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AND M. A. DE PRADA VICENTE

Abstract: By introducing lattice-valued covers of a set, we present a general
framework for uniform structures on very general L-valued spaces (for L an in-
tegral commutative quantale). By showing, via an intermediate L-valued structure
of uniformity, how filters of covers may describe the uniform operators of Hutton,
we prove that, when restricted to Girard quantales, this general framework captures
Hutton’s uniform spaces.

The categories of L-valued uniform spaces and L-valued uniform frames here
introduced provide (in the case L is a chain) the missing vertices in the commuta-
tive cube formed by the classical categories of topological and uniform spaces and
their corresponding pointfree counterparts (forming the base of the cube) and the
corresponding L-valued categories (forming the top of the cube).
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1. Introduction

In classical topology, uniform structures are usually approached in terms of
covers (Tukey [30]), via double powersets of the form 22X

, or, equivalently, in
terms of entourages (Weil [31]), via powersets of the form 2X×X . Entourages,
being binary relations, may be also easily described by polarities (that is,
Galois connections between power sets) and axialities (that is, residuated
pairs between power sets). This gives two more equivalent descriptions of
uniform spaces.

One of the questions of interest in lattice-valued topology concerns well-
founded definitions of uniform-type structures (see the introduction to [26]).
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The uniform structures of Hutton [15] have been regarded as the lattice-
valued counterpart to the classical covering uniformities of Tukey (see [27]), in
opposition to the fuzzy uniform spaces of Lowen [20], which are an extension
of the entourage approach of Weil. It is well known that, opposite to the
classical case, these two notions are not equivalent. In this paper we show
that residuations rather than covers are the root of Hutton’s approach, and
how lattice-valued covers of a set may describe lattice-valued uniformities.
This approach leads to a new category of L-valued uniform spaces in which
Hutton uniform spaces fit nicely. It will be apparent that this category
is the natural generalization of the classical Tukey’s definition to the L-
valued context. Some interesting observations about Hutton’s definition will
appear along the way. Namely, it will be clear why and when Hutton’s
axiomatization, based on residuated maps (axialities [4]), can be equivalently
seen as an L-residuated uniformity. Also, an open question appears: what
happens if Hutton’s axiomatization is formulated in terms of Galois maps
(polarities [4]), generalizing the meaning of being a reflexive relation (an
entourage) in this contravariant case.

The motivation for this paper arose from an observation of Pultr and Rod-
abaugh in [26] that lattice-valued frames may be useful in the establishment
of well-founded definitions of uniform-type structures. To put this in per-
spective, let us recall that a frame is a complete lattice M satisfying the
infinite distributivity law

m ∧
∨

S =
∨
{m ∧ s | s ∈ S}

for all m ∈ M and S ⊆ M , and a frame homomorphism h : M → N is a map
preserving finite meets (including the top 1) and arbitrary joins (including the
bottom 0). The resulting category will be denoted by Frm. The two-element
frame {0 < 1} will be denoted by 2.

If X is a topological space, the lattice O(X) of its open sets is a frame, and
if f : X → Y is a continuous map then O(f) : O(Y ) → O(X) defined by
O(f)(U) = f−1(U) is a frame homomorphism. Thus we have a contravariant
functor O : Top → Frm. Finally, recall the standard spectrum construction

Σ(M) =
({p : M → 2 | p ∈ Frm}, {Σm | m ∈ M})

for a frame M (where Σm = {p | p(m) = 1}). Defining, for each frame
homomorphism h : M → N , Σ(h) : Σ(N) → Σ(M) by Σ(h)(p) = p · h,
this constitutes a contravariant functor Σ : Frm → Top. The following are
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well-known facts: Σ is a right adjoint for O, each Σ(M) is a sober space (i.e.,
a T0 space X whose only meet irreducible elements are X \ {x}), the unit
map X → ΣO(X) is a homeomorphism if and only if X is sober, and the
unit morphism OΣ(M) → M is an isomorphism if and only if M is spatial
i.e., isomorphic to the frame of open sets of some topological space X. For
more details about frames see, e.g., [17] or [24].

The above adjunction O a Σ between the category of frames and the cat-
egory of topological spaces can be easily adapted to the uniform setting,
giving an adjunction between the category UFrm of uniform frames (intro-
duced by Isbell [16], and studied in detail by Pultr [25] in terms of covers; for
information about other different ways of describing them see [5] and [23])
and the category Unif of uniform spaces of Weil [31] and Tukey [30]. Then,
denoting by F1 and F2, respectively, the forgetful functors Unif → Top and
UFrm → Frm forgetting the uniform structure, the diagram

Unif
O //

F1

²²

UFrm
Σ

oo

F2

²²
Top

O //
Frm

Σ
oo

(1.1)

commutes.
In [26], the authors introduced L-valued frames, which relate to frames

in a way parallel to that in which the ιL functor (see [19, 18]) relates L-
valued topological spaces to topological spaces. Moreover, when L is linearly
ordered or, more generally, a spatial frame (see [13]), there is an adjunction
between L-Top and L-Frm that shows that L-valued frames generalize L-
valued topological spaces in a way parallel to frames generalizing topological
spaces. Specifically, denoting by χT

L and χF
L the (characteristic) functors

embedding the categories of 2-valued objects in question in the corresponding
categories of L-valued objects, the diagram

L-Top
O //

L-Frm
Σ

oo

Top

χT
L

OO

O //
Frm

Σ
oo

χF
L

OO
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commutes. Putting it together with (1.1) we get an incomplete diagram:

?
//

ÂÂ?
??

??
??

??
??

ÂÂ?
??

??
??

??
??

?

ÂÂ?
??

??
??

??
??

?oo

L-Top
O //

L-Frm
Σ

oo

Unif

OO

O //

F1 ÂÂ?
??

??
??

??
??

UFrm
Σ

oo

OO

F2

ÂÂ?
??

??
??

??
??

Top

χT
L

OO

O //
Frm

χF
L

OO

Σ
oo

A natural question arises:

Does there exist two types of structure (i.e. appropriate notions
of L-valued uniform spaces and frames) that would allow us to
complete the cube (by filling in the two question marks) in such
a way that the two new vertical arrows also represent embed-
ding functors, that the two new diagonal arrows also represent
forgetful functors, that the new horizontal arrows also establish
an adjunction, and that the whole diagram commutes?

The answer is not immediately obvious: as the authors of [26] point out,
the direct approach through uniformizing the L-topology τ as a frame is not
satisfactory. Indeed, a uniformity on τ induces a uniformity on the lattice
L of values (as observed by Banaschewski – see [26]); so, when L is linear,
we would stay within the crisp case, since the only linearly ordered frame
admitting a uniformity is the two-point frame 2 = {0 < 1}.

It is our purpose in this paper to show that all the points raised above
can be addressed in a satisfactory way. We introduce categories L-Unif and
L-UFrm, for general strictly two-sided commutative quantales L, that fill
in the two question marks: they are related respectively to the categories
L-Top and L-Frm in a parallel way and again, when L is linearly ordered or a
spatial frame, L-UFrm generalizes L-Unif in a way parallel to uniform frames
generalizing uniform spaces. Then we present an equivalent presentation for
L-Unif in terms of residuated mappings that will encompass Hutton’s original
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definition whenever L is a Girard quantale. It will be apparent that a slight
change in one of the axioms of Hutton makes a big difference and allows the
extension of the definition to more general contexts.

