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ABSTRACT: In this paper we extend the concept of coherent pairs of measures from
the real line to Jordan arcs and curves. We present a characterization of pairs of
coherent measures on the unit circle: it is established that if (o, 1) is a coherent
pair of measures on the unit circle, then pg is a semiclassical measure. Moreover, we
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1. Introduction

Let p be a nontrivial positive Borel measure supported on a subset E of
the real line. There exists a unique sequence {P,} of monic polynomials,
with deg P, = n, such that

/E Po() Pu(@)da(x) = 2y, dy #0.

In this case {P,} is said do be the sequence of monic orthogonal polynomials
associated with .
It is well known that {P,} satisfies a three-term recurrence relation

xP,(x) = Pyi1(x) + b, Py(x) + ¢ P_1(x), n >0, (1)
where P_1(z) = 0 and
Jp Pia@)du(z) - [paPi(x)dp(x)

Cn 9 n - 9 n 2 0
HT L P du(w) [ P2(z)dp(x)
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On the other hand, if (1) holds with ¢, > 0, there exists the sequence of
monic polynomials defined by (1) orthogonal with respect to the measure pu.

Let (o, p1) be a pair of nontrivial positive Borel measures supported on
subsets Fy and FE; of the real line. We introduce an inner product in the
linear space P of polynomials with real coefficients

(b, q) = /E p(@)q(@)dpo(z) + A /E P(@)d (@)dp () 2)

where p,g € P and A > 0.

This kind of inner products define a sequence {@,(x,A)} of monic poly-
nomials that is orthogonal with respect to (2). It can be constructed using
the standard Gram-Schmidt process. But these polynomials do not satisfy a
three-term recurrence relation as (1). If {P,} and {R,} denote, respectively,
the sequences of monic polynomials orthogonal with respect to pyg, p41, then
Iserles et al. introduced the concept of coherent pairs of measures (cf. [5]).

A pair of nontrivial Borel measures (ug, p11) supported on subsets of the
real line is said to be coherent if the corresponding sequences of of monic
orthogonal polynomials satisfy

P/ P/
L (1) + ap—2(x), o A0, n=1,2, ... (3)
n

Fin(w) = n—+1

From here, a relation between {P,} and {@, (-, \)} follows:
n
Pn(x) =+ n— 10411—1Pn—1(33) = Qn(gja )\) + ﬁn—l()\)Qn—l(xa )\)

where 3,-1(A) = Y_2(A)/Vn-1(A), 7, is a polynomial of degree n in the
variable A, and {~,} satisfies a three term recurrence relation.

In [5] the authors ask about the description of all coherent pairs of mea-
sures. The answer was given by Meijer in [7], where he proves that at least
one of the measures must be a classical one (Laguerre or Jacobi). In par-
ticular, when the support is a compact subset of the real axis, the following
cases appear:

a) duy = (1 —x)*(1 +x)5d:z:, o, > —1;
1 — a+1 1 B+1
( x)‘ (£|+x) de + Mo(x = &), |§| > 1, M >0;
T —
b) duo = (1 — 2)*(1 + 2)"|x — €|dz,
dup = (1 —2)*™ (1 + )z, o, > —1;
¢) dug = (1 — )%z + Mé(x +1), duy = (1 —2)*de, o,f>—1;

d,u1 =
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d) dug = (14 z)Pde + M§(z — 1), dpy = (1 +2)"dx, a, 8> —1.

The aim of this contribution is the analysis of the concept of coherent pairs of
measures supported on compact subsets of the complex plane. In particular,
we will focus our attention when the support is the unit circle.

The structure of the manuscript is as follows. In section 2 we define coher-
ent pairs of measures supported on Jordan arcs or curves using the connection
between the corresponding sequences of orthogonal polynomials as in (3).
As a consequence, the relation between these sequences and the sequence of
monic orthogonal polynomials orthogonal with respect to the Sobolev inner
product associated with the pair of measures (p, p1) is deduced. In section 3
we present the basic results concerning hermitian orthogonality on the unit
circle which will be used in the forthcoming sections. We give a sufficient
condition for a sequence of orthogonal polynomials on the unit circle satis-
fying a first order structure relation to be semi-classical (see Theorem 3).
This result is an extension to the result deduced by Branquinho and Rebo-
cho in [3]. In section 4 we present a characterization of pairs of coherent
measures on the unit circle; we prove that if (uo, p1) is a coherent pair of
measures on the unit circle (ug, 1) then pg is a semi-classical measure and
the linear functional associated with pu is a specific rational transformation
of the linear functional corresponding to pg (see, for example, [2]). Finally,
in section 5, we study the companion coherent measure associated with the
Bernstein-Szegd measure supported on the unit circle.

