 + ∂3u

⋆
i ) = 0, which implies u⋆ ∈ V̂KL. We also remark that,

appropriate choice of subsequences guarantees that

κ⋆
αβ = eαβ(u⋆) =

1

2
(∂αu

⋆
β + ∂βu

⋆
α) (25)

yielding that the weak limit κ⋆ depends explicitly on u⋆.

Step 2 - Auxiliary limits. As a consequence of the weak convergences (22)

we obtain for arbitrary (v, ψ) ∈ V̂KL × Ψ̂ that

lim
h→0+

bh
(

(uh, ϕh), (v, ψ)
)

:= b⋆
(

(u⋆, ϕ⋆), (v, ψ)
)

,

lim
h→0+

lh
(

(v, ψ
)

) := l⋆
(

(v, ψ
)

),

where for (v, ψ) in V̂KL × Ψ̂

b⋆
(

(u⋆, ϕ⋆), (v, ψ)
)

:=
∫

Ω̂Cαβijκ
⋆
ijeαβ(v) dx+

∫

Ω̂ ε33 ∂3ϕ
⋆ ∂3ψ dx+

+
∫

Ω̂ P3αβ ∂3ϕ
⋆ eαβ(v) dx−

∫

Ω̂ P3lm ∂3ψ κ
⋆
lm dx,

(26)
and

l⋆
(

(v, ψ
)

) :=
∫

Ω̂ f̂ · v dx+
∫

Γ̂N
ĝ · v dΓ̂N +

∫

Ω̂ r̂ ψ dx−
∫

Γ̂eN
θ̂ ψ dΓ̂N

−
∫

Ω̂ ε33 ∂3ϕ̂0 ∂3ψ dx−
∫

Ω̂ P3αβ ∂3ϕ̂0 eαβ(v) dx.

Moreover
lim

h→0+

(

j(v) − j(uh)
)

= j(v) − j(u⋆).

Step 3 - The weak limits u⋆, κ⋆ and ϕ⋆ are also strong limits. Here, it suffices
to prove that χh strongly converges to χ⋆ in (L2(Ω̂))12, with

χh = (κh(uh), h∂1ϕ
h, h∂2ϕ

h, ∂3ϕ
h) ∈

(

L2(Ω̂)
)12

χ⋆ = (κ⋆, 0, 0, ∂3ϕ
⋆) ∈

(

L2(Ω̂)
)12
.

By the ellipticity and linearity of bh(. , .), we have

c‖χh − χ⋆‖2
(L2(Ω̂))12

≤ bh
(

(κh(uh) − κ⋆, ϕh − ϕ⋆), (κh(uh) − κ⋆, ϕh − ϕ⋆)
)

= bh
(

(κh(uh), ϕh), (κh(uh), ϕh)
)

+ bh
(

(κ⋆, ϕ⋆), (κ⋆, ϕ⋆)
)

−bh
(

(κh(uh), ϕh), (κ⋆, ϕ⋆)
)

− bh
(

(κ⋆, ϕ⋆), (κh(uh), ϕh)
)

,

(27)
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where c > 0 is independent of h. Replacing ψ by ψ − ϕh in (14), we obtain

bh
(

(κh(uh), ϕ̄h), (κh(v)−κh(uh), ψ−ϕh)
)

+ j(v)− j(uh) ≥ lh
(

v−uh, ψ−ϕh
)

,

which is, recalling that ϕ̄h = ϕh − ϕ̂0 and noticing that (κh(v)− κh(uh), ψ−
ϕh) = (κh(v), ψ) − (κh(uh), ϕh), equivalent to

bh
(

(κh(uh), ϕh), (κh(uh), ϕh)
)

≤ bh
(

(κh(uh), ϕh), (κh(v), ψ)
)

+ j(v) − j(uh)

−
∫

Ω̂ f · (v − uh) dx−
∫

Γ̂N
g · (v − uh) dΓ̂N

−
∫

Ω̂ r (ψ − ϕh) dx+
∫

Γ̂eN
θ (ψ − ϕh) dΓ̂eN ,

(28)

for any v ∈ K̂. Thus, considering v ∈ V̂KL ∩ K̂ in (14), using the weak
convergences (22) and the limits of step 2, we derive from (27) and (28) the
estimate

c lim sup ‖χh − χ⋆‖2
(L2(Ω̂))12

≤ b⋆
(

(u⋆, ϕ⋆), (v, ψ)
)

+ j(v) − j(u) − l(v − u⋆, ψ − ϕ⋆) − b⋆
(

(u⋆, ϕ⋆), (u⋆, ϕ⋆)
)