The paper is organized as follows. We begin, in Section 2, by establishing
some notations and by recalling some background on L-topological spaces
and uniform frames. Then, in Section 3, we introduce L-valued covers and
use them to axiomatize L-valued uniform structures for very general lattices
L (namely, strictly two-sided commutative quantales). In Section 4 we give
an alternative, equivalent, formulation in terms of residuated mappings. In
Section 5, we show that the latter approach, when restricted to Girard quan-
tales, implies Hutton’s axiomatization. Several arguments are presented in
favor of our approach. After recalling, in Section 6, some basic facts about
L-valued frames we relate, in Section 7, L-valued uniform spaces with uni-
form spaces and provide in Section 8 the missing vertex for the above cube:
the notion of an L-valued uniform frame.

2. Preliminaries and notation

2.1. L-valued spaces. We recall that (L,≤, ∗) is a quantale if

(1) (L,≤) is a complete lattice (with top element 1 =
∧
∅ and bottom

0 =
∨
∅).

(2) ∗ is an associative binary operation distributive over arbitrary joins:

α ∗
(∨

i∈I

βi

)
=

∨

i∈I

(α ∗ βi).

Since the operator α∗(−) preserves arbitrary joins, every quantale is resid-
uated, i.e. there exists the corresponding right adjoint α → (−) defined by
the relation

α ∗ β ≤ γ ⇐⇒ β ≤ α → γ.

In particular, → is given by α → γ =
∨{β ∈ L | α ∗ β ≤ γ}.

A quantale (L,≤, ∗) is strictly two-sided (or simply integral) if

(3) (L, ∗) is a monoid whose unit is the top element 1.

(Notice that an integral quantale is an integral cl-monoid in the sense of
[11].)

We list here some of the basic properties of integral quantales needed in
the sequel:
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(Q1) β ≤ γ ⇒ α ∗ β ≤ α ∗ γ.
(Q2) α ∗ 0 = 0 ∗ α = 0 for all α ∈ L.
(Q3) α ≤ (α → 0) → 0 for all α ∈ L.

Sometimes integral commutative quantales are referred to as complete resid-
uated lattices. Any frame is automatically a commutative integral quantale
(where the binary operation ∗ is given by the meet ∧).

A commutative unital quantale (i.e. a commutative quantale with a unit ε
satisfying α ∗ ε = ε ∗α = α for all α) is called a Girard quantale if it satisfies
the law of double negation

(Q4) α = (α → 0) → 0 for all α ∈ L.

Note that a Girard quantale is necessarily integral since

ε → 0 =
∨
{α ∈ L | ε ∗ α ≤ 0} = 0

and, consequently, ε = (ε → 0) → 0 = 0 → 0 = 1.
From now on, except when otherwise stated, we will assume that L is

an integral commutative quantale. For any set X, the set LX of mappings
X → L, with the partial order

a ≤ b ≡ a(x) ≤ b(x) for each x ∈ X,

is also an integral quantale: joins, meets and the binary operation ∗ are just
defined pointwisely. If A ⊂ X, then 1A ∈ LX denotes the characteristic
function of A, hence we denote the top element of LX by 1X and the bottom
by 1∅. The constant member of LX with value α is denoted α too. Given a
map f : X → Y , a ∈ LX and b ∈ LY , we define the usual (Zadeh) image and
preimage operators:

f→(a) =
∨

x∈X

a(x) ∧ 1{f(x)},

and
f←(b) = b · f

the composition of f and b. We shall need a number of properties of the
operators just defined viz.:

Properties 2.1. Let f : X → Y , g : Y → Z, a ∈ LX, b, b1, b2 ∈ LY , c ∈ LZ.
Then:
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(1) f← preserves the existing sups and infs; f→ preserves the existing sups
(in particular, they are both order-preserving),

(2) a ≤ f←(f→(a)),
(3) f→(f←(b)) ≤ b, and f→(f←(b)) = b if and only if f is surjective,
(4) (g · f)→(a) = g→(f→(a)),
(5) (g · f)←(c) = g←(f←(c)),
(6) f←(b1 ∗ b2) = f←(b1) ∗ f←(b2),
(7) f→(a) ∗ b 6= 1∅ if and only if a ∗ f←(b) 6= 1∅.

An L-valued topological space ([3], [14]) (shortly, an L-topological space)
is a pair (X, τ) consisting of a set X and a subset τ of LX (the L-valued
topology or L-topology on the set X), containing 1∅ and 1X and closed under
finite meets and arbitrary joins.

Given two L-valued topological spaces (X, τ1), (Y, τ2) a map f : X → Y is
an L-continuous map if the correspondence b 7→ f←(b) maps τ2 into τ1. The
resulting category will be denoted by L-Top.

Of course, when L = 2, an L-topological space is precisely a topological
space and there is an isomorphism between Top and L-Top, via the charac-
teristic functor (the one associating to each subset its characteristic function
and leaving morphisms unchanged). If L is a frame then the L-topologies,
being subframes of the frame LX , are frames as well.

2.2. Uniform spaces. There are several equivalent axiomatizations of the
notion of uniformity on a set X. We will refer to the one introduced by
Tukey [30] in which the basic term is the one of uniform cover of X. A cover
U refines a cover V , and in this case one writes U 4 V , if for each U ∈ U
there exists V ∈ V such that U ⊆ V . For each cover U of X and A ⊆ X, let

st(A,U) :=
⋃
{U ∈ U | U ∩ A 6= ∅}

be the star of A in U and st(U) := {st(V,U) | V ∈ U}, which is a cover too.
A uniformity on X is a set µ of covers of X such that:

(U1) µ is a filter in the preordered set (Cov(X), 4) of all covers of X.
(U2) for each U ∈ µ there is some V ∈ µ such that the cover st(V) refines

U .

A map f : (X,µ) −→ (Y, ν) between uniform spaces is uniformly continu-
ous if for every V ∈ ν, f−1[V ] = {f−1(V ) | V ∈ V} belongs to µ. We denote
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the resulting category of uniform spaces and uniformly continuous maps by
Unif.

The uniform topology Tµ induced by (X, µ) is the one generated by the
neighborhood basis {st({x},U)|U ∈ µ} for each x ∈ X. The correspondence
(X, µ) → (X, Tµ) defines the forgetful functor F1 : Unif → Top.

2.3. Uniform frames. Tukey’s approach to uniform spaces via covers was
the first to be studied in the pointfree context of frames. In [16] Isbell
introduced uniformities on frames, as the precise translation into frame terms
of Tukey’s notion, later developed in detail by Pultr [25].

Let M be a frame. A set C ⊆ M is a cover of M if
∨

c∈C c = 1. The set of
all covers of M , denoted as Cov(M), can be preordered as follows: a cover C
refines a cover D, written C 4 D, if for each c ∈ C there is some d ∈ D with
c ≤ d. Thus (Cov(M), 4) is a preordered set with meets and joins: take for
C ∧D the cover {c ∧ d | c ∈ C, d ∈ D} and for C ∨D just the union C ∪D.

For each m ∈ M , the star of m in C is the element

st(m,C) :=
∨
{c ∈ C | c ∧m 6= 0}

and st(C) := {st(c, C) | c ∈ C} which is also a cover of M . Further, for each
family C of covers of M , let

n
C
C m if there is C ∈ C such that st(n,C) ≤ m.

A family C of covers of a frame M is a uniformity [25] provided that:

(U1) C is a filter in the preordered set (Cov(M), 4).
(U2) For each C ∈ C there is a D ∈ C such that the cover st(D) refines C.