2. Coherent pairs of measures supported on Jordan arcs
and curves

Let ug, 1 be positive Borel measures on FEy, Ey, respectively, which are
Jordan curves or arcs. For A € RT, consider the inner product

<f7 g>5 - <f? g>0 + )‘<f/? g/>1 )

where (f, ghi = /E F© 9 ) du(€), k=0,1.

Let us denote by {Q,.(.; A}, {P.}, {R.}, the sequences of monic polynomials
orthogonal with respect to (.,.)s, (., .)o, {.,.)1, respectively.
We also denote

1

e fsm oy 0
S = (2", 2")s = ¢+ Amncy, 4, 1, myn €N
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where {Cfn,n}neN
0, 1, respectively.

Taking into account this expression, we obtain the following representation
in a determinantal form for the polynomials @),,:

are the moments with respect to the measures pu; for k =

0870 . CLO X e . Cn70 X
0,1 Cia 1 Ao X Cp ARG, 1
0 0 1 0 1
CO,n—l Cl,n—l + A(n _ 1)CO,n—2 Cn,n—l + An(ln’ _ 1)Cn—1,n—2
Qulzi ) = : &
25N = 70 0 0
€0,0 . €1,0 X . Ch-1,0 X
€o,1 11+ Acg g Cho11+ A —1)e, 90
0 0 1 0 2 1
CO,n—l Cl,n—l + )\(n _ 1)CO,n—2 Cn—l,n—l + )\(n - 1) Cn—2,n—2

or, equivalently,

C§,0 0(1),0 . Cg,o
€o,1 C11 1 Cn,1 1
DY X 1 €00 -~ T NC_19
0 0
Co,n—1 Cln—1 1 Cnon—1 1
o1 o1 T Con-2 No—1) T "Cn—1n-2
1 z 2"
Qn(z; )‘) - 0 0 0
Cg,o €10 . Cn-1,0
€o,1 C11 1 Cn—1,1 1
By » T o (=1 s
0 0
Co,n—1 1,n—1 1 Cn—1mn—1 1
A(n—1) A(n-1) + Con—2 A(n—1) + (TL l)cn 2,n—2

Since the coefficients of the above polynomial are rational functions in A,
when A tends to infinity we get
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0 0 0
CO,O C%,O P Cln70
0 o -+ nc_qg
1
0 Co,n—2 nNey_1n-—2
1 z . 2"
Sn(z) — 70 0 D (4)
€0,0 C%,o e Cp—1 o
1 1
0 Con—2 --- (n—1)¢, 9,9

)

which is a monic polynomial of degree n.

Proposition 1. The polynomial S,, satisfies
(i) (Sp,1)o=0, n>1,
(i) (S7,2")1 =0, 0<k<n-—2,n>2.
Proof: 1t is a straightforward consequence of (4). |

Notice that from condition (ii) we deduce that S/ (z) = nR,_1(z). On the
other hand, from R,_1(2) = >} _; an_14 P’“,iz) we get

563, 0

n ko
k=1
and, by integration
n
Zoén 1k -I-Oén—l,o-
k=1
But, according to condition (i) of Proposition 1, a,,—19 = 0. Therefore
(Z) - Py(2)
Op—1k ’
k
k=1
or, equivalently,
n
Sn(2) = ) an-1xPk(2) (5)
k=1

where a,_1 = na,_1/k are the connection coefficients for the polynomial
sequences {5, } and {P,}.
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On the other hand, from the Fourier expansion of S, with respect to the
polynomials {Q,} we get

Sn(2) = QnZ)\+Zﬁnj )Qj(2; )

where, for 0 < j <n —1,

5 0y 5 QEN)s (8.9
" (Qi(%A),Qi(z A)s (Qi(2A),Q;(2A))s
From this we do not get more information, but nevertheless if in (5) we

assume that a,_1; = 0 for K < n — s (with s a fixed nonnegative integer
number), it follows that 3, j(A) = 0 for j < n —s. Thus, for n > s,

n

> an kP2 Z Bni(NQj(2: A) - (6)

k=n—s j=n—s

Conversely, notice that if (6) holds, and ap—1,—5 # 0, Bpn—s(A) # 0, then,
from

(Qu(z;:0),p(2))s = [ Qulz; N)p(2)dpo + A i Q2 N)p'(2)dpa,

Eq
we get

Z ﬁnj Q] 2 )\) ( >>S - Oa JAS ]P)n—s—la

j=n—s

le.,

/ Zan 1]P, )d,ul_o pE]P)nsl
By

j=n-—s
From this the following relation holds

n

> an1;P Z by Ri(2

j=n—s Jj=n—s—1

Therefore, the following problem arises: To describe the measures g, 11
such that the corresponding sequences of monic orthogonal polynomials { P, }

and {R,} are related by

Rn—l(z) = PT/L(Z) + an_lm

n n—1

, ap1#0, n=2,3,.... (7)
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where for a sake of simplicity we write o, instead of oy, ,,, as well as a,, instead
of ayp.