= b⋆
(

(u⋆, ϕ⋆), (v − u⋆, ψ − ϕ⋆)
)

+ j(v) − j(u⋆) − l(v − u⋆, ψ − ϕ⋆),

with l(.) as defined in (18). Choosing v = u⋆ and ψ = ϕ⋆ in the above
estimate yields

c lim sup ‖χh − χ⋆‖(L2(Ω̂))12 ≤ 0,

which implies the strong convergence of χh to χ⋆ in (L2(Ω̂))12. Due to ∂3(ϕ
h−

ϕ⋆) → 0 strongly in L2(Ω̂) and ϕh−ϕ⋆ ∈ Ψ̂l0, we obtain ϕh−ϕ⋆ → 0 strongly

in L2(Ω̂) using the equivalence of the norms ‖.‖Ψl
and ‖.‖Ψl0

in Ψl0. Moreover,

ei3(u
⋆) = 0, eαβ(u⋆) = κ⋆

αβ and κh(uh) → κ⋆ strongly in (L2(Ω̂))9. Thus, we

have eαβ(uh) → eαβ(u⋆) strongly in (L2(Ω̂))9, which proves that uh → u⋆

strongly in (H1(Ω̂))3.

Step 4 - Formulas for κ⋆ = (κ⋆
ij). In (25) we already observed that κ⋆

αβ =

eαβ(u⋆). To obtain formulas for κ⋆
α3 and κ⋆

33, we first multiply (14) by h2 and
consider ψ = 0. Next, we multiply (14) by h and consider v3 = uh

3 and ψ = 0.
Due to the strong convergences proved in step 3, as h→ 0+ the limit in the
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two resulting variational inequalities exists and we obtain
∫

Ω̂

(

Cij33 κ
⋆
ij + P333 ∂3ϕ

⋆
)

∂3(v3 − u⋆
3) dx ≥ 0 (29a)

∀v3 ∈ H1(Ω̂), v3|Γ̂−
≥ −s, v3|Γ̂D

= 0,

∫

Ω̂

(

Cijα3 κ
⋆
ij + P3α3 ∂3ϕ

⋆
)

∂3(vα − u⋆
α) dx ≥ 0 (29b)

∀vα ∈ H1(Ω̂), vα|Γ̂D
= 0.

Since u⋆
3 is independent of x3, we obtain ∂3u

⋆
3 = 0 in (29a). In (29b), we

choose vα := zα + u⋆
α with zα ∈ H1(Ω̂) arbitrary with zα|Γ̂D

= 0. Hence, the

inequalities (29) become
∫

Ω̂

(

Cij33 κ
⋆
ij + P333 ∂3ϕ

⋆
)

∂3v3 dx ≥ 0 (30a)

∀v3 ∈ H1(Ω̂), v3|Γ̂−
≥ −s, v3|Γ̂D

= 0,

∫

Ω̂

(

Cijα3 κ
⋆
ij + P3α3 ∂3ϕ

⋆
)

∂3vα dx = 0 (30b)

∀vα ∈ H1(Ω̂), vα|Γ̂D
= 0.

For arbitrary θ ∈ D(Ω̂) we consider v3 in (30a) as

v3(x1, x2, x3) =
∫ x3

−1 θ(x1, x2, t) dt+ z3(x1, x2),

with z3 ∈ H1(ω) such that z3(x1, x2) ≥ −s(x1, x2,−1) for all (x1, x2) ∈ ω.
Moreover, we choose vα in (30b) as

vα(x1, x2, x3) =

∫ x3

−1

θ(x1, x2, t) dt.

Then, from (30) we obtain

Cij33 κ
⋆
ij + P333 ∂3ϕ

⋆ = 0 in L2(Ω̂),

Cijα3 κ
⋆
ij + P3α3 ∂3ϕ

⋆ = 0 in L2(Ω̂).
(31)
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Since κ⋆
αβ = eαβ(u⋆), this leads to the formulas

κ⋆
α3 = −1

2bνα

(

aνρβeρβ(u
⋆) + cν∂3ϕ

⋆
)

κ⋆
33 = − 1

C3333

(

P333∂3ϕ
⋆ + C33αβeαβ(u⋆)

)

+ C33α3

C3333
bνα

(

aνρβeρβ(u⋆) + cν∂3ϕ
⋆
)

(32)
where the coefficients bνα, aνρβ and cν are modified material parameters de-
fined in part A of the appendix.

