A NOTE ON 3-QUASI-SASAKIAN GEOMETRY

BENIAMINO CAPPELLETTI MONTANO, ANTONIO DE NICOLA AND GIULIA DILEO

ABSTRACT: 3-quasi-Sasakian manifolds were recently studied by the authors as a suitable setting unifying 3-Sasakian and 3-cosymplectic geometries. In this paper some geometric properties of this class of almost 3-contact metric manifolds are briefly reviewed, with an emphasis on those more related to physical applications.

KEYWORDS: Almost contact metric 3-structures, 3-Sasakian manifolds, 3-cosymplectic manifolds.

AMS SUBJECT CLASSIFICATION (2000): 53C15, 53C25, 53C26.

1. Introduction

The class of 3-quasi-Sasakian manifolds is the analogue in the setting of 3-structures of the class of quasi-Sasakian manifolds, introduced by Blair [3] and later studied among others by Tanno [13], Kanemaki [11], Olszak [12]. More recent are the examples of applications of quasi-Sasakian manifolds to string theory found by Friedrich and his collaborators [2, 9]. Just like quasi-Sasakian manifolds include Sasakian and cosymplectic manifolds, so 3-quasi-Sasakian manifolds unify 3-Sasakian and 3-cosymplectic geometry. A 3-quasi-Sasakian manifold can arise, for example, as the product of a 3-Sasakian manifold and a hyper-Kähler manifold (see Sect. 3 or [7]). The setting of 3-structures has been recently the object of a wider interest from both mathematicians and physicists due to the important role acquired by the 3-Sasakian and the related quaternionic structures in supergravity and superstring theory, where they appear in the so called hypermultiplet solutions (see e. g. [1, 2, 6, 15]). This note contains a concise review of the main properties of 3-quasi-Sasakian manifolds, recently studied by the authors in [7], together with some relevant properties of the two important subclasses of 3-Sasakian and 3-cosymplectic manifolds which were compared in [8].

2. 3-quasi-Sasakian geometry

An almost contact metric manifold is a (2n+1)-dimensional manifold M endowed with a field ϕ of endomorphisms of the tangent spaces, a vector field ξ ,

Received November 26, 2007.

The second author acknowledges financial support by CMUC.

called *Reeb vector field*, a 1-form η satisfying $\phi^2 = -I + \eta \otimes \xi$, $\eta(\xi) = 1$ (where $I: TM \to TM$ is the identity mapping) and a *compatible* Riemannian metric q such that $q(\phi X, \phi Y) = q(X, Y) - \eta(X) \eta(Y)$ for all $X, Y \in \Gamma(TM)$. The manifold is said to be *normal* if the tensor field $N^{(1)} = [\phi, \phi] + 2d\eta \otimes \xi$ vanishes identically. The 2-form Φ on M defined by $\Phi(X,Y) = q(X,\phi Y)$ is called the fundamental 2-form of the almost contact metric manifold (M, ϕ, ξ, η, q) . Normal almost contact metric manifolds such that both η and Φ are closed are called *cosymplectic manifolds* and those such that $d\eta = \Phi$ are called Sasakian manifolds. The notion of quasi-Sasakian structure unifies those of Sasakian and cosymplectic structures. A quasi-Sasakian manifold is defined as a normal almost contact metric manifold whose fundamental 2-form is closed. A quasi-Sasakian manifold M is said to be of rank 2p (for some $p \leq n$ if $(d\eta)^p \neq 0$ and $\eta \wedge (d\eta)^p = 0$ on M, and to be of rank 2p+1 if $\eta \wedge (d\eta)^p \neq 0$ and $(d\eta)^{p+1} = 0$ on M (cf. [3, 13]). Blair proved that there are no quasi-Sasakian manifolds of even rank. Just like Blair and Tanno did, we will only consider quasi-Sasakian manifolds of constant (odd) rank. If the rank of M is 2p + 1, then the module $\Gamma(TM)$ of vector fields over M splits into two submodules as follows: $\Gamma(TM) = \mathcal{E}^{2p+1} \oplus \mathcal{E}^{2q}, p+q = n$, where $\mathcal{E}^{2q} = \{X \in \Gamma(TM) \mid i_X d\eta = 0 \text{ and } i_X \eta = 0\} \text{ and } \mathcal{E}^{2p+1} = \mathcal{E}^{2p} \oplus \langle \xi \rangle, \mathcal{E}^{2p} \oplus \langle \xi \rangle \}$ being the orthogonal complement of $\mathcal{E}^{2q} \oplus \langle \xi \rangle$ in $\Gamma(TM)$. These modules satisfy $\phi \mathcal{E}^{2p} = \mathcal{E}^{2p}$ and $\phi \mathcal{E}^{2q} = \mathcal{E}^{2q}$ (cf. [13]).