For a coherent pair of measures we get some extra information about the
sequence (3,()\)). Indeed,

Pu(2) + ano1Paca(2) = Qu(#:A) + Bat (N Qua (1), ¥
where
n
Ap—1 — n — 1&71—17
B <Pn—17Qn—1(';)\)>O
Bu-1(A) = 01N, Qnt (3 W)
B 181 A 0
"R G NE -
Therefore,

1Qn1(; )1
= <Qn—1(-;)\)7pn—1>8

n
n

= Pl + MQ_1(5N), Ph_ )
= [|[Pocalg + MQh_1(5A), (n = 1)Ry—o — ap-aP)_sh
= || Poc1llg + X

(

1
— D2 Ry allf = Aan—2(Q),1 (5 A), Pr_ohi
= ||Pocall§ + A(n = 1| Roal|] + @Gn-2(Qn-1(5 ), Paza)o
= [[Poallg + A — 1)?|| Roolff

+ n—2(Pr1 + an2Pp 2 — Bra(A)Qna(., A), Pi2)0
= Bl + M = 1| Ryss||f + G2 [an—2 — B2 (N)] | Pazall§ -

Now, substituting in (9), and using the preceding notation we have for n =
3,4, ...

A
L _1(A\) = " , 10
ﬁ 1( ) Bn_ﬁn—Q()\) ( )
where
An _ C_Ln—l HPn—lH(j)
an—2 HPn—2H0
P 1l + A — 12| R, |2
B — o,y 1Pl A = V2R

an—2HPn—2H(2)
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- 1P [5an
W ) = SR+ 1A | |

Notice that B, is a polynomial of degree one in A. In this way, once
we obtain the coherent pairs we can deduce a representation for 3, 1()),
which are rational functions of A and, eventually, from (8) we get an explicit
expression for Q,(.; A) in terms of {P,}.

Theorem 1. The sequence (8,(\)) is given by
Tn—2(A)

h-1(A) = ; 1
ﬁ 1( ) fYn—l()‘>

where {y,} is a sequence of orthogonal polynomials associated with a positive
Borel measure supported on R.

=2.3,... (11)

Proof: Taking into account 3; is a rational function in A such that the degree
of the numerator is zero and the degree of the denominator is one, by induc-
tion we get (11) where 7, is a polynomial of degree n. Moreover, from (10),

7n—1(>‘) _ An—i—l

= , n=273,...
V(A Buri = y2(A)/Yn-1(N)
l.e.
Bn—i—l 1
WA = ——Y_1(A) — ——Yn—2(A). 12
30N = () = T2l (12)

Taking into account that B, is a polynomial of degree one in A, we get
that {v,} is a sequence of polynomials orthogonal with respect to a linear
functional. This is a straightforward consequence of the Favard Theorem,
see [4], since they satisfy a three-term recurrence relation.

Indeed, if 7, (A) = s, A" + lower degree terms, then (12) becomes
~ Bn—|—1 ~ Spn—2 .
nn)\: n—n—)\_ n—>\,
5N = G203t () = F230a(N

or, equivalently, for n = 2,3, ...
Fn(A) = A+ 1) Vn-1(A) = dn17n—2(N)

where
|an 1P| Poillg + | Pall3

C _ o
o n2|| Ry |13 ’
1P|l @n-1]?

n?(n = 12| Rna [ Bn—a

dn—l >0 )
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and initial conditions Fo(A) = 1, F1(A) = A+ ||P1||3/||Rol|3 . Notice that,
according to the Favard Theorem, {7, } is a sequence of monic polynomials
orthogonal with respect to a finite positive Borel measure supportedon R. m

3. Quasi-Orthogonality on the Unit Circle

Let T= {2 € C: |z| =1}, and A = span {z* : k € Z} be the linear space
of Laurent polynomials with complex coefficients. Given a linear functional
u: A — C, and the sequence of moments (¢,)nez of u, ¢, = (u,&"), n € Z,
cgp = 1, define the minors of the Toeplitz matrix A = (¢,)nen, by

Co C1 ce Ck
C_1 (&) oo Cr—1

AL = ,A():Co,A_lzl,kEN.
C g C_fk+1 ... Cp

u is said to be hermitian if c_,, = ¢,,Yn € N, and quasi-definite (respectively,
positive definite) if A,, # 0 (respectively, A, > 0), Vn € N. We will denote
by ‘H the set of hermitian linear functionals defined on A.