Step 5 - The limit variational inequality. From the previous steps 3-4 and (13)

we directly obtain the following strong L2(Ω̂)-convergences, for the scaled
stress tensor and the electric displacement vector

σh
ij(u

h, ϕh) → σ⋆
ij and Dh

i (u
h, ϕh) → D⋆

i

where
σ⋆

αβ = Cαβlmκ
⋆
lm + P3αβ∂3ϕ

⋆

σ⋆
i3 = Ci3lmκ

⋆
lm + P3i3∂3ϕ

⋆ = 0 (because of (31))

D⋆
i = Pilmκ

⋆
lm − εi3∂3ϕ

⋆.

(33)

With (32) for κ⋆ we get

σ⋆
αβ = Aαβγρeαβ(u⋆) + p3αβ∂3ϕ

⋆

D⋆
i = piαβeαβ(u⋆) − pi3∂3ϕ

⋆,
(34)

where the coefficients Aαβγρ, piαβ and pi3 are defined in the appendix, part
A.

Using again the strong convergences obtained in step 3 and ϕ⋆ = ϕ̄⋆ + ϕ̂0

we can take the limit in (14) and obtain the limit variational inequality:














Find (u⋆, ϕ⋆) ∈ V̂KL ∩ K̂ × Ψ̂l such that:

b⋆
(

(u⋆, ϕ⋆), (v − u⋆, ψ)
)

+ j(v) − j(u⋆) ≥ l
(

(v − u⋆, ψ)
)

∀(v, ψ) ∈ V̂KL ∩ K̂ × Ψ̂l0, ϕ
⋆ = ϕ̂0 on S.

(35)

Here the linear form l(·) is defined by (18) and the bilinear form b⋆(· , ·) by
(26). From (33) one obtains

b⋆
(

(u⋆, ϕ⋆), (v, ψ)
)

=

∫

Ω̂

σ⋆
αβ eαβ(v) dx−

∫

Ω̂

D⋆
3 ∂3ψ dx. (36)

Using now the equivalent definitions of σ⋆
αβ and D⋆

3 given in (34), the right-

hand side of (36) turns out to be precisely a
(

(u⋆, ϕ⋆), (v, ψ)
)

. Hence (35)
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coincides with the limit problem (17) and the proof of the theorem is finished.
We remark that, the solution of this limit problem is unique if the bilinear
form a

(

· , ·
)

in (17) is elliptic in the set VKL ∩ K̂ × Ψ̂l0 (cf. [14]). This
is, for instance, the case if the material is mechanically monoclinic, that
is, Cαβγ3 = 0 = Cα333 (see Theorem 3.3 in [11]). One easily verifies that
this ellipticity result also holds true for a laminated plate with mechanically
monoclinic piezoelectric layers.

3.3. Rescaling to the original domain. The limit variational inequality
(17) can be rescaled to the original plate Ω = ω× (−h, h). In order to do so,
let x3 ∈ (−1,+1) and u⋆

α = ζ⋆
α − x3∂αζ

⋆
3 , u

⋆
3 = ζ⋆

3 be the components of the
Kirchhoff-Love limit displacement u⋆. The corresponding descaled function
ζ = (ζ1, ζ2, ζ3) is given by

ζα := h2ζ⋆
α, ζ3 := h ζ⋆

3 in ω̄,

which leads to the descaled variables

uα(x) := h2u⋆
α = ζα(x1, x2) − x3∂αζ3(x1, x2),

u3(x) := hu⋆
3(x1, x2) = ζ3(x1, x2),

ϕ(x) := h3ϕ⋆(x),

for x = (x1, x2, x3) ∈ Ω = ω × (−h, h). Above, ζα and ζ3 are in-plane and
transverse Kirchhoff-Love displacements, ui is the limit mechanical displace-
ments and ϕ the electric potential inside the plate Ω. The spaces VKL, Ψl

and Ψl0 correspond to the descaled variables defined over Ω and are given by
(15)–(16) with Ω̂ replaced by Ω and Γ̂ by Γ in the definition of S.

Plugging the rescaled variables in the limit problem found in Theorem 1,
we obtain the following rescaled limit problem:














Find (u, ϕ) ∈ VKL ∩K × Ψl such that:

a
(

(u, ϕ), (v− u, ψ)
)

+ j(v) − j(u) ≥ l
(

(v − u, ψ)
)

, ∀(v, ψ) ∈ VKL ∩K × Ψl0,

ϕ = ϕ0, on S,

(37)
where for u, v in VKL and ϕ, ψ in Ψ

a
(

(u, ϕ), (v, ψ)
)

:=
∫

ΩAαβγρeαβ(u)eγρ(v) dx+
∫

Ω p33 ∂3ϕ∂3ψ dx

−
∫

Ω p3αβ

(

eαβ(u) ∂3ψ − eαβ(v) ∂3ϕ
)

dx,
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and

l
(

(v, ψ)
)

:=

∫

Ω

f · v dx+

∫

ΓN

g · v dΓN +

∫

Ω

r ψ dx−
∫

ΓeN

θ ψ dΓeN .