(U3) For every m ∈ M , m =
∨{n ∈ M | n C

C m}.
The pair (M, C) is then called a uniform frame. Let (M, C) and (N,D)

be uniform frames. A frame homomorphism h : M → N is a uniform ho-
momorphism if, for every C ∈ C, h[C] = {h(c) | c ∈ C} ∈ D. We denote
by UFrm the category of uniform frames and uniform homomorphisms. This
category is related to the category Unif of uniform spaces and uniformly con-
tinuous maps by a dual adjunction via the open and spectrum (contravariant)
functors:

The open functor O : Unif → UFrm assigns to each uniform space (X, µ)
the uniform frame (Tµ, CTµ

), where Tµ is the topology induced by µ and CTµ
is
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the collection of all Tµ-open covers of Tµ. If f : (X, µ) → (Y, ν) is uniformly
continuous, then O(f) : O(Y, ν) → O(X, µ) defined, for each V ∈ Tν, by
O(f)(V ) = f−1(V ), is a uniform homomorphism.

On the other hand, the spectrum functor Σ : UFrm → Unif assigns to each
uniform frame (M, C) the uniform space (ΣM,µΣM), being ΣM = {p : M →
2 | p ∈ Frm} the set of points of M and µΣM the filter of covers of ΣM
generated by ({Σm | m ∈ C})C∈C, where Σm = {p ∈ ΣM | p(m) = 1}. If
h : (M, C) → (N,D) is a uniform homomorphism then Σ(h) : Σ(N,D) →
Σ(M, C), given by Σ(h)(q) = q · h, is uniformly continuous.

This adjunction makes the diagram in (1.1) commutative.

3. Covering L-valued uniform spaces

Let L be an integral commutative quantale. We say that A ⊆ LX is an
L-cover of X if

∨A = 1X . For any A,B ⊆ LX we write

A 4 B if for each a ∈ A there exists b ∈ B such that a ≤ b.

The relation just defined makes the set of all L-covers of X, noted as L-
Cov(X), a preordered set. Let A ∗ B = {a ∗ b | a ∈ A, b ∈ B}, where
a ∗ b : X → L is defined pointwisely and A ∧ B = {a ∧ b | a ∈ A, b ∈ B}.
Clearly, A ∗ B 4 A ∧ B, since a ∗ b ≤ a ∗ 1X = a and a ∗ b ≤ 1X ∗ b = b.

Proposition 3.1. For every L-covers A and B, A∗B and A∧B are L-covers
of X.

Proof : Since ∗ distributes over arbitrary joins,∨(A ∗ B)
=

∨
A ∗

∨
B = 1X ∗ 1X = 1X ,

and it follows that A∗B is an L-cover. Then A∧B is also an L-cover because
A ∗ B 4 A ∧ B.

Notice that, since A∧B is an L-cover, then A∧B is the infimum of A and
B in the preordered set (L-Cov(X), 4) of all L-covers of X.

For each a ∈ LX and A ⊆ LX , let

st(a,A) :=
∨
{b ∈ A | b ∗ a 6= 1∅}

and
st(A) := {st(a,A) | a ∈ A},

which is an L-cover.
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Proposition 3.2. Let A,B ⊆ LX and a, b ∈ LX. Then:

(1) If A is an L-cover then a ≤ st(a,A) and, consequently, A 4 st(A).
(2) If a ≤ b then st(a,A) ≤ st(b,A).
(3) If A 4 B then st(a,A) ≤ st(a,B).
(4) st(

∨B,A) =
∨

b∈B st(b,A).
(5) If A is an L-cover then st(st(a,A),A) ≤ st(a, st(A)).
(6) Let f : X → Y , B ⊆ LY , f−1[B] := {f←(b) | b ∈ B} and c ∈ LY . Then,

st(f←(c), f−1[B]) ≤ f←(st(c,B)).

Proof : (1): a = 1X∗a =
(∨

b∈A b
)∗a =

∨{b∗a | b ∈ A, b∗a 6= 1∅} ≤ st(a,A).

(2) and (3): These are obvious.

(4):
st(

∨
B,A) =

∨
{a ∈ A | a ∗

∨
B 6= 1∅}

=
∨
{a ∈ A |

∨

b∈B
(a ∗ b) 6= 1∅}

=
∨
{a ∈ A | a ∗ b 6= 1∅ for some b ∈ B}

=
∨

b∈B
st(b,A).

(5): For each a ∈ LX we have, using the previous property,

st(st(a,A),A) =
∨
{st(b,A) | b ∈ A, b ∗ a 6= 1∅}.

Since, for each such b, st(b,A) ∈ st(A) and st(b,A) ∗ a ≥ b ∗ a 6= 1∅, we have
immediately st(st(a,A),A) ≤ st(a, st(A)).

(6) Since f← preserves arbitrary sups and the binary operation ∗ (see Prop-
erties 2.1), we have:

st(f←(c), f−1[B]) =
∨
{f←(b) | b ∈ B, f←(b) ∗ f←(c) 6= 1∅}

= f←
(∨

{b ∈ B | f←(b ∗ c) 6= 1∅}
)

≤ f←
(∨

{b ∈ B | b ∗ c 6= 1∅}
)

= f←(st(c,B)).
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Definition 3.3. We say that a pair (X, U) consisting of a set X and a non-
empty family U of L-covers of X is a covering L-uniform space whenever the
following conditions are satisfied:

(C1) A 4 B,A ∈ U ⇒ B ∈ U.
(C2) For every A,B ∈ U, A ∧ B ∈ U.
(C3) For each A ∈ U there exists B ∈ U such that st(B) 4 A.

A base for the covering L-uniformity U is any subcollection of U from which
U can be recovered by applying condition (C1).

A map f : (X, U) → (Y, V) is a uniform homomorphism if, for every B ∈ V,
f−1[B] ∈ U. The resulting category will be denoted by L-Unif. Of course, for
L = 2, this is precisely the category of (covering) uniform spaces of Tukey
[30].

For each (X, U) ∈ L-Unif define

τU :=
{

a ∈ LX | a =
∨
{b ∈ LX | st(b,A) ≤ a for some A ∈ U}

}
.

Note that, when L = 2, τU is just the crisp topology induced by the (classical)
uniformity U on X.

Proposition 3.4. (X, τU) is an L-topological space whenever L is a frame.

Proof : It suffices to check that int : LX → LX defined by

int(a) =
∨
{b ∈ LX | st(b,A) ≤ a for some A ∈ U}

is an L-interior operator [14], that is:

(I1) int(1X) = 1X .
(I2) int(a) ≤ a for every a ∈ LX .
(I3) int(int(a)) = int(a) for every a ∈ LX .
(I4) int(a ∧ b) = int(a) ∧ int(b) for every a, b ∈ LX .

(I1) and (I2) are trivially satisfied.
(I3): Let b ∈ LX satisfying st(b,A) ≤ a for some A ∈ U and take B ∈ U such
that st(B) 4 A. Then st(b,B) ≤ int(a) since st(st(b,B),B) ≤ st(b, st(B)) ≤
st(b,A) ≤ a by Proposition 3.2. This shows that int(a) ≤ int(int(a)) and the
equality follows from (I2).
(I4): Since L is a frame, meets distribute over arbitrary joins and then (I4)
follows immediately from (C2).
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τU-open L-covers of U form a base for the covering L-uniformity U:

Proposition 3.5. If A ∈ U then int(A) := {int(a) | a ∈ A} ∈ U.

Proof : Let B ∈ U such that st(B) 4 A. Then B 4 int(A). Indeed, for each
b ∈ B, b ≤ st(b,B) ≤ a for some a ∈ A, which shows that b ≤ int(a).

For any a, b ∈ LX we write b
U
C a whenever st(b,A) ≤ a for some A ∈ U.

The following property of the L-topology τU follows immediately from the
previous proposition.

Corollary 3.6. For every a ∈ τU, a =
∨{b ∈ τU | b

U
C a}.

Proposition 3.7. For any f : (X, U) → (Y, V) in L-Unif, f : (X, τU) →
(Y, τV) is a morphism of L-Top.