In the positive-definite case, u has an integral representation given in terms
of a nontrivial probability measure p with infinite support on the unit circle T,

2m
(u, ey = ! / e du(9), n e 7.
0

S or

The corresponding sequence of orthogonal polynomials, called orthogonal
polynomials on the unit circle, OPUC in short, is then defined by

1 2w

Dy P (e P(e7)du(0) = enbpm, €0 >0, n,m=0,1,....
T Jo

If P,(z) = 2"+lower degree terms, {P,} will be called a sequence of monic
orthogonal polynomzials, and we will denote it by MOPS. It is well known that
MOPS on the unit circle satisfy the following recurrence relations, known as
Szeqo recurrence relations, for n > 1:

Pu(2) = 2Pacs(2) + auPyy(2), Pi(2) = Piy(2) + @zPaca (2)

with a, = P,(0), Py(z) = 1, and P!(z) = 2"P,(1/2).
{P?} satisfies, for n € N,

(u, PX(2) 2" =0, k=1,....n, (u,P(2)) =e,. (13)
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The following relation holds (see [6])
(Py)(2) =nby(z) — 2(F;) (2), n 2 1. (14)
For u € H and A € P, we define

(Au, f) = {u, AR)F(2), [ € A
(A+ A, f) = (. (Az) + A(1/2)) f(2)). fEA.

Notice that (A+A)u is a hermitian linear functional. We will use the notation
ut = (A(z) + A(1/2))u.

Definition 1 (cf. [1]). Let v € H, p € N, and let {P,} be a sequence of
monic polynomials. {P,} is said to be T-quasi-orthogonal of order p with
respect to v if

i) (v,P,(2) 27%) = 0, for every k with p < k < n —p— 1 and for every
n = 2p+1;

ii) There exists ng > 2p such that (v, P, (z) 27 ") = 0.

Theorem 2 (cf. [1]). Let u € ‘H be quasi-definite and let {P,} be the MOPS
with respect to u. Then {P,} is T-quasi-orthogonal of order p with respect
tov € H— {0} if and only if there exists only one polynomial B (B # 0)
with deg(B) = p, such that v = u®.

Taking into account Theorem 4.1 of [1] we give the following definition.

Definition 2. Let u € H be quasi-definite and let {P,} be the MOPS as-
sociated with u. u is said to be semiclassical if there exists & € H — {0}
such that the sequence {P,} given by P,(z) = 12P/(2),n > 1, Py(z) =1, is
T-quasi-orthogonal with respect to @. In such a situation {P,} is said to be
a semiclassical sequence of orthogonal polynomials.

In the sequel we define f,(z2) = P,(2)/P}(z), Vn € N, and we study the
conditions in order to {f,} satisfies a Riccati differential equation. This
result will be useful to the following theorem. Using the Szegd recurrence
relations we get

o fn+1(Z) — Ap+1 .
2fn(2) = it (2) n=1,.. (15)

Lemma 1. Let {P,} be a sequence of monic orthogonal polynomials on the
unit circle and { P} the sequence of reversed polynomials. If {f.} satisfies a
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Riccaty differential equation with bounded degree polynomaial coefficients, i.e.,

Anfn(2) = Bu(2) f7(2) + Cu(2) fu(2) + En(2) , ¥n €N (16)

then, for every n € N, the following relations hold,
Ant1=An, (17)
2Buii = N, { By — @1 (2C, + Ay) + a5 2By} (18)
2Cpy1 = )\51{(_2%+an + (20, + A,) (1 + ‘an+1|2) - 25n+1Z2En}(19)
2Ep =N, a2, By — an1 (2C, + A,) + 2°E, } (20)

with Ay = (1 — |any1]?).
Proof: If f,, satisfies (16), then
2 A (2fn) = Bp(2f2)* + (2C, + A 2f, + 22E,.

Using (15) in previous equation we get

Jni1—a /
ZAn ( n—|—1_ n+1 )
1 — Qg1 frgr

2
:Bn<fn+1_an+1> +(ZCn+An)(fn+1_an+1> —|—Z2En

1 - an—i—lfn—i—l 1 - an—i—lfn—i—l

Since

( fn—i—l — Up+1 )l _ >\n.f7/1—|—1
1 — Qg1 frsr (1 = @pg1 frs1)?

from the previous equations we get

with A, =1 — |aps1]?,

2A )\nf/z+1 _ B ( 3+1 + a721+1 - 2an+1fn+1>
"(1 = @py1fr)? ! (1 — @pi1fner)?

