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1. Introduction

Composite norms are a class of computationally convenient norms for ma-
trices. In this paper we recall the basic properties of such norms, and we
propose two possible ways of defining the (inversion) condition number of a
square matrix using a composite norm. For each of these ways, we describe
completely which matrices are perfectly conditioned, i.e. have condition
number equal to 1.

2. Notation and preliminaries

R
n is the space of n× 1 columns over R, sometimes written as n-tuples. A

norm ϕ on R
n is determined by its unit ball Bϕ = {x : ϕ(x) ≤ 1}. The dual

norm of ϕ is defined by

ϕd(y) = max
x6=0

|xTy|

ϕ(x)

hence clearly |xTy| ≤ ϕ(x)ϕd(y). If M is invertible then (ϕ ◦M)d = ϕd ◦
(M−1)T .

The Hölder norms are hp(x) =

(

n
∑

i=1

|xi|
p

)1/p

, 1 ≤ p < ∞, h∞(x) =

max |xi|. It is well-known that hdp = hq with q =
p

p− 1
.
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If ϕ, ψ are norms on R
n and A is real n× n, then we define

Sϕψ(A) = max
x6=0

ψ(Ax)

ϕ(x)

which is just the operator norm of A : (Rn, ϕ) −→ (Rn, ψ) . Simple prop-
erties of these norms include Sϕψ(A) = Sψdϕd(A

T ), Sϕψ(xy
T ) = ψ(x)ϕd(y),

Sϕψ(BA) ≤ Sνψ(B)Sϕν(A), and, for invertible M , Sϕ,ψ◦M = Sϕψ ◦M .

Well-known and simple examples are

Sh1h∞(A) = max
i,j

|aij| ,

Sh1h1
(A) = max

j

∑

i

|aij| ,

and, by duality,

Sh∞h∞(A) = max
i

∑

j

|aij| .

But the computation of Sh∞h1
is NP-hard [7]. In general, the effective com-

putation of operator norms of matrices is not easy. For an example of work
on this subject, see [1]. An algorithm for finding the Shphp norm of a matrix
can be seen in [4].

The (inversion) condition number of a nonsingular square matrix A using
the norm Sϕψ is defined as

κϕψ(A) = Sϕψ(A) · Sψϕ(A
−1) .

Then, as is well-known, if x is the solution of Ax = b and x′ is the solution
of the perturbed system Ax = b′, we have that

1

κϕψ(A)
·
ψ(b− b′)

ψ(b)
≤

ϕ(x− x′)

ϕ(x)
≤ κϕψ(A) ·

ψ(b− b′)

ψ(b)
. (1)

If the matrix is perturbed and x′ is the solution of A′x = b, then

ϕ(x− x′)

ϕ(x′)
≤ κϕψ(A) ·

Sϕψ(A− A′)

Sϕψ(A)
. (2)
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Finally, concerning inversion, if A′ is a perturbation of A (close to A), we
have

Sψϕ(A
−1 − A′−1)

Sψϕ(A−1)
≤

κϕψ(A)

1 − κϕψ(A) ·
Sϕψ(A−A′)
Sϕψ(A)

·
Sϕψ(A− A′)

Sϕψ(A)
. (3)

It is also well-known that, if we denote by δϕψ(A) the Sϕψ-distance of A to
the set of singular matrices, we have

κϕψ(A) =
Sϕψ(A)

δϕψ(A)
.

Trivially κϕψ(A) ≥ 1, and a matrix A is perfectly conditioned in the sense
of the norm Sϕψ, i.e. κϕψ(A) = 1, if and only if ψ ◦A = λϕ for some positive
constant λ. If ψ = ϕ, this means A is a scalar multiple of a ϕ-isometry. In
the special case ϕ = h2, we essentially get the orthogonal matrices.

3. Composite norms

Recall first that a norm ϕ on R
n is absolute if ϕ(x1, . . . , xn) = ϕ(|x1|, . . . , |xn|)

for any vector x = (x1, . . . , xn). It is easy to see that ϕ is absolute if and
only if ϕd is absolute. Also [2] ϕ is absolute if and only if it is monotone, i.e.
|xi| ≤ |yi| ⇒ ϕ(x1, . . . , xn) ≤ ϕ(y1, . . . , yn).

We proceed to define composite norms, restricting ourselves to square ma-
trices.