3.4. Decoupling of u and ϕ. The structure of the bilinear form a(· , ·),
obtained by the asymptotic procedure above allows a certain uncoupling
of the mechanical displacement u and the electric potential ϕ. This leads
to a variational inequality in the mechanical displacement u only, and an
explicit formula for the electric potential. This explicit form, which is a
second order polynomial with coefficients that depend on the Kirchhoff-Love
displacement u, obeys a slightly different form for each of the boundary
partitions (ebc1), (ebc2), (ebc3) for the electric data.

To derive the decoupling, we choose v = u in the variational inequality
(37) and obtain

∫

Ω

(

p33 ∂3ϕ− p3αβ eαβ(u)
)

∂3ψ dx =

∫

Ω

r ψ dx−
∫

ΓeN

θ ψ dΓeN

for all ψ ∈ Ψl0. Due to the density of Ψl0 in D(Ω) (see [28]), this yields the
following formula for ∂3ϕ

∂3ϕ =
p3αβ

p33

(

eαβ(ζ) − x3 ∂αβζ3
)

− d

p33
with d = P3r + c, (38)

where c ∈ D(ω) and P3r =
∫ x3

−h r dy3 denotes the antiderivative of r with
respect to the thickness variable x3. Using this latter formula and one of
the boundary conditions (ebci), we obtain explicit formulas for the electric
potential. In the case that the electric potential is given on both the upper
and lower surface Γ− and Γ+, we integrate (38) with respect to x3. Then,
using the given boundary data, we obtain the formula (see also Theorem 2.1
in [8])

ϕ(x1, x2, x3) = ϕ−
0 (x1, x2) +

∫ x3

−h

(

(p3αβ

p33
− aαβ

p33
c0

)

eαβ(ζ)

−
(p3αβ

p33
y3 −

bαβ

p33
c0

)

∂αβζ3 +
(ϕ+

0 − ϕ−
0 + R) c0 − P3r

p33

)

dy3,

(39)
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where

aαβ :=

∫ +h

−h

p3αβ

p33
dx3, bαβ :=

∫ +h

−h

x3
p3αβ

p33
dx3,

c0 =
(

∫ +h

−h

1

p33
dx3

)−1

, R :=

∫ +h

−h

P3r

p33
dx3.

For the case that the electric potential is either given on Γ− or Γ+, i.e., for
the cases (ebc2) and (ebc3), we plug (38) into (37) and choose again v = u

to obtain

−
∫

Ω

(P3r + c) ∂3ψ dx =

∫

Ω

r ψ dx−
∫

ΓeN

θ ψ dΓeN .

¿From the Green formula we obtain ∂3(P3r + c) = r in D(Ω) and

−
∫

ΓeN

(P3r + c)n3ψ dx−
∫

ΓeD

(P3r + c)n3ψ dx = −
∫

ΓeN

θ ψ dΓeN , (40)

with n3 = 0 on the lateral boundaries Γe and Γs, n3 = ±1 on Γ± and ψ = 0
on ΓeD. Choosing ψ such that ψ = 0 on the lateral boundary, (40) reduces to

∫

Γ+

(P3r + c)ψ dΓ+ =

∫

Γ+

θ ψ dΓ+ for (ebc2),

−
∫

Γ−

(P3r + c)ψ dΓ− =

∫

Γ−

θ ψ dΓ− for (ebc3).

This implies, for (ebc2) that c(x1, x2) = (θ − P3r)(x1, x2,+h), and for (ebc3)
that c(x1, x2) = (−θ − P3r)(x1, x2,−h). Consequently, integrating (38) with
d = P3r + c along the thickness variable (from −h to x3 for (ebc2) and from
x3 to +h for (ebc3)), we obtain

ϕ(x1, x2, x3) = ϕ−
0 (x1, x2) +

∫ x3

−h

p3αβ

p33

(

eαβ(ζ) − y3 ∂αβζ3
)

dy3

−
∫ x3

−h

P3r(x1, x2, y3) + (θ − P3r)(x1, x2,+h)

p33
dy3 for (ebc2)

(41)
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and

ϕ(x1, x2, x3) = ϕ+
0 (x1, x2) −

∫ +h

x3

p3αβ

p33

(

eαβ(ζ) − y3 ∂αβζ3
)

dy3

+

∫ +h

x3

P3r(x1, x2, y3) + (−θ − P3r)(x1, x2,−h)
p33

dy3 for (ebc3).