+ (zC, + Ap) ( Jui1 = An ) + 2%E,

1 — @1 fot1

as well as

Mo 2Anfriq = {Bn = @1 (2C + Ap) + @5 2B} [
+ {(—2Cln_|_1Bn + (ZCn + An)(l + |an+1‘2) - 2an+1Z2En} fn—i—l
+ aiHBn — an1(2C, + A)) + 2°E,
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If we divide by A\, = (1 — |a,|?) then
2Anfh =N By — @1 (20, + An) + a5 127 By} fry
A, (=201 B + (2C, + A) (L + |ans1|?) — 2G0112°Ey ) fo
+ A1 {a?Han —an1(zC, + Ap) + zzEn}
Now, comparing the previous equation with (16) to n+1 and multiplied by z,
i.e., with
zApi1 S = 2Bnsa n2+1 + 2Cni1 a1 + 2Enq,
we get (17)-(20). |
Theorem 3. Let {P,} be a MOPS and {P}} be the sequence of reversed

polynomials. If {P,} satisfies a structure relation with bounded degree poly-
nomaals, n > 1,

2A0,(2)Pl(2) = Gu(2) Pu(2) + Hp(2)Pr(2) (21)

n

AL (2)(F) (2) = Su(2) Pa(2) + Tn(2) Py (2) (22)

then 11, doesn’t depend on n.
Let p = max{deg(G,,),deg(H,) + 1,deg(S,),deg(Il; — T},)}, ¥n € N. If
there exists ng > 2p such that deg(1ly —T,,,) = p, then {P,} is semi-classical.

Proof: If we multiply (21) by P¥, (22) by P,, and divide the resulting equa-
tions by (P*)?, we get, after subtracting the corresponding equations,

STI (Pép; - Pn(P;)/> (Gn - Tn)PnP; + Hn(Pﬁk)2 - Sn(Pn)2

(F)? (Pr)?
P\’ P\’ P,
Hn = — —n | 5o n_Tn— Hn
e <P> > (P) A

Thus,
Zan;L = _Snfr% + (Gn - Tn)fn + H,.
From the previous lemma, I1,, = 1I,,_1, Vn € N. Thus, II,, = II;, Vn € N.
Let us write (21) and (22) in the form

P .

A — G P, + H, P (23)
n
P*Y B B

PEGHRY SN s (24)

n
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with A =11, G, = Gn/n,, H, = H,/n, S, = Sn/n,Tn = T, /n. Furthermore,
if we use (14) in (24) then

PN _
A (Z ”) =-S5, P+ (A-T,)P (25)

n

On the other hand, from the hermitian character of u

P P P\
(u?, “n 2 Myngle = <u,AZ naMY 4 (u, A (Z ") Zh=n)
n n n
Using (23) and (25) in previous equation we get

P’ ~
(uA, “Tn z_k> = (u, G, P, z_k>
n

+ (u, H, P! 2%y — (u, S, P, 2¥=") + (u, (A — T,))P* 2*=n) . (26)

Since
(u,Gp Py 2% =0, k=deg(G,),....n—1
(u, H,P* 2% =0, k=deg(H,) +1,....,n
(u,S,P, 2™ =0, k=1,...,n—deg(S,)
(

?
R

then, with p = max{deg(G,),deg(H,) + 1,deg(S,), deg(A — T,)}, ¥n € N,
it follows that

/
2P,

(u?, 2 Fy =0 for every p < k <n—p—1 and for every n > 2p+ 1.

Next we show that condition ii) of Definition 2,

/

2P
Ing > 2p : (u, n—goz_"‘)ﬂ’} # 0,

holds for ng > 2p if and only if deg(A —T},,) = p.

From (26)
A ZP?ibo —ngo+ ~ —no+ 7 *  _—no+
(u T 27Oy = (U, Gy Py 27 p>+<u,Hn0Pn0 z7MOTPY
0

— (u, SnOPnO 27P) + (u, (A — TnO)P;O 2Py, (27)
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Since deg(G,) < p, deg(H,) <p—1, deg(5,) <p, Vn €N, and ng —p > p,
then

(1, Gy Py 27 ™7PY = (u, Hyy Pr 27" P) = (u, Sy Py, 277) = 0.