Definition. Let ϕ and ψ be norms on R
n, with ϕ absolute, and let A n× n

have columns v1, . . . , vn. The ϕψ-composite norm of A is

‖A‖ϕψ = ϕ(ψ(v1), . . . , ψ(vn))

It is easy to see that this actually defines a norm on the space of n × n
matrices, using the fact that ϕ is monotone to prove the triangle inequality.
It is clear that these norms are easy to compute for any matrix.
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With the composite norm notation, we can rewrite the examples above as
Sh1h∞(A) = ‖A‖h∞h∞, Sh1h1

(A) = ‖A‖h∞h1
. Another example is the Frobe-

nius norm

(

n
∑

i=1

|aij|
2

)1/2

, which is just ‖A‖ϕψ with ϕ = ψ = h2.

The main references for composite norms are [5, 6]. The basic properties
are the following, all with reasonably straightforward proofs:

(1) ‖xyT‖ϕψ = ψ(x)ϕ(y)

(2) ‖BA‖ϕν ≤ Sψν(B)‖A‖ϕψ

(3) ‖A‖ϕψ ≥ Sϕdψ(A)

(4) ‖A‖h∞ψ = Sh1ψ(A)

(This property generalizes the expressions seen for Sh1h∞ and Sh1h1
.)

(5) If M is invertible then ‖MA‖ϕψ = ‖A‖ϕ,ψ◦M

(6) If D is an invertible diagonal, then ‖AD‖ϕψ = ‖A‖ϕ◦D,ψ

(7) If P is a permutation matrix, then ‖AP‖ϕψ = ‖A‖ϕ◦PT ,ψ

It is interesting to note that property 4 gives essentially the only case in
which there is equality in property 3 for arbitrary A and ψ [6]. (See below
for a very slight generalization.)

4. Condition numbers

How should we define the condition number using composite norms? If we
want to get estimates similar to (1), (2) and (3) using ψ in the space of data
and ϕ in the space of solutions, property 3 of composite norms suggests that
we work with ‖ · ‖ϕdψ.

The usual theme is that conditioning should be related to distance to sin-
gularity (see [8] for an approach to the same question using componentwise
comparisons instead of norms).

Therefore, we are interested in the ‖ · ‖ϕdψ-distance of a matrix A to the
set of singular matrices. Denoting that distance by δcϕdψ(A), we have, from

results in [3, 6], the following:
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Theorem 4.1. δcϕdψ(A) =
1

Sψϕ(A−1)
.

So one possibility to define the ‖ · ‖ϕdψ-condition number of A would be to
use the expression

‖A‖ϕdψ
δc
ϕdψ

(A)
= ‖A‖ϕdψ · Sψϕ(A

−1) .

We denote this quantity by κ∗ϕψ(A).

The problem with this definition is that it involves an operator norm. If
we wish to restrict ourselves to the computationally convenient composite
norms, then the natural definition, again invoking property 3, is

‖A‖ϕdψ · ‖A
−1‖ψdϕ

(which requires ψ absolute). We denote this quantity by κcϕψ(A). It has been
used for particular examples of norms, e.g. ϕ = ψ = h2.

Trivially, we have

κcϕψ(A) ≥ κ∗ϕψ(A) ≥ κϕψ(A) .

Both quantities deserve the name of condition numbers, as the following
are easily proved:

Theorem 4.2. κ∗ϕψ(A) satisfies estimates similar to (1), (2) and (3), with
Sϕψ replaced by ‖ · ‖ϕdψ.

Theorem 4.3. κcϕψ(A) satisfies estimates similar to (1), (2) and (3), with
Sϕψ and Sψϕ replaced by ‖ · ‖ϕdψ and ‖ · ‖ψdϕ respectively.

5. Perfect conditioning

In this section we are interested in knowing which matrices are perfectly
conditioned for these two notions of condition number. In other words, when
does does κ∗ϕψ = 1 or κcϕψ = 1 occur?

The first case is settled by the following result:
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Theorem 5.1. κ∗ϕψ(A) = 1 if and only if ψ ◦ A = ϕ with ϕ = h1 ◦ ∆ , ∆
diagonal.

Proof. (⇒). Since κ∗ϕψ(A) ≥ κϕψ(A), we already know that ψ ◦A = λϕ
for some positive constant λ.
κ∗ϕψ(A) = 1 means ‖A‖ϕdψ · Sψϕ(A

−1) = 1 . The left-hand side is ≥
‖I‖ϕdϕ ≥ Sϕϕ(I) = 1. Therefore, ‖I‖ϕdϕ = 1.