(42)
Next, we plug the above explicit forms for the electric potential into (37) and
choose the electric test function ψ = 0. This gives an equivalent formulation
for the variational inequality (37), which is summarized in the next theorem.
Now, the mechanical displacement and the electric potential are not coupled
in the variational inequality any more. The main advantage of this decoupled
formulation is that after solving a variational inequality for the mechanical
displacement, one can use an explicit formula for the electric potential.

Theorem 2. Let (u, ϕ) ∈ VKL × Ψl be a solution of problem (37), where
uα = ζα − x3∂αζ3, u3 = ζ3, and ζ = (ζ1, ζ2, ζ3). Then the Kirchhoff-Love
mechanical displacement u ∈ VKL is also characterized as solution of the
variational inequality

{

Find u ∈ VKL ∩K such that:

aebci(u, v − u) + j(v) − j(u) ≥ lebci(v − u) ∀v ∈ VKL ∩K,
(43)

and the electric potential can be derived a posteriori from (39) for (ebc1),
(41) for (ebc2) and (42) for (ebc3). The modified bilinear and linear forms,
respectively aebci(·, ·) and lebci(·), are defined by

aebci(u, v) :=

∫

ω

(

N ebci
αβ (u) eαβ(η) +M ebci

αβ (u) ∂αβη3

)

dω,

lebci(v) :=

∫

Ω

f · v dΩ +

∫

ΓN

g · v dΓN + lebcie (v),

where N ebci
αβ (u), N ebci

αβ (u) and lebcie (.) are detailed in part B of the appendix.

Remark 1. Let us comment on a different (fourth) choice of electric bound-
ary condition (ebc4) given by

(ebc4) : ΓeN = Γs ∪ Γ− ∪ Γ+ and ΓeD = Γe

where we assume meas(γe) > 0. This means that we apply an electric sur-
face charge on both the upper and lower surface of the plate. This case
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requires a different treatment in the asymptotic analysis: Note that instead

of (22) we only obtain uh ⇀ u⋆ in
(

H1(Ω̂)
)3

, κh(uh) ⇀ κ⋆ in
(

L2(Ω̂)
)9

and

(h∂1ϕ
h, h∂2ϕ

h, ∂3ϕ
h) ⇀ (ϑ1, ϑ2, ϑ3) in

(

L2(Ω̂)
)3

. Now, we cannot conclude

that ϕh, ϕ̄h are weakly convergent since (23) and consequently (24) do not
apply. Hence, ϑ1, ϑ2 are not necessary equal to zero and the limit problem
changes considerably. This is in accordance with observations in [26, 25, 33],
where it is shown that for different electric boundary conditions significantly
different limit problems may arise. To obtain an easier interpretation for the
limit problem in case of (ebc4), it might be advantageous to consider scalings
different from those used in this paper for the electric potential.

Remark 2. We now sketch the strong (i.e., the differential) form of the
limit problem obtained in Theorem 2. This form uses Lagrange multipliers to
resolve the contact and friction conditions and is obtained assuming sufficient
regularity of (u, ϕ) as well as partial integration. It follows from duality
theory [10] that there exist so called multipliers (or dual variables) (λ, µ) ∈
(H2(ω))′ × (L2(ω))2 satisfying complementarity conditions (see (47d), (47e)
below) for (43), where (H2(ω))′ denotes the dual of H2(ω). Then, u ∈ VKL∩
K can be written as

aebci(u, v) +

∫

Γ−

λ vn dΓ− +

∫

Γ−

µ · vt dΓ− = lebci(v), ∀v ∈ VKL. (44)

Choosing test functions v = (η1 − x3∂1η3, η2 − x3∂2η3, η3) ∈ VKL with η1 =
η2 = 0 and η3 6= 0, i.e., v = (−x3∂1η3,−x3∂2η3, η3), (44) is equivalent to

∫

ω

M ebci
αβ (u) ∂αβη3 −

∫

Γ−

λ η3 dΓ− +

∫

Γ−

µα (−x3∂αη3) dΓ− =

lebci
(

(−x3∂1η3,−x3∂2η3, 0)
)

∀η3 ∈ H2(ω) with η3 = 0 on γ0.

(45)

On the other hand, choosing η3 = 0 and ηα 6= 0 for α = 1, 2, i.e., v =
(η1, η2, 0), (44) becomes

∫

ω

N ebci
αβ (u) eαβ(η) +

∫

Γ−

µα ηα dΓ− = lebci
(

(η1, η2, 0)
)

∀(η1, η1) ∈
(

H1(ω)
)2

with ηα = 0 on γ0.