o+ ng
Therefore, (27) is equivalent to
2P, =
(2 ) (A= T Py, 29,

Taking into account the orthogonality relations (13) and deg(A —T,,) < p,
we get

< (A Tno)Pﬂ< _>7é0<:>deg(A_Tno):p-

Thus,
P/
(u, 200 ooty 40 & deg(A — Toy) = p.
no
Therefore, if there exists ng > 2p such that deg(A — T},,) = p, then the
sequence {%zP/l} is T—quasi-orthogonal of order p with respect to the her-

mitian functional u4 and we conclude that {P,} is semi-classical. |

4. Characterization Theorem

In the sequel we will use the vectors defined by
Ya(2) = [Pu(2) Pi(2)]", 0a(2) = [Ra(z) Ry(2)]", n€N.
We will use the Szegé recurrence relations in the matrix form for {«,},

¢n(z) = An(Z)@/}n_l(z)7 An(z) — |:_Z Qn

_ 1],nEN, a, = P,(0), (28)

and for {¥,},

z b,
nz 1

0(2) = Bueha(e), Bl = |7, ] ne N b= m0). (20)

We will write X(7) to denote the entry (i,7) of a matrix X, i,j = 1,2.

Theorem 4. Let (u,v) be a coherent pair of hermitian linear functionals on
the unit circle and {P,},{R,} the corresponding MOPS. Then, there ezist
A € P and matrices IC,,, M, of order two whose elements are bounded degree
polynomials such that, forn > 1,

2A(2)(2) = Kn(2)¢n(2) (30)
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and
2A(2)0n(2) = Mu(2)¢hn(2) (31)
Moreover,
a) {P,} is semi-classical;
b) {R,} is quasi-orthogonal of order p ( p < 6) with respect to the func-

tional u*. Thus, there exists a unique polynomial B of degree p such that
zA B
ut =0,

Proof: From
P/ P/
Ry =~ 4 o, =" (32)
n+1 n
we get
P 5, P! Y-t
n+1 n
Using (14) the last equation is equivalent to
e e = e Bt ()
Ry =Py +a,z2P, — Zniq:rll — @2 . (33)
If we write (32) and (33) in a matrix form and use (28), we obtain
U = Sptbn + Tl n > 1, (34)
with
~Joo 0 0 1/(n+1) 0 1 0
5= 1o 1] Ant1 + lo anz] i { 0 —z/(n+ 1)] {anﬂ 0]
[1/(n+1) 0 an,/n 0
Tn= 0 —z/(n + 1)] Ant1 + { 0 —a,2%/n|
Using (34) for n + 1 and the recurrence relations (28) and (29), we get

where the matrices H,, and M,, are given by

1 0

Hn - Bn—i—l% - 7;14—1"471—‘1-17 Mn - n—i—l-An—i-l + 7;7,—1-1 [a 0
n+1

] — B, 1S

Now, if we multiply (35) by the adjoint matrix of H,,, adjH,, , we get

where h,, = det(H,,) is a non-zero polynomial and IC,, = adj(Hn)Mn. More-
over, h,(0) = 0, Vn € N, and deg(h,) < 5, ¥n > 1. From Theorem 3 it
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follows that h,, is independent of n. Thus, we obtain (30) with zA = h; and
IC,, defined as above.

To obtain (31) we multiply (34) by zA and use (30). Thus, we obtain (31)
with M,, = zAS,, + 7T,,K,,.

To prove assertion a) we remind that equations (30) can be written as
equations of the same type as (21) and (22) of Theorem 3. Moreover, if

p = max{deg(K:Y), deg(K1?) + 1, deg(K2Y), deg(4 — K2}, ¥n e N,

then one can see that p < 4 and deg(A — IC,(E’?)) = p, n > 1. Thus, from
Theorem 3 we conclude that {P,} is semi-classical.

To prove assertion b) we use an analogue argument as in the proof of
Theorem 3. We write (31) in the form

2AR, = G, P, + H,P" (36)
2AR: = S,P, +T,P*, n>1, (37)

with G,,, H,,, Sy, T,, € P. From the definition of ©*4 and the hermitian char-
acter of u, we have

(W Ry, 27%) = (u, zAR,, z7%) + (u, zAR? k=) (38)
On the other hand, using (36) and (37) in (38) we get, for n, k > 0,

(W, R,y 2 ")
= (u, G Py 27" + (u, H,P* 27%) + (u, S, P, 2*=") + (u, T, Pr zF-7). (39)
Using a similar reasoning as in the proof of Theorem 3, we obtain for
p = max{deg(G,),deg(H,) + 1,deg(S,),deg(T,)}, Vn € N,

that
(R, 2%y = 0 for every p < k < n—p—1 as well as for every n > 2p+1.