This implies [6] that ϕ = h1 ◦ ∆ for a diagonal ∆: we have

ϕ(x) = ϕ(Σxiei) ≤ Σ|xi|ϕ(ei) ≤ ϕ(|x|) · ‖I‖ϕdϕ = ϕ(x) .

Therefore, ϕ(x) = Σ|xi|ϕ(ei) = h1(∆x) with ∆ = diag(ϕ(ei)). It only
remains to include the constant λ in the diagonal matrix ∆.

(⇐). Suppose ψ ◦ A = ϕ with ϕ = h1 ◦ ∆, so ψ = ϕ ◦ A−1 = h1 ◦ ∆A−1.
We need a slight generalization of property 4, to the effect that, if ∆ is

diagonal, we have ‖A‖h∞◦∆−1,ψ = Sh1◦∆,ψ(A) (the proof is easy; property 4
is just the case ∆ = I).

We then have

‖A‖ϕdψ = ‖A‖h∞◦∆−1, h1◦∆A−1

= Sh1◦∆, h1◦∆A−1(A)

= max
x6=0

h1 ◦ ∆A−1(Ax)

h1 ◦ ∆(x)
= 1 .

On the other hand,

Sψϕ(A
−1) = Sh1◦∆A−1, h1◦∆(A−1)

= max
x6=0

h1 ◦ ∆(A−1x)

h1 ◦ ∆A−1(x)
= 1 ,

and the conclusion follows.

Another way of presenting this result is that it describes the situations
where a matrix A has all its ‖ · ‖ϕdψ-approximation numbers equal (where
the k-th approximation number of A is defined as the distance of A to the
matrices with rank less than k).



COMPOSITE NORMS AND PERFECT CONDITIONING 7

What about κc? Recall that

κcϕψ(A) = ‖A‖ϕdψ · ‖A
−1‖ψdϕ

Since κcϕψ(A) ≥ κ∗ϕψ(A), we know from Theorem 5.1 that, if κcϕψ(A) = 1,

then ψ ◦A = ϕ with ϕ = h1 ◦∆ , ∆ diagonal. Therefore ψ = h1 ◦∆A−1,
and this norm must be absolute.

κcϕψ(A) = 1 means ‖A‖ϕdψ · ‖A−1‖ψdϕ = 1 . Under the above conditions,
the first factor is equal to 1, as before. So the restrictions must come from
the second factor. Since (h1 ◦∆A−1)d = h∞ ◦∆−1AT , the question becomes:
when do we have h1 ◦ ∆A−1 absolute and ‖A−1 ‖h∞◦∆−1AT ,h1◦∆ = 1?

We analyze first the question of which (implicitly invertible) matrices M
satisfy h1 ◦M absolute. Trivially all matrices M of the form DP (or PD)
have that property, for diagonal D and P a permutation.

It is easily seen that the set of matrices M for which h1 ◦ M is abso-
lute is closed under pre- and post-multiplication by permutation matrices,
under post-multiplication by arbitrary diagonal matrices, and under pre-
multiplication by diagonal matrices whose diagonal elements have absolute
value equal to 1.

Theorem 5.2. The norm h1 ◦M is absolute if and only if M has the form

M = P1D
1

(

k
⊕

1

[

1 1
1 −1

]

⊕

In−2k

)

DP2

where P1 and P2 are permutations, D is diagonal, and D1 is a diagonal whose
diagonal elements have absolute value equal to 1. Here 0 ≤ k ≤

[

n
2

]

, so in
the direct sum it is possible to have no 2 × 2 blocks (in which case M is of
the form DP ), or no tailing identity block.

Proof. (⇐) is trivial, as |xi+xj|+ |xi−xj| clearly depends only on |xi| and
|xj|.

Let us prove (⇒). The first step is the remark that

Bh1◦M = M−1Bh1
. (4)

Therefore, if h1 ◦ M is absolute, we know that M−1 transforms Bh1
into

a polyhedron with the symmetries of the unit ball of an absolute norm.
Denoting by e1, . . . , en the vectors in the canonical basis of R

n, the vertices
of Bh1

are ±e1, . . . ,±en. From the identity (4) we deduce that the vertices
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of Bh1◦M are ±M−1e1, . . . ,±M
−1en. These 2n vectors are the columns of

M−1 together with the columns of −M−1, and as a set they must, by our
hypothesis, be invariant under sign changes of the coordinates.