Proof : Let b ∈ τV. Then b =
∨{c ∈ LY | st(c,B) ≤ b for some B ∈ V}. Let

us show that f←(b) ∈ τU, by proving that

f←(b) =
∨
{f←(c) | c ∈ LY , st(c,B) ≤ b for some B ∈ V}

≤
∨
{f←(c) | c ∈ LY , f←(st(c,B)) ≤ f←(b) for some B ∈ V}.

≤
∨
{a ∈ LX | st(a, f−1(B)) ≤ f←(b) for some f−1(B) ∈ U}

≤ int(f←(b)).

The first equality follows from Property 2.1(1) and the inequalities follow
from Properties 2.1 and Proposition 3.2 (6).

Thus, the correspondence

(X, U) ∈ L-Unif 7−→ (X, τU) ∈ L-Top

is functorial and we have a functor F3 : L-Unif → L-Top such that the
diagram

L-Unif
F3 // L-Top

Unif

χU
L

OO

F1

// Top

χT
L

OO

commutes (where χU
L denotes the uniform version of the embedding functor

χT
L : Top → L-Top). This shows that, for frames L, the notion of L-valued
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uniform space relates to a uniform space in a way similar to that in which
an L-valued topological space is related to a topological space.

4. Residuated L-valued uniform spaces

The category of residuated L-valued uniform spaces that we introduce in
this section is based on the notion of residuated pairs. It has nice features:
it is equivalent to the category of covering L-valued uniform spaces on one
hand and also, for a large class of lattices (more precisely, Girard quantales),
captures Hutton uniformities.

Originally, Galois connections were expressed in a contravariant form with
transformations that reverse order [2]. A Galois connection between partially
ordered sets A and B is a pair (f, g) of order-reversing maps f : A → B and
g : B → A such that

idA ≤ g · f, idB ≤ f · g equivalently, b ≤ f(a) iff a ≤ g(b).

We denote by Gal(A,B) the set of all order-reversing maps f : A → B for
which there exists f+ : B → A such that (f, f+) is a Galois connection.

Nowadays many authors prefer to work with Galois connections in the
covariant form by its convenience (the survey [4] contains a list of references
to this form). We refer to this dualized form as a residuated pair: a residuated
pair between the partially ordered sets A and B is a pair (f, g) of order-
preserving maps f : A → B and g : B → A such that

f · g ≤ idB, idA ≤ g · f equivalently, f(a) ≤ b iff a ≤ g(b).

The map f : A → B in a residuated pair (f, g) is called residuated and the
map g : B → A is called residual. Thus f is residuated (resp. residual) if and
only if f ∈ Gal(A,Bop) (resp. f ∈ Gal(Aop, B)). If A and B are complete
lattices then f : A → B is residuated if and only if it is join-preserving. For
any sets X and Y and any map f : X → Y , (f←, f→) is a residuated pair
(see [28]).

Now consider the image and preimage operators

f⇒ : (LX)LX → (LY )LY

and

f⇐ : (LY )LY → (LX)LX

,
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defined by f⇒(ϕ) = f→ · ϕ · f← and f⇐(ψ) = f← · ψ · f→:

LX
ϕ

// LX

f→

²²

LY

f←

OO

f⇒(ϕ)
// LY

LY
ψ

// LY

f←

²²

LX

f→

OO

f⇐(ψ)
// LX

Again, (f⇐, f⇒) is a residuated pair.
LetH(L,X) denote the collection of all join-preserving mappings φ : LX →

LX (in particular, φ(1∅) = 1∅), partially ordered by

φ1 ≤ φ2 ≡ φ1(a) ≤ φ2(a) for every a ∈ LX .

Let φ ∈ H(L,X). We say that a ∈ LX is φ-small if

a ∗ b 6= 1∅ ⇒ a ≤ φ(b), for any b ∈ LX .

Further, we say that φ is:

(1) symmetric whenever φ(a) ∗ b = 1∅ iff a ∗ φ(b) = 1∅ (or, equivalently,
whenever b ≤ φ(a) → 1∅ iff φ(b) ≤ a → 1∅), for arbitrary a, b ∈ LX .

(2) an L-entourage of X if {a ∈ LX | a is φ-small} is an L-cover of X.

Proposition 4.1. Let φ ∈ H(L,X).

(1) If φ is symmetric then, for any a, b ∈ LX,

b → 1∅ ≤ φ(a) → 1∅ ⇐⇒ φ(b → 1∅) ≤ a → 1∅.

(2) If L is a Girard quantale then the converse to (1) holds. In that case, φ
is symmetric if and only if

φ(a) ≤ b ⇐⇒ φ(b → 1∅) ≤ a → 1∅.

(3) If φ is an L-entourage then φ(a) ≥ a for every a ∈ LX.
(4) If L is atomic (i.e. every element of L is the join of all atoms below it)

then the converse to (3) holds.

Proof : (1) and (2): These are obvious.
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(3): For each a ∈ LX ,

a = 1X ∗ a =
(∨

{b ∈ LX | b is φ-small}
)
∗ a

=
∨
{b ∗ a | b ∗ a 6= 1∅, b is φ-small}

≤
∨
{b | b ∗ a 6= 1∅, b is φ-small}

≤ φ(a).

(4): Let φ : LX → LX be such that φ(a) ≥ a for every a ∈ LX . For each
atom α of L, it follows that α ∧ 1{x} ∈ LX is an atom in LX . Then

1∅ 6= (α ∧ 1{x}) ∗ b ≤ α ∧ 1{x} ∧ b ≤ α ∧ 1{x}
implies α∧ 1{x} ≤ b. In particular, this means that every α∧ 1{x} is φ-small.
Hence, for every x ∈ X,(∨

{a ∈ LX | a is φ-small}
)

(x) ≥
(∨

{α ∧ 1{x} | α is an atom of L}
)

(x)

=
∨
{α | α is an atom of L} = 1.

Remark 4.2. If L fails to be atomic then the converse to Proposition 4.1
(3) is not true in general. The unit interval, with its usual order, gives
rise to a couple of examples, when it is endowed with the following two well-
known quantale structures (in fact a similar statement holds for any quantale
structure defined on [0, 1]):

(1) ([0, 1],≤,∧), (the unit interval considered as a Heyting algebra)
(2) ([0, 1],≤, Tm), (the unit interval considered as an MV -algebra), where

Tm(α, β) = max{α+β−1, 0} for each α, β ∈ [0, 1] is the Luckasiewicz
T -norm.

Indeed, the identity map idX : LX → LX belongs to H(L,X) and it is not
difficult to check that, in the first case, a ∈ LX is idX-small iff a = 1∅, while
in the second a ∈ LX is idX-small iff a = α ∧ 1x for some α ≤ 1

2 and x ∈ X.
So, either

∨{a ∈ LX |a is idX-small} = 1∅ or
∨{a ∈ LX |a is idX-small} = 1

2 ;
in both cases idX fails to be an L-entourage.

Definition 4.3. We say that a pair (X,D) consisting of a set X and a non-
empty subset D of H(L,X) is a residuated L-uniform space whenever the
following conditions hold:
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(R1) Each φ ∈ D is an L-entourage of X.
(R2) φ1 ∈ D and φ1 ≤ φ2 ∈ H(L,X) implies φ2 ∈ D.
(R3) For each φ1, φ2 ∈ D there exists φ3 ∈ D such that φ3 ≤ φ1 and φ3 ≤ φ2.
(R4) For each φ1 ∈ D there exists φ2 ∈ D such that φ2 · φ2 ≤ φ1.
(R5) D has a base of symmetric entourages, that is, for each φ1 ∈ D there

exists a symmetric φ2 ∈ D such that φ2 ≤ φ1.