Thus the condition i) of Definition 2 is satisfied.
Then, we can also establish that condition ii) of Definition 2,

Ing > 2p : (ut, R,z ™) #£0,
holds for ny > 2p if and only if deg(7},,) = p. Moreover, we get that p < 6
and deg(T},) = p, Vn > 1.
Thus {R,} is quasi-orthogonal of order p with respect to the functional %4,

In this case, from Theorem 2, we conclude that there exists a polynomial B
with deg(B) = p such that u*4 = v, |
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5. Examples of Coherent Pairs on the Unit Circle

In this section we present the examples of coherent pairs corresponding to
the Bernstein-Szeg6 class.

Theorem 5. Let (jg, j11) be a coherent pair of measures supported on the unit
circle. If pg is the Lebesque measure, then py belongs to the Bernstein-Szego
class, and the corresponding MOPS, {R,}, is given by, R,(z) = 2" 1(z +
c), n>1, with ¢ a constant, |c| < 1.
Furthermore, duy = df/(2x |z + c|?) .

Proof: If in (7) we assume the sequence {P,} is a classical Hahn MOPS in
the sense that {P)/n} is a sequence of monic polynomials orthogonal with

respect to a measure supported on the unit circle, we know that P,(z) = 2"
(see [6]). Therefore,

Ro_1(2) = 2" + a1 2" 2.

If we want that {R,,} is a monic orthogonal polynomial sequence on the unit
circle, then it will satisfy a forward recurrence relation

2Ry 1(2) + Ra(0) R, 1(2) = R(2), (40)
and so
T =2 a2
that is, o, = a1 = - -+ = a9 = ¢. As a consequence,

Ru(2) = 2"z +¢).

Thus the MOPS { R, } belongs to the Bernstein-Szeg6 class and py is defined
as stated (see [2], for example). |

Theorem 6. The only Bernstein-Szego measure, L, that admits a compan-
1on measure (41 supported on the unit circle such that it yields a coherent
pair, 1S the Lebesgque measure.

Proof: Let (o, 1) be a coherent pair of measures supported on the unit
circle and {P,},{R,} the corresponding MOPS. We will prove that if P,
belongs to the Bernstein-Szegé class, then P,(z) = 2".

Let us suppose that the monic orthogonal polynomial sequence {P,} is
defined by P,(z) = 2" *Py(2) for n > k (for a fixed nonnegative integer
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number k), where Py is a monic polynomial of degree k such that P,(0) # 0.
Thus

P/ (2) = (n— k)" 1P(2) + 2" "P[(2).
From (7) it follows that

(n—k+1)2""*P(2) + 2"T17*P/(2)

R,(z) =
(=) n+1
ta (n — k)2"F1P(2) + 2" *Pl(2)
n n 9
or, equivalently,
n—k—1 n—Fk+1 n—k n—=k 1/ zZ Oy,
A (2) = P(z) |2t a P Sul
Ru(2) == k(Z)|: o ctoe |t ' (2) 1

Since R,(0) =0 for n > k 4 2 and taking into account (40), we have
R.(z) =2R,-1(2), n>k+2.

Thus,
n—k—1 n—k+1 n—k| ol 2 o
P, —_— n——— P —
2 k(z)[ o @+ o — _+z 1 (2) _n+1+n
n—k—1 n—Fk n—k—1] n—k p/ E Op—1
= P ] —————— P — :
y k(z)[ n #F n n—1 _+Z () n n—l]

—k+1 —k —k — k-1
z"_k_lPk(z)[<nn+_1|_ _nn >z+n an—n—an_1]

1 1 n n—
v tpe) (g -3 ) o+ 2 - 22 o,

n+1 n

—k+1 —k —k — k-1
n (i noh) ek, ntid,

n—+1 n
+2P(2) SR s dn Sty (41)
K n+1 n n n—1|

n—=k n—1—k ]
—— Q1
n n—1

Since

0, n>k+2,
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and taking into account that Py(0) # 0, we get for n > k + 2,
n—k n—1—k

M
Thus
2 1 .
moqﬁg 7 T 104k+1 =0, ie.

k+2
(8% = ——Q
k+2 2(]€+1) E+1

and, as a consequence,

k431 E+31
Qp+3 = k—+2§04k+2 = k—%—laakﬂ .
In general, for n > k + 2
n 1

o 1 k)
Substituting this expression in (41),

0— Pi) :<n—k+1_n—k>Z]

n+1 n

/ | < 1 ! ! !
+ 2P[(2) Tt 1) + ((k;—l—l) n—k)! (k+1)(n—k— 1)!> Oék+1]