We proceed to show that no column of M−1 can have more than two
nonzero elements. We argue by contradiction. Suppose M−1 has a column
with three nonzero elements (the argument for more than three is analogous).
By the obvious reductions there is no loss of generality in assuming the
column is (1, 1, 1, 0, . . . , 0). So this is a vertex of Bh1◦M . Since h1 ◦ M is
absolute, (±1,±1,±1, 0, . . . , 0) must all be vertices of Bh1◦M as well. We
have here eight columns, four in M−1 and four in −M−1. So M−1 has four
dependent columns, which is impossible.

If every column of M−1 has just one nonzero element, then M−1 is of the
form DP , and so is M .

It remains to analyze the situation where M−1 has columns with two
nonzero elements. Take one such column. There is no loss of generality in
assuming the two elements are consecutive and both equal to 1. So this col-
umn (. . . , 1, 1, . . . ) is a vertex of Bh1◦M . As above, it follows all four columns
(. . . ,±1,±1, . . . ) must be vertices of Bh1◦M as well. We may assume that,
of these, (. . . , 1, 1, . . . ) and (. . . , 1,−1, . . . ) are columns of M−1, giving rise

to a block of the form

[

1 1
1 −1

]

. Let us now show that no other nonzero

elements occur in the rows of M−1 where this block sits. Look at those two
positions in any other column. Clearly the nonzero elements (either one or
two) in the column cannot all be in those rows, as we would then have three
dependent columns. Suppose the column has 0, a in those positions (a, 0
would be dealt with in the same way), and b elsewhere, say in the next row,
with a, b nonzero. But then M−1 has to have a column with 0, a,−b (or
0,−a, b) in the corresponding positions. These two columns, together with
the columns in the 2× 2 block, make up four dependent columns in M−1, an
impossibility.

It only remains to put in diagonal position the

[

1 1
1 −1

]

blocks, as well as

the nonzero elements (scaled to 1) occurring alone in columns. M−1 is then
reduced to the direct sum form described in the theorem, and so is M , as the
[

1 1
1 −1

]

blocks, apart from a scalar, are self-inverse. The proof is finished.
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Geometrically, what this theorem says is that, apart from permutations
and diagonal scalings, the only transformations that map Bh1

to the unit
ball of an absolute norm are π/4 rotations around the coordinate axes.

Recall that our question was: when do we have h1 ◦ ∆A−1 absolute and
‖A−1 ‖h∞◦∆−1AT ,h1◦∆ = 1? We now know the answer to the first part, and we
proceed to analyze the second.

Theorem 5.3. For ∆ diagonal, suppose ∆A−1 has the form described in the
previous theorem:

∆A−1 = P1D
1

(

k
⊕

1

[

1 1
1 −1

]

⊕

In−2k

)

DP2 .

If ‖A−1 ‖h∞◦∆−1AT ,h1◦∆ = 1, then k = 0, that is, A−1, and therefore A as
well, must have the form permutation × diagonal.

Proof. Denote by Σ the direct sum appearing between parentheses in the
expression of ∆A−1. So A has the form

A = P T
2 D

−1Σ−1D1P T
1 ∆ .

Assuming k > 0, we now compute ‖A−1 ‖h∞◦∆−1AT ,h1◦∆.
Using properties 5, 6 and 7 of composite norms, as well as the fact that

h∞ and h1 are absolute and permutation-invariant, we have

‖A−1 ‖h∞◦∆−1AT ,h1◦∆ = ‖Σ‖h∞◦Σ−1,h1

= h∞ ◦ Σ−1(2, . . . , 2, 1, . . . , 1)

where the number of 2’s is 2k.
Since

Σ−1 =
k
⊕

1

1

2

[

1 1
1 −1

]

⊕

In−2k ,

we have h∞ ◦ Σ−1(2, . . . , 2, 1, . . . , 1) = max{2, 0, 2, 0, . . . , 2, 0, 1, . . . , 1} = 2,
against our hypothesis. So we must have k = 0.

Since the reciprocal is easily seen to hold, we conclude:

Theorem 5.4. κcϕψ(A) = 1 if and only if A has the form permutation ×

diagonal, ϕ = h1 ◦ ∆ with ∆ diagonal, and ψ = ϕ ◦ A−1.
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Perfect conditioning for composite norms is therefore exceedingly rare.

6. Final remark

Everything carries over to the complex numbers, except Theorem 5.2 (The-
orem 5.3 has no point in that case). I conjecture that only complex matrices
M of the form permutation × diagonal satisfy the property that the norm
h1 ◦M is absolute. If this is true, the conclusion obtained in Theorem 5.4
for the real case remains unchanged for the complex case.

Acknowledgement. I thank Hans Schneider for reference [1].
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