A base for the uniformity D is any subcollection of D from which D can
be recovered by applying condition (R2).

The morphisms (uniform morphisms) of the resulting category L-Unifr are
the maps f : (X,D) → (Y, E) satisfying f⇐(φ) ∈ D for every φ ∈ E .

When L = 2, these are precisely the classical uniformities, described in
terms of axialities [4] (cf. also [5], Section 5). Since the symmetry condition
(R5) is now explicitly axiomatized, by dropping it we have the notion of a
(residuated) L-quasi-uniform space. When L = 2 this gives precisely the
classical notion of a quasi-uniform space.

It is now our purpose to prove that the categories L-Unifr and L-Unif are
isomorphic.

Let U be a covering L-uniformity on X and, for each A ∈ U, let

φA : LX → LX

a 7→ st(a,A).

The next proposition with the exception of symmetry follows immediately
from Proposition 3.2 and lists some basic properties of these maps.

Proposition 4.4.

(1) For each A ∈ U , φA ∈ H(L,X). Also, since st(A) ∈ U , φst(A) ∈ H(L,X)
and A 4 st(A).

(2) If A 4 B then φA ≤ φB.
(3) For every a ∈ LX, a ≤ φA(a).
(4) Each a ∈ A is φA-small.
(5) Each φA is a symmetric L-entourage.
(6) If st(A) 4 B then φA · φA ≤ φB.

Proof : (5): It follows from the following equivalence:

φA(a)∗b 6= 1∅ ⇔ ∃c ∈ A : c∗a 6= 1∅ and c∗b 6= 1∅ ⇔ a∗φA(b) 6= 1∅.

The next corollary is an immediate consequence of Proposition 4.4.
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Corollary 4.5. Let U be a covering L-uniformity on X. Then {φA | A ∈ U}
is a base for a residuated uniformity DU on X.

Proposition 4.6. For every uniform homomorphism f : (X, U) → (Y, V),
the map f : (X,DU) → (Y,DV) is uniform.

Proof : We need to prove that f⇐(φ) = f← ·φ·f→ ∈ DU for every φ ∈ DV. So,
let B ∈ V such that φB ≤ φ and A ∈ U satisfying A 4 f−1[B]. Combining
results in Proposition 3.2 (3) and (6), and Proposition 4.4 (2), for every
a ∈ LX we may write:

φA(a) ≤ φf−1[B](a) = st(a, f−1[B]) ≤ st(f←(f→(a)), f−1[B])

≤ f←
(
st(f→(a),B)

)
= f←

(
φB(f→(a))

) ≤ f←
(
φ(f→(a))

)

= (f← · φ · f→)(a).

Finally, we have:

Corollary 4.7. The correspondences (X, U) 7→ (X,DU) and f 7→ f given by
Corollary 4.5 and Proposition 4.6 establish a functor Φ : L-Unif → L-Unifr.

Conversely, let D be a residuated uniformity on X. For each φ ∈ D,
consider the L-cover

Aφ = {a ∈ LX | a is φ-small}.
The following proposition lists some of the basic properties of these covers.

Proposition 4.8.
(1) If φ1 ≤ φ2 then Aφ1 4 Aφ2.
(2) Aφ1∧φ2 4 Aφ1 ∧ Aφ2.
(3) If φ1 · φ1 · φ1 ≤ φ2 and φ1 is symmetric then st(Aφ1) 4 Aφ2.

Proof : (1): It is obvious since any φ1-small element is φ2-small whenever
φ1 ≤ φ2.
(2): It is an immediate consequence of the previous property.
(3): Let st(a,Aφ1) ∈ st(Aφ1). Then st(a,Aφ1) =

∨{b ∈ Aφ1 | b ∗ a 6=
1∅} ≤ φ1(a) (because each such b is φ1-small). It suffices now to check that
φ1(a) is φ2-small. By the symmetry of φ1, φ1(a) ∗ b 6= 1∅ if and only if
a ∗ φ1(b) 6= 1∅, so φ1(a) ∗ b 6= 1∅ implies a ≤ (φ1 · φ1)(b), and consequently,
φ1(a) ≤ φ3

1(b) ≤ φ2(b), which shows that φ1(a) is indeed φ2-small.

From this result it follows immediately that:



18 J. GUTIÉRREZ GARCÍA, I. MARDONES-PÉREZ, J. PICADO AND M.A. PRADA VICENTE

Corollary 4.9. Let D be a residuated L-uniformity on X. Then {Aφ | φ ∈
D} is a base for a covering L-uniformity UD on X.

Lemma 4.10. Let f : X → Y , a ∈ LX and ψ ∈ (LY )LY

. If a is f⇐(ψ)-small
then f→(a) is ψ-small.

Proof : Let f→(a) ∗ b 6= 1∅ equivalently (cf. Lemma 2.1 (8)) a ∗ f←(b) 6= 1∅,
which implies

a ≤ f⇐(ψ)(f←(b)) = (f← · ψ · f→ · f←)(b) ≤ (f← · ψ)(b),

since f→ · f← ≤ idLY . Thus a ≤ (f← · ψ)(b) and, consequently,

f→(a) ≤ (f→ · f← · ψ)(b) ≤ ψ(b).

Proposition 4.11. For every uniform homomorphism f : (X,D) → (Y, E),
the map f : (X, UD) → (Y, UE) is uniform.

Proof : For each A ∈ UE let ψ ∈ E such that Aψ 4 A. We need to prove that
there exists φ ∈ D for which Aφ 4 f−1[A]. Since, by hypothesis, for each
such ψ there exists φ ∈ D satisfying φ ≤ f⇐(ψ), which implies Aφ 4 Af⇐(ψ),
it suffices to show that Af⇐(ψ) 4 f−1[A]. So let b ∈ LX be f⇐(ψ)-small.
Then f→(b) is ψ-small by Lemma 4.10. But Aψ 4 A. Consequently, there
exists a ∈ A such that f→(b) ≤ a. Hence b ≤ f←(a).

Corollary 4.12. The correspondences (X,D) 7→ (X, UD) and f 7→ f given by
Corollary 4.9 and Proposition 4.11 define a functor Ψ : L-Unifr → L-Unif.

Now let us show that Φ ·Ψ = idL-Unifr and Ψ · Φ = idL-Unif .

Lemma 4.13. For any L-covers A and B of X and any φ, ψ ∈ H(L,X) we
have:

(1) A 4 AφA.
(2) If st(A) 4 B then AφA 4 B.
(3) φAφ

≤ φ.
(4) If φ · φ ≤ ψ then φ ≤ φAψ

.

Proof : (1): For every a ∈ A, a ∗ b 6= 1∅ implies a ≤ st(b,A) = φA(b), so a is
φA-small.
(2): Let a ∈ LX be φA-small. We need to show that a ≤ b for some b ∈ B.
The case a = 1∅ is trivial. If a 6= 1∅ then, since a = a ∗∨

c∈A c, there is some
c ∈ A for which a ∗ c 6= 1∅. Then a ≤ φA(c) = st(c,A) ≤ b for some b ∈ B.
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(3): φAφ
(a) = st(a,Aφ) =

∨{b ∈ LX | b is φ-small, b ∗ a 6= 1∅} ≤ φ(a).
(4): If φ · φ ≤ ψ then

φ(a) = φ(a) ∗
∨
{b ∈ LX | b is φ-small}

=
∨
{φ(a) ∗ b | b is φ-small, φ(a) ∗ b 6= 1∅}

≤ (φ · φ)(a)

≤ ψ(a).

Theorem 4.14. The functors Φ and Ψ establish an isomorphism between
the categories L-Unif and L-Unifr.