0~ Bule) :<n—k+1_n—k>Z]

n—+1 n
, z 1 1—n+k
+ 2P;(2) [_n(n+1) + G+ 1) (n—h) 04k+1] ;
k , z 1 n—k—-1 B
OIS {n(nJrl) THEED (n—h) O"““] 0.

kPy(2) — Pl(2) [z+”(”+1)”_k_1 ] =0

(k+1) (n— k)

Since this equation is satisfied for all n > k + 2, then a1 = 0, as well
as Pp(z) = 2*. But this contradicts the fact P(0) # 0, up to & = 0. In
such a case we are in the previous situation. So we obtain that P,(z) = 2",
n € N. ]
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Lemma 2. If a sequence of monic polynomials {P,} orthogonal with respect
to a linear functional v on the unit circle satisfies

2" P,(z P, 1(z
E‘}_un—l: (>+Oé 1()

e, =23, (42)

then u, =0, n=1,2,....
Furthermore, the corresponding moments ¢, are zero forn =2,3,....

2
Proof: We will use induction arguments. For n = 2, (42) becomes % +u =

PQ(Z)
2

+ ay Pi(2) . If we apply the linear functional v in the above expression
% + Uiy = 0. (43)

If we multiply by 1/z and using the linear functional v then we get

% e = ano, AP/,

From the last expression and taking into account v is quasi—definite then

C1 75 0.
3 P:
For n = 3, (42) becomes % + uy = 3?EZ)

+ asPy(z) . If we multiply in the

above expression by 1,1/2,1/2%, respectively and using the linear functional v
we get

% + ug2co = 0, (44)
% +ugc =0, (45)
% + Ugly = %(w Py(2)Pa(1/2)) .
Thus
0_31 — 3|usl?e; = %(u, Py(2)P(1/2)),

and, as a consequence, c; # 0 as well as 1 — 9|uy|? # 0.

4 P, P:
For n = 4, (42) becomes ZZ +uz = 4iz) + o 5(2)

. Again, if we multiply
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the above expression by 1,1/2,1/2%, and 1/z3 respectively, then we get

% + uszcy =0, (46)
% +usé =0, (47)
% +uscy =0, (48)
sty = 2w, Py(2)Pi(1/2) (49)

From (47) and (49) c1(1 — 16]us|*) = %<U,P3(Z)?3(1/Z)> i.e. |ug| # i

Taking into account (48) we deduce that ¢; = 0, and, as a consequence
of (45), ug = 0. On the other hand, from (44), ¢3 = 0. Thus, taking into
account (47), us = 0 and, as a consequence, ¢; = ¢4 = 0. Notice that u; =0

from (43).
Finally,
S 1
ar{v, Pi(2) Pi(1/2)) = -,
— 2
042<U, PQ('Z)PQ(]'/Z)> - gcl ’
— 3
043<U,P3(Z)P3(1/Z)> = 101 .
If we assume u,,_o = 0 as well as ¢, = 0 for k = 2,.3,...,n — 1, then we

can multiply in (42) by 1,1/z,...,1/2""! respectively. Using the linear
functional v we get

C

=ty 1c9=0 (50)
n
O w18 =0 (51)
n
CnT—z + Up_160 =0
2 + Up_1Cp—2 =0
n
C1 _ Qp—1
o + Up—1Cp—1 = p— 1<u, P, 1(2)P,-1(1/2)) . (52)
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From (51) we get u,—1 = 0 and thus, from (50), ¢, = 0. Taking into ac-
count (52)

n—1

Oén_1<U, Pn—l(z)m> = -

Moreover, if v is a positive definite linear functional, then we get an integral

representation of such a functional taking into account their moments ¢y and
c1. Indeed,

C.

A 2m A 2m
o= — |z —al?df, clz—/ 2|z — al*db
21 0 21 0
with z = €. o c
Thus, ¢o = (14 o)A, ¢; = —aA. In other words, ———— = ——. |
1+ |of? Co

Theorem 7. Let (o, p1) be a coherent pair of measures supported on the
unit circle. If 1 1s the Lebesque measure then pg must be an absolutely
continuous measure
ﬁ 2z =e".
2T
Proof: If we assume i is the Lebesgue measure supported on the unit circle,
i.e., R,(z) = 2", then (7) becomes

s _BE) L P

n n—1

Integrating the above expression, there exists a sequence of complex num-
bers (u,) such that

dpy = |2 — af?

, n=2,3,....

Z" P,(z P, 1(z

— 4+ Uy = ()+&n_1A,n:2,3,....

n n n—1
Using the previous lemma, the assertion follows. u
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