(46)

Using Green’s theorem in (45) and (46) while neglecting regularity issues,
and stating the complementarity conditions satisfied by (λ, µ) leads to the
following strong formulation of the limit problem.
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Equilibrium equations (coupling mechanical and electric effects)
[

∂αβM
ebci
αβ (u) − λ+ hx3 ∂αµα = F ebci

3 in ω,

−∂αN
ebci
αβ (u) + µβ = F ebci

β on ω, and β = 1, 2.
(47a)

Boundary conditions
[

ζ3 = 0 = ζ3

∂n, (ζ1, ζ2) = (0, 0) on γ0,

boundary conditions for the terms M ebci
αβ + µα and N ebci

αβ .
(47b)

Constitutive equations
[

σαβ(u, ϕ) = Aαβγρeγρ(u) + p3αβ∂3ϕ, σi3(u, ϕ) = 0 in Ω,

Di(u, ϕ) = piαβeαβ(u) − pi3∂3ϕ in Ω.
(47c)

Contact condition

un = −u3 =≤ s, λ ≥ 0, λ(un − s) = 0 on Γ−. (47d)

Friction condition








|µ| =
√

µ2
1 + µ2

2 ≤ q and

|µ| < q ⇒ ut = 0,

|µ| = q ⇒ ∃c ≥ 0 : ut = cµ















on Γ−. (47e)

The terms F ebci
3 and F ebci

β represent the transverse and tangential forces
acting on the middle plane ω of the plate. They are related to the mechanical
forces, electric data and charges appearing in the definition of the linear form
lebci(·) (see part C of the appendix for details).

We observe that the limit mechanical displacement u satisfies a system of
equations independent of ϕ but depending on the elastic and piezoelectric
coefficients as well as the mechanical and electric data and boundary condi-
tions. Moreover, (u, ϕ) also satisfies the limit constitutive equations (47c),
which are a consequence of (34) and the descalings. In the equations (47a),
the tangential and transverse displacements ζα and ζ3 are coupled due to the
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anisotropy of the material (as can be seen in the definitions of M ebci
αβ (u) and

N ebci
αβ (u)) and since to the friction condition (the Lagrange multiplier µ ap-

pears in both equations of (47a)).
For the case of a homogeneous and isotropic material and if we neglect

friction, the tangential and transverse displacements ζα and ζ3 decouple in
the asymptotic model. This happens since the equations in (47a) become
independent from each other since the friction terms containing µ vanish,
since M ebci

αβ (u) = M ebci
αβ (ζ3) only depends on ζ3 and N ebci

αβ (u) = N ebci
αβ (ζ1, ζ2)

only depends on (ζ1, ζ2), see also [8, 11].

Remark 3. Obviously, the derivations in this paper remain true for friction-
less unilateral contact. In the same way, the results hold for bilateral contact
problems (i.e. the contact region is known a priori) with Tresca friction,
which is physically more meaningful than unilateral (i.e. unknown) contact
with Tresca friction. However, for the realization of contact with Coulomb
friction (which is a realistic and usually used friction law, see also the next
section) often a sequence of Tresca friction problems is solved. This renders
unilateral contact with Tresca friction to an important problem as well.

It should be mentioned that the asymptotic procedure employed in this pa-
per applies in a similar way to contact problems with thin linear elastic plates
with integrated piezoelectric patches or layers. The corresponding asymptotic
models can be derived using the same arguments as in this paper, provided
the piezoelectric patches or layers are perfectly linked (surface bonded or em-
bedded) to the elastic plates.

4. Numerical Examples

Here, we present numerical tests for the asymptotic equations obtained in
the previous sections. We first use a simple example to verify our code and
to discuss the friction and contact conditions and then focus on two exam-
ples, where the mechanical frictional contact behavior interacts significantly
with the electric potential. The numerical treatment of the contact and fric-
tion conditions for the mechanical displacement follows [16]. The mechanical
equations are discretized with bilinear finite elements for the tangential com-
ponents ζ1 and ζ2 and with second-order elements for ζ3. Note that, while
the asymptotic equations are defined on a two-dimensional domain, the fric-
tional contact conditions remain structurally as in three-dimensional contact
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mechanics, where frictional contact occurs on two-dimensional boundary sur-
faces. To slightly simplify the problem we replace for our numerical imple-
mentation the contact and friction conditions on Γ− by the same conditions
in the middle plane (and, for consistency, we also elevate the obstacle by h).

In all our examples we consider a laminated plate made of two layers of
different PZT piezoelectric ceramic materials. The material parameters are
taken from the tables VIII and XI in [19]. Both layers are assumed to be of
the same thickness h = 0.01 leading to a plate of thickness 0.02. The data
are given in SI units, i.e., length is measured in meter, mechanical forces in
Newton and electrical potentials in Volt.