Proof : Properties (1) and (2) of Lemma 4.13 imply immediately that, for
any covering uniformity U, UDU

= U. Similarly, properties (3) and (4) of
Lemma 4.13 ensure us that, for any residuated uniformity D, DUD = D.
Hence Φ ·Ψ = idL-Unifr and Ψ · Φ = idL-Unif .

5. The relationship with Hutton uniformities

Let L be a Girard quantale. Each φ ∈ H(L,X), being join-preserving, has
a right adjoint φ∗ : LX → LX . Let φ−1 : LX → LX be defined by

φ−1(a) = φ∗(a → 1∅) → 1∅ =
∧
{b → 1∅ ∈ LX | φ(b) ≤ a → 1∅} ([10], [15]).

It is easy to check that (φ−1)−1 = φ and φ1 ≤ φ2 ⇔ φ∗2 ≤ φ∗1 ⇔ φ−1
1 ≤ φ−1

2 .
In the original definition of Hutton [15], the involved lattice is a completely

distributive one with an order reversing involution, (L,≤, ′). Our context is
a bit more general and complete distributivity is not needed (cf. [29]). We
say that a non-empty subset D of H(L,X) is a Hutton L-uniformity on X if
D satisfies the following axioms:

(H1) ∀φ ∈ D, φ(a) ≥ a for all a ∈ LX .
(H2) φ1 ∈ D and φ1 ≤ φ2 ∈ H(L,X) implies φ2 ∈ D.
(H3) For each φ1, φ2 ∈ D there exists φ3 ∈ D such that φ3 ≤ φ1 and φ3 ≤ φ2.
(H4) For each φ1 ∈ D there exists φ2 ∈ D such that φ2 · φ2 ≤ φ1.
(H5) ∀φ ∈ D, φ−1 ∈ D.
According to Hutton [15] an element φ ∈ D is symmetric whenever φ = φ−1.

The following lemma shows that our definition of symmetry coincides with
the original one of Hutton.
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Lemma 5.1. Let L be a Girard quantale. For each φ ∈ H(L,X), φ is
symmetric if and only if φ = φ−1.

Proof : If φ is symmetric then φ(b) ≤ a → 1∅ ⇔ φ(a) ≤ b → 1∅, which
implies

φ−1(a) =
∧
{b → 1∅ ∈ LX | φ(b) ≤ a → 1∅}

=
∧
{b → 1∅ ∈ LX | φ(a) ≤ b → 1∅}

= φ(a).

Conversely, if φ = φ−1 then

φ(a) ∗ b = 1∅ ⇔ φ−1(a) ∗ b = 1∅

⇔ b ≤ φ−1(a) → 1∅ = φ∗(a → 1∅)

⇔ φ(b) ≤ a → 1∅
⇔ a ∗ φ(b) = 1∅,

which shows that φ is symmetric.

Lemma 5.2. For each φ ∈ H(L,X), φ−1 · φ and φ · φ−1 are symmetric.

Proof : We only prove the first assertion (the other may be proved similarly):

φ−1(φ(a)) ∗ b = 1∅ ⇔ b ≤ φ−1(φ(a)) → 1∅ = φ∗(φ(a) → 1∅)

⇔ φ(b) ≤ φ(a) → 1∅
⇔ φ(a) ∗ φ(b) = 1∅
⇔ φ(a) ≤ φ(b) → 1∅

⇔ a ≤ φ∗(φ(b) → 1∅) = φ−1(φ(b)) → 1∅

⇔ φ−1(φ(b)) ∗ a = 1∅

⇔ a ∗ φ−1(φ(b)) = 1∅.

Proposition 5.3. Let L be a Girard quantale and D ⊆ H(L,X). Then D
satisfies (H2), (H3), (H4) and (H5) if and only if it satisfies (R2), (R3), (R4)
and (R5).
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Proof : Axioms (H2), (H3) and (H4) are precisely (R2), (R3) and (R4) re-
spectively. Finally, in the presence of these axioms, (H5)⇔(R5):
⇒: Let φ ∈ D and use (H4) to get ψ ∈ D such that ψ · ψ ≤ φ. By (H5),
φ−1 ∈ D. Applying (H3), consider ξ ∈ D such that ξ ≤ ψ and ξ ≤ ψ−1.
Then ξ−1 ≤ (ψ−1)−1 = ψ and ξ · ξ−1 ≤ ψ · ψ ≤ φ. Since ξ · ξ−1 is symmetric
by Lemma 5.2, D satisfies (R5).
⇐: Let φ ∈ D. By (R5) there exists a symmetric ψ ∈ D such that ψ ≤ φ,
that is, ψ−1 ≤ φ−1. By Lemma 5.1, ψ−1 = ψ ∈ D, thus φ−1 ∈ D by (R2).

Therefore, since axiom (H1) is a consequence of (R1) by Proposition 4.1(3),
we have immediately:

Corollary 5.4. Let L be a Girard quantale. Every residuated L-uniformity
on X is a Hutton uniformity on X.

The converse is not true in general (recall Proposition 4.1(4)).

Remark 5.5. In the classical context, for a set X, binary relations R ⊆ X×
X are described by Galois connections between power sets in two particularly
simple ways [4]:

(1) A Galois connection between P(X) and P(X) is called a polarity [2] on
P(X). Any relation R ⊆ X×X induces a polarity (R∀, R∀) on P(X), defined
by

R∀(A) := {x ∈ X | ∀y ∈ A (x, y) ∈ R} for A ⊆ X,
R∀(B) := {y ∈ X | ∀x ∈ B (x, y) ∈ R} for B ⊆ X.

Conversely, every polarity (f, g) on P(X) induces a relation

(x, y) ∈ R(f,g) ≡ y ∈ f({x}) (or equivalently, x ∈ g({y})).
Since

(
(R(f,g))∀, (R(f,g))∀

)
= (f, g) and R(R∀,R∀) = R, there is a bijection

between relations R ⊆ X ×X and polarities on P(X).

(2) The covariant case of Galois connections between power sets also describe
all binary relations R ⊆ X × X. Indeed, any relation R ⊆ X × X induces
an axiality [4] (R∃, R∀) on P(X), that is, a Galois connection between P(X)
and P(X)op, defined by

R∃(A) := {y ∈ X | ∃x ∈ A (x, y) ∈ R} for A ⊆ X,
R∀(B) := {x ∈ X | ∀y ∈ X (x, y) ∈ R ⇒ y ∈ B)} for B ⊆ X.
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If we define, for each axiality (f, g) on P(X), the relation

(x, y) ∈ R(f,g) ≡ y ∈ f({x}),
then

(
(R(f,g))∃, (R(f,g))∀

)
= (f, g) and R(R∃,R∀) = R.

Under bijection (1) (resp. (2)), entourages E, i.e. reflexive relations, cor-
respond to polarities (resp. axialities) that are expansive on atoms, that is,
{x} ⊆ E∀({x}) (resp. {x} ⊆ E∃({x})) for every x ∈ X. Nevertheless, to
be expansive on atoms, have different meaning in polarities and axialities; in
the case of polarities, this is equivalent to {A ⊆ X|A ⊆ E∀(A)} being a cover
of X while in the case of axialities, it is equivalent to E∃ being expansive on
subsets (cf. axiom (H1)), and also to the collection of all E∃-small sets being
a cover of X (cf. axiom (R1)).

This equivalence, in the case of axialities, relies on two facts: firstly, P(X)
being atomic, its elements can be written as unions of points (atoms) and
secondly, the involved maps E∃ are sup-preserving.