4.1. Example 1. Using this example we verify our implementation for the
contact conditions and briefly discuss properties of Tresca friction contact
problems. We assume a plate with middle plate ω = [0, 2] × [0, 1] that
is subject to the mechanical volume forces f ≡ (5 · 107, 0,−5 · 105). The
obstacle is given by s = 0.015 and we assume the case (ebc2) with all zero
electrical boundary conditions. The friction bound for the Tresca friction
law is q = 107. In the upper plot of Figure 2 we show the deformed plate. In
the lower left plot we visualize the (a priori unknown) contact nodes as black
dots. In the lower right plot of Figure 2 we visualize the tangential stress
(red arrows) and the tangential displacement (blue lines) on a cutout of Γ−.
Note that sliding occurs only in direction of the tangential stress as required
in the Tresca friction law. Moreover, note that friction (that is, nonzero
tangential stress) occurs also in points where the plate is not in contact with
the obstacle, which clearly is an unphysical behavior. This is due to the fact
that in the Tresca friction law an a priori given friction bound q is used. The
more realistic Coulomb friction law uses q = F|σn| with the so called friction
coefficient F ≥ 0. Thus, in the latter case, q depends on u (see also Example
2). For a more detailed discussion of friction laws we refer to [9, 13], see also
[16].

4.2. Example 2. For this second example, ω = [0, 2] × [0, 1] and we again
use the electric boundary conditions (ebc2). To be more precise, we apply
an electric potential of θ = −1 on the upper surface Γ+ and assume the
lower surface to be grounded. Moreover, all mechanical forces are zero with
exception of f3 ≡ −105 (that is, the plate is subject to a gravity force pressing
it onto the obstacle). In Figure 3, we show the deformed plate using different
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Figure 2. Example 1: Deformed plate (upper plot). Lower
plots: nodes where the plate is in contact with the rigid obstacle
(black dots in left plot); tangential displacement (blue lines in
right plot) and tangential stress (red arrows in right plot) on a
part of ω.

obstacles. Besides the Signorini contact conditions, we use the Coulomb
friction law since it is more realistic than the Tresca law. Coulomb friction
means that q is not given a priori, but that q = F|σn|, with F ≥ 0 (we use
F = 1). The Coulomb friction problem is numerically treated by solving a
sequence of Tresca friction problems, see [16]. The computations shown in
Figure 3 are done using 80 × 40 finite elements.

Remarkably, the region of actual contact between obstacle and plate is
relatively small, even though additionally to the applied electric potential
the plate is subject to a gravity force pressing it towards the obstacle: For
s ≡ 0.015, contact occurs only on 4 grid points. For the two other obstacle
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Figure 3. Example 2: Deformed plate for Example 1 with
Coulomb friction, i.e. q = |σn|. Obstacle corresponding to
s = 0.015 (upper left), to s = 0.06 (upper right), to s = 0.11
(lower left) and deformation if not restricted with an obstacle
(lower right). Note the small contact regions.

the contact region consists of only 2 grid points. Even on finer meshes this
number does not increase (e.g., 4 contact points for s ≡ 0.015 when refining
the mesh to 160 × 80 elements). A possible explanation for this behavior
is that large inner stresses resulting from the applied electric potential θ
avoid a larger contact region with an (affine) obstacle. We’ve observed a
similar phenomenon also for the Tresca friction law and for other (non affine)
obstacles: If an electric potential is applied to the plate, contact regions are
remarkably small.

4.3. Example 3. In this example we show how the piezoelectric effect can
be used for the detection and study of obstacles using the sensor effect of
piezoelectric plates. We use a plate with middle plane ω = [0, 1]× [0, 1] that
is clamped along the boundary {0} × [0, 1]. It is subject to the constant
gravity force f3 = −106. All other mechanical forces are zero; moreover,
there are also no applied electric forces. We use the boundary conditions
(ebc2) with grounded lower surface (ϕ0 = 0 on Γ−). On the upper surface
Γ+, where we will measure the electric potential, we assume homogeneous
electric Neumann boundary conditions. The plate deforms from its original
state due to the applied mechanical force and the shape of the obstacle.
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Figure 4. Example 3: Different obstacles (left row), the corre-
sponding deformed plates (middle row) and contour plots of the
electric potentials on Γ+.

In this example we neglect the frictional forces and only assume Signorini
contact conditions. We focus on the electric potential on the upper surface
of the plate and study if it is possible to draw conclusions about the shape
of the obstacle.

In Figure 4 we show various obstacles, the corresponding deformed plates
contour plots of the electric potentials on Γ+. Note that if the obstacle obeys
a relatively simple structure, the electric potential on the upper surface allows
to draw conclusions about the obstacle. In this sense, piezoelectric plates can
be used as sensors for scanning and studying surfaces.
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Appendix. Part A. The modified tensors Aαβγρ, piαβ and pi3, in Theorem
1, are defined by

Aαβγρ := Cαβγρ −
Cαβ33C33γρ

C3333
+

(

Cαβ33
Cν333

C3333
− Cαβν3

)

bδν aδγρ,

piαβ := Piαβ − Cαβ33

C3333
Pi33 +

(

Pi33
C33ν3

C3333
− Piν3

)

bδν aδαβ ,

pi3 := εi3 +
Pi33P333

C3333
−

(

Pi33
C33ν3

C3333
− Piν3

)

bδν cδ,

where

aδγρ := C33γρCδ333 − Cδ3γρC3333, cδ := Cδ333P333 − C3333P3δ3,

[

bδν
]

:=
[

Cδ333C33ν3 − Cδ3ν3C3333

]−1
(identity between two matrices).

We remark that p3αβ can equivalently be computed as

p3αβ := P3αβ − Cαβ33

C3333
P333 +

(

Cαβ33
C33ν3

C3333
− Cαβν3

)

bδν cδ.

Part B. The terms (N ebci
αβ (u)) and (M ebci

αβ (u)), in Theorem 2, are the com-
ponents of second-order tensor fields corresponding to the Kirchhoff-Love
displacement u, given by the following matrix formula

[

N ebci
αβ (u)

M ebci
αβ (u)

]

= Oebci

[

eγρ(ζ)

∂γρζ3,

]

,

where the components of the 6 × 6 matrix Oebci are functions of the middle
plane ω, namely

Oebci =

[ ∫ +h

−h C
ebci
αβγρdx3 −

∫ +h

−h D
ebci
αβγρdx3

−
∫ +h

−h x3C
ebci
αβγρdx3

∫ +h

−h x3D
ebci
αβγρdx3

]

6×6

,
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with the modified coefficients defined on Ω:

Bαβγρ := Aαβγρ +
p3αβ p3γρ

p33

Cecbi
αβγρ := Bαβγρ + C̃ecbi

αβγρ with C̃ecbi
αβγρ =

{

−p3αβ aγρ

p33
c0 for (ebc1),

0 for (ebc2), (ebc3),

Decbi
αβγρ := x3Bαβγρ + D̃ecbi

αβγρ with D̃ecbi
αβγρ =

{

−p3αβ bγρ

p33
c0 for (ebc1),

0 for (ebc2), (ebc3).

The linear form lebci(.) is defined by

lebci(v) :=

∫

Ω

f · v dΩ +

∫

ΓN

g · v dΓN + lebcie (v),

with

lebcie (v) :=



















∫

Ω

(

P3r + (ϕ−
0 − ϕ+

0 − R) c0
) p3αβ

p33
eαβ(v) dx for (ebc1),

{
∫

Ω
p3αβ

p33

(

P3r(x1, x2, x3) + (h∗θ − P3r)(x1, x2, h
∗)

)

eαβ(v),

with h∗ = +1 for (ebc2) and h∗ = −1 for (ebc3).

Part C. The formulas for F ebci
3 and F ebci

β , which appear in Remark 2, are
defined by

F ebci
3 =

∫ +h

−h (x3∂αfα + f3) dx3 + g+
3 + g−3 + h ∂α(g+

α − g−α ) + ∂αβ

(

− x3G
ebci
αβ

)

,

F ebci
β =

∫ +h

−h fβ dx3 + (g+
β + g−β ) − ∂αG

ebci
αβ for β = 1, 2,

where

Gebci
αβ =























∫ +h

−h

(

P3r + (ϕ−
0 − ϕ+

0 − R) c0
) p3αβ

p33
dx3 for (ebc1)

{ ∫ +h

−h
p3αβ

p33

(

P3r(x1, x2, x3) + (h∗θ − P3r)(x1, x2, h
∗)

)

dx3,

with h∗ = +1, if i = 2 and h∗ = −1, if i = 3.
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Departamento de Matemática da Universidade de Coimbra 06-16, 2006.

[17] T. Ikeda. Fundamentals of Piezoelectricity. Oxford University Press, 1990.
[18] N. Kikuchi and J. T. Oden. Contact problems in elasticity: a study of variational inequalities

and finite element methods, volume 8 of SIAM Studies in Applied Mathematics. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1988.

[19] S. Klinkel and W. Wagner. A geometrically non-linear piezoelectric solid shell element based
on a mixed multi-field variational formulation. Int. J. Numer. Meth. Engng, 65(3):349–382,
2005.
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