If the lattice 2 is replaced by a general L, even if the previous situation
models a relation between polarities (axialites) from LX to LX and L-valued
binary relations, i.e:, elements in LX×X (see [10]), one cannot expect that, in
this general case, either working with expansive maps or working with maps
whose small elements form a cover might be still equivalent. And it is really
the case, as examples in Remark 4.2 shows. Indeed, the equivalence estab-
lished between L-valued binary relations and some family of sup-preserving
maps from LX to LX , (see [10]) transforms reflexive L-valued binary relations
(maps f from X ×X → L, such that f(x, x) = 1) into expansive maps.

It would be interesting to investigate under which conditions the work in [5]
(Sections 3 and 4; see also [23]) may be extended to our setting here, showing
whether uniform structures stated in terms of residuated maps LX → LX

(that is, elements of H(L,X)) as we defined in Section 4, may be equivalently
described in terms of Galois maps LX → LX (that is, residuated maps LX →
(LX)op).

6. L-valued frames

For the motivation and justification for this notion see [26]. There the
authors show that levels and level topologies may be interpreted as a system
of frame homomorphisms satisfying some categorical conditions. Indeed, L-
fuzzy and traditional structures, can be related via the functor ιL and its
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levels {ια : α ∈ L} (see, among others [19, 33, 32, 34, 18] for topologies and
[20, 21, 8, 9] for filters and uniformities).

Two relevant facts of the level (topological) functors {ια | α ∈ L} are:

(1) The collection {ια | α ∈ L} is nonincreasing (on functions).
(2) The collection {ια | α ∈ L} is a subbase for ιL, that is: 〈⋃α∈L ια〉 = ιL.

The categorical interpretation of these properties, lead Pultr and Rod-
abaugh [26] to introduce the notion of an L-valued frame. The main pur-
pose is to have a general L-structure which relates to frames in the way
L-topological spaces relates to topological spaces.

Let L1 = L \ {1}. For each α ∈ L1 and a ∈ LX , let

ια(a) = {x ∈ X | a(x) � α}. (6.1)

This defines the α-level mapping ια : LX → 2X . For each L-topological space
(X, τ), the associated crisp topology ιT

L(τ) is the topology on X with subbase:
{ια(a) : α ∈ L1, a ∈ τ}, that is:

ιT
L(τ) = 〈

⋃
{ια(τ) : α ∈ L1, }〉

The correspondence (X, τ) 7→ (X, ιT
L(τ)) defines a functor ιT

L : L-Top → Top
(satisfying ιT

L · χT
L = idTop): for each L-continuous map f : (X, τ1) → (Y, τ2),

f(X, ιT
L(τ1)) → (Y, ιT

L(τ2)) is continuous, since b · f ∈ τ1 and f−1(ια(b)) =
ια(b · f) for every b ∈ τ2.

Recall also the (dual) adjunction between L-Top and Frm [12]: the con-
travariant functor OL : L-Top → Frm given by OL(X, τ) = τ and OL(f)(b) =
b · f , has a right adjoint ΣL : Frm → L-Top defined by

ΣL(M) = ({p : M → L | p ∈ Frm}, {m̂ | m ∈ M}),
where m̂(p) = p(m) and ΣL(h)(p) = p · h for every h : M → N .

A family of morphisms (fi : A → Bi)i∈I in a category is said to be jointly
monic (also mono-source in [1]) if fi · g = fi · h for every i ∈ I imply g = h.
The family (fi : Ai → B)i∈I is said to be jointly epic (or an epi-sink [1]) if it
satisfies the dual condition. A jointly monic family (fi : A → Bi)i∈I is jointly
extremally monic if, moreover, fi = gi · e, for every i ∈ I, with e epimorphic
(that is, e is “right-cancellable” with respect to the composition), implies
that e is an isomorphism. Dually, a jointly epic family (fi : Ai → B)i∈I is
jointly extremally epic if fi = m · gi for every i ∈ I, with m monomorphic
(that is, m is “left-cancellable” with respect to the composition), implies that
m is an isomorphism.
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An L-valued frame (shortly, L-frame) [26] is a system of frame homomor-
phisms

M≡ (ϕMα : Mu →Ml)α∈L1

satisfying the following axioms:

(1) For each non-empty S ⊆ L1, ϕM∧ S =
∨

β∈S ϕMβ .

(2) (ϕMα )α∈L1 is jointly extremally epic in Frm, that is,Ml = 〈⋃α ϕMα [Mu]〉.
(3) (ϕMα )α∈L1 is jointly monic in Frm.

An L-frame homomorphism [26] h : M → N is an ordered pair of frame
homomorphisms

h ≡ (hu : Mu → N u, hl : Ml → N l)

satisfying hl · ϕMα = ϕNα · hu for every α ∈ L1. The resulting category is
denoted by L-Frm.

It follows immediately from (2) and (3) that in any L-frame homomor-
phism h ≡ (hu, hl), each of the frame homomorphisms hu, hl guarantees the
uniqueness of the other.

If L is a linearly ordered complete lattice then, in the definition of ια(a),
we may replace � by > and the mappings ια : τ → ιT

L(τ) (α ∈ L1) given
by (6.1) are frame homomorphisms. Therefore, for each L-topological space
(X, τ), the system

O(X, τ) = (ιOα : Ou ≡ τ → Ol ≡ ιT
L(τ))α∈L1

is an L-frame. This is the motivating example for the notion of L-valued
frame (cf. [26]).

Remark 6.1. More generally, the linear L can be replaced by a spatial frame
as far as L1 is replaced by the meet-irreducible elements of L (cf. [13] for the
details).

Further, for every L-continuous map f : (X, τ1) → (Y, τ2), the pair O(f) =
(Ou(f),Ol(f)), with Ou(f)(b) = f←(b) and Ol(f)(B) = f−1(B), for all
b ∈ LY and B ∈ 2Y , is an L-frame homomorphism. This defines a con-
travariant functor O : L-Top → L-Frm. There are also the L-valued spectrum
functor Σ : L-Frm → L-Top, right adjoint to O, and the forgetful functor
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ιF
L : L-Frm → Frm (cf. [26] for the details), such that the diagram

L-Top
O //

ιT
L

²²

L-Frm
Σ

oo

ιF
L

²²
Top

χT
L

OO

O //
Frm

Σ
oo

χF
L

OO

commutes.
When L = 2, an L-frame is just one frame homomorphism ϕM0 which,

by conditions (2) and (3), must be an isomorphism. So, an L-valued frame
stands for a pair of (possibly distinct) isomorphic frames (Mu,Ml) and each
L-valued frame homomorphism is a pair of frame morphisms (hu, hl) such
that each one factors through the other via an isomorphism. Therefore, the
category 2-Frm is equivalent to Frm. Indeed, 2-Frm is the functor category
Frm2 (where 2 is the category with 2 objects {u, l} and an isomorphism
u → l), and the latter category is clearly equivalent to Frm via functors
F : Frm → Frm2 and G : Frm2 → Frm defined by F (M) = (M, M) with
ϕM

0 = idM , F (h) = (h, h), G(Mu,M l) = Mu and G(hu, hl) = hu.

7. The uniform crisp modification of a covering L-valued
uniform space

Let L be a linearly ordered complete lattice. This is an integral quantale
with ∗ = ∧. Let (X, U) be a covering L-uniform space. For each A ∈ U and
α ∈ L1 let

ια(A) = {ια(a) | a ∈ A}.
We state without proof some basic facts satisfied by the maps {ια : α ∈ L1}:

Remark 7.1. For every A ⊂ LX , f : X → Y and α, β ∈ L1, we have:

(1) ια(
∨A) =

⋃
a∈A ια(a).

(2) ια(
∧A) =

⋂
a∈A ια(a) if A is finite.

(3) α ≤ β ⇒ ιβ(a) ⊆ ια(a).
(4) f−1(ια(b)) = ια(f←(b)).

We have also the following:
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Proposition 7.2. Let A,B ∈ U and α ∈ L1. Then:

(1) ια(A) is a cover of X.
(2) If A 4 B then ια(A) 4 ια(B). Hence ια(A∧B) 4 ια(A) and ια(A∧B) 4

ια(B).
(3) st(ια(b), ια(A)) ⊆ ια(st(b,A)).
(4) If st(A) 4 B then st(ια(A)) 4 ια(B).

Proof : (1): Since
∨A = 1X then, for each α ∈ L1 and each x ∈ X there

exists a ∈ A such that a(x) > α. Consequently,
⋃

a∈A{x ∈ X | a(x) > α} =
X, that is,

⋃
a∈A ια(a) = X.

(2): It is straightforward.
(3): It follows from 7.1 (1).
(4): For any a ∈ A, let st(ια(a), ια(A)) ∈ st(ια(A)) and b ∈ B satisfying
st(a,A) ≤ b. By property (3) of 7.1 and previous (3) one has st(ια(a), ια(A)) ⊆
ια(st(a,A)) ⊆ ια(b).

It follows immediately from Proposition 7.2 that:

Corollary 7.3. The family {ια(A) | A ∈ U, α ∈ L1} is a base for a unifor-
mity ιU

L(U) on X.

Proposition 7.4. For any f : (X, U) → (Y, V) in L-Unif, f : (X, ιU
L(U)) →

(Y, ιU
L(V)) is a morphism of Unif.

Proof : For each B ∈ V and α ∈ L1,

f−1[ια(B)] = {f−1(ια(b)) | b ∈ B}
and f−1(ια(b)) = ια(f←(b)) (Remark 7.1). By hypothesis, f−1[B] = {f←(b) |
b ∈ B} ∈ U, so

ια(f−1[B]) = {ια(f←(b)) | b ∈ B} ∈ ιU
L(U),

which shows that f−1[ια(B)] ∈ ιU
L(U) as required.

Thus we have a functor ιU
L : L-Unif → Unif such that ιU

L ·χU
L = idUnif . Recall

the forgetful functor F3 : L-Unif → L-Top from Section 3. We have:

Proposition 7.5. F1 · ιU
L = ιT

L · F3.
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Proof : For objects we need to show that F1(ιU
L(X, U)) = ιT

L(F3(X, U)) for
every L-uniform space (X, U), that is, ιT

L(τU) is precisely the topology TιU
L(U)

induced by the crisp uniformity ιU
L(U).

TιU
L(U) ⊆ ιT

L(τU): Let A ∈ TιU
L(U). Then for every x ∈ A there exists ιαx

(Ax) ∈
ιU
L(U) such that st({x}, ιαx

(Ax)) ⊆ A. Therefore

A ⊇
⋃

x∈A

st({x}, ιαx
(Ax)) =

⋃

x∈A

(⋃
{ιαx

(a) | a ∈ Ax, x ∈ ιαx
(a)}

)
.

Since the reverse inclusion is obvious, we have

A =
⋃

x∈A

st({x}, ιαx
(Ax)) ∈ ιT

L(τU).

ιT
L(τU) ⊆ TιU

L(U): Now let ια(a) ∈ ιT
L(τU) and x ∈ ια(a). Then a(x) > α. Since

a ∈ τU, there exists b ∈ LX with x ∈ ια(b) and st(b,A) ≤ a, for some A ∈ U.
Hence ια(st(b,A)) ⊆ ια(a). Also, since x ∈ ια(b), we have

x ∈ st({x}, ια(A)) ⊆ st(ια(b), ια(A) ⊆ ιαst(b,A) ⊆ ια(a).

For morphisms the proof is straightforward.

In conclusion, both squares in the following diagram commute:

L-Unif
F3 //

ιU
L

²²

L-Top

ιT
L

²²

Unif

χU
L

OO

F1

// Top

χT
L

OO

8. The missing vertex: L-valued uniform frames

We say that (M, C) is an L-valued uniform frame if

M = (ϕMα : Mu →Ml)α∈L1

is an L-valued frame and C is a frame uniformity on the lower frame Ml. An
L-valued uniform homomorphism h : (M, C) → (N ,D) is a pair

(hu : Mu → N u, hl : (Ml, C) → (N l,D))
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with hu a frame homomorphism and hl a uniform frame homomorphism sat-
isfying hl · ϕMα = ϕNα · hu for every α ∈ L1.

When L = 2, an L-valued uniform frame (M, C) is just a frame isomor-
phism ϕM0 : Mu → (Ml, C) and an L-valued uniform homomorphism is a
pair of frame morphisms (hu, hl), the latter one being uniform, such that each
one factors through the other via an isomorphism. So, the category 2-UFrm
is clearly equivalent to UFrm via functors F : UFrm → 2-UFrm and G : 2-
UFrm → UFrm defined by F (M, C) = (ϕM0 : M→ (M, C)) with ϕM0 = idM,
F (h) = (h, h), G(ϕM0 : Mu → (Ml, C)) = (Ml, C) and G(hu, hl) = hl.

Let L be linearly ordered. Then, for each L-valued uniform space (X, U),
we have

OιU
L(X, U) = (ια : τU → ιT

L(τU))α∈L1 ∈ L-Frm.

In order to establish the open functor O : L-Unif → L-UFrm we need to
endow the crisp topology ιT

L(τU) of (X, τU) with a canonical frame uniformity.
This is possible because the topology ιT

L(τU) is always regular:

Proposition 8.1. For every covering L-uniform space (X, U), the topology
ιT
L(τU) is regular.

Proof : It follows from 7.5, since ιT
L(τU) = TιU

L(U).

Now, let UτU
be the collection of all τU-open L-covers in U (i.e. all A ∈ U

such that A ⊆ τU). Each A ∈ UτU
is a cover of the spatial frame τU. For each

A ∈ UτU
and α ∈ L1 let ια(A) = {ια(a) | a ∈ A}. Then, by Remark 7.1 (1),

ια(A) is a cover of ιT
L(τU).

Proposition 8.2. For every covering L-uniform space (X, U), {ια(A) | α ∈
L1,A ∈ UτU

} is a base for a frame uniformity CU on ιT
L(τU).

Proof : It remains to show the star-refinement condition. This is a conse-
quence of 7.2 (3), since st(B) 4 A implies st(ια(B)) 4 ια(A) for every α ∈
L1.

It is now easy to check that the correspondence

(X, U) 7−→ (ια : τU →
(
ιT
L(τU), CU)

)
α∈L1

is functorial and establishes a functor O : L-Unif → L-UFrm. Conversely,
it is not hard to define the “spectrum functor” Σ : L-UFrm → L-Unif, right
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adjoint to O and such that the diagram

L-Unif
O //

ιU
L

²²

L-UFrm
Σ

oo

ιUF
L

²²

Unif

χU
L

OO

O //
UFrm

Σ
oo

χUF
L

OO

commutes.
Finally, consider the forgetful functor F4 : L-UFrm → L-Frm forgetting the

uniform structure. Putting the functors here considered altogether we obtain
the desired commutative cube:

L-Unif
//

²²

F3
ÂÂ?

??
??

??
??

??
??

?

ÂÂ?
??

??
??

??
??

??
? L-UFrm

²²

F4

ÂÂ?
??

??
??

??
??

??
?oo

L-Top

²²

//
L-Frm

²²

oo

Unif

OO

//

F1
ÂÂ?

??
??

??
??

??
??

? UFrmoo

OO

F2

ÂÂ?
??

??
??

??
??

??
?

Top

OO

//
Frm

OO

oo
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