We now come to the main topic of our paper, i.e. 3-quasi-Sasakian geometry, which is framed into the more general setting of almost 3-contact geometry. An almost 3-contact metric manifold is a (4n + 3)-dimensional smooth manifold M endowed with three almost contact structures (ϕ_1, ξ_1, η_1) , (ϕ_2, ξ_2, η_2) , (ϕ_3, ξ_3, η_3) satisfying the following relations, for any even permutation (α, β, γ) of $\{1, 2, 3\}$,

$$\phi_{\gamma} = \phi_{\alpha}\phi_{\beta} - \eta_{\beta} \otimes \xi_{\alpha} = -\phi_{\beta}\phi_{\alpha} + \eta_{\alpha} \otimes \xi_{\beta}, \tag{1}$$

$$\xi_{\gamma} = \phi_{\alpha}\xi_{\beta} = -\phi_{\beta}\xi_{\alpha}, \quad \eta_{\gamma} = \eta_{\alpha} \circ \phi_{\beta} = -\eta_{\beta} \circ \phi_{\alpha},$$

and a Riemannian metric g compatible with each of them. It is well known that in any almost 3-contact metric manifold the Reeb vector fields ξ_1, ξ_2, ξ_3 are orthonormal with respect to the compatible metric g and that the structural group of the tangent bundle is reducible to $Sp(n) \times I_3$. Moreover, by putting $\mathcal{H} = \bigcap_{\alpha=1}^3 \ker(\eta_\alpha)$ one obtains a 4n-dimensional horizontal distribution on M and the tangent bundle splits as the orthogonal sum $TM = \mathcal{H} \oplus \mathcal{V}$, where $\mathcal{V} = \langle \xi_1, \xi_2, \xi_3 \rangle$ is the vertical distribution. **Definition 2.1.** A 3-quasi-Sasakian manifold is an almost 3-contact metric manifold $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ such that each almost contact structure is quasi-Sasakian.

The class of 3-quasi-Sasakian manifolds includes as special cases the wellknown 3-Sasakian and 3-cosymplectic manifolds.

The following theorem combines the results obtained in Theorems 3.4 and 4.2 of [7].

Theorem 2.2. Let $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-quasi-Sasakian manifold. Then the 3-dimensional distribution \mathcal{V} generated by ξ_1, ξ_2, ξ_3 is integrable. Moreover, \mathcal{V} defines a totally geodesic and Riemannian foliation of M and for any even permutation (α, β, γ) of $\{1, 2, 3\}$ and for some $c \in \mathbb{R}$

$$[\xi_{\alpha},\xi_{\beta}] = c\xi_{\gamma}$$

Using Theorem 2.2 we may divide 3-quasi-Sasakian manifolds in two classes according to the behaviour of the leaves of the foliation \mathcal{V} : those 3-quasi-Sasakian manifolds for which each leaf of \mathcal{V} is locally SO(3) (or SU(2)) (which corresponds to take in Theorem 2.2 the constant $c \neq 0$), and those for which each leaf of \mathcal{V} is locally an abelian group (this corresponds to the case c = 0).

The preceding theorem also allows to define a canonical metric connection on any 3-quasi-Sasakian manifold. Indeed, let ∇^B be the Bott connection associated to \mathcal{V} , that is the partial connection on the normal bundle $TM/\mathcal{V} \cong$ \mathcal{H} of \mathcal{V} defined by $\nabla^B_V Z := [V, Z]_{\mathcal{H}}$ for all $V \in \Gamma(\mathcal{V})$ and $Z \in \Gamma(\mathcal{H})$. Following [14] we may construct an adapted connection on \mathcal{H} putting

$$\tilde{\nabla}_X Y := \begin{cases} \nabla^B_X Y, & \text{if } X \in \Gamma(\mathcal{V}); \\ (\nabla_X Y)_{\mathcal{H}}, & \text{if } X \in \Gamma(\mathcal{H}). \end{cases}$$

This connection can be also extended to a connection on all TM by requiring that $\tilde{\nabla}\xi_{\alpha} = 0$ for each $\alpha \in \{1, 2, 3\}$. Some properties of this global connection have been considered in [8] for any almost 3-contact metric manifold. Now combining Theorem 2.2 with [8, Theorem 3.6] we have:

Theorem 2.3. Let $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-quasi-Sasakian manifold. Then there exists a unique metric connection $\tilde{\nabla}$ on M satisfying the following properties:

(i)
$$\nabla \eta_{\alpha} = 0, \ \nabla \xi_{\alpha} = 0, \ for \ each \ \alpha \in \{1, 2, 3\},$$

(ii) $\tilde{T}(X, Y) = 2 \sum_{\alpha=1}^{3} d\eta_{\alpha}(X, Y) \xi_{\alpha}, \ for \ all \ X, Y \in \Gamma(TM).$

3. The rank of a 3-quasi-Sasakian manifold

For a 3-quasi-Sasakian manifold one can consider the ranks of the three structures $(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$. The following theorem assures that these three ranks coincide.

Theorem 3.1 ([7]). Let $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-quasi-Sasakian manifold of dimension 4n+3. Then the 1-forms η_1, η_2 and η_3 have the same rank 4l+3 or 4l+1, for some $l \leq n$, according to $[\xi_{\alpha}, \xi_{\beta}] = c\xi_{\gamma}$ with $c \neq 0$, or $[\xi_{\alpha}, \xi_{\beta}] = 0$, respectively.

According to Theorem 3.1, we say that a 3-quasi-Sasakian manifold $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ has rank 4l + 3 or 4l + 1 if any quasi-Sasakian structure has such rank. We may thus classify 3-quasi-Sasakian manifolds of dimension 4n + 3, according to their rank. For any $l \in \{0, \ldots, n\}$ we have one class of manifolds such that $[\xi_{\alpha}, \xi_{\beta}] = c\xi_{\gamma}$ with $c \neq 0$, and one class of manifolds with $[\xi_{\alpha}, \xi_{\beta}] = 0$. The total number of classes amounts then to 2n + 2. In the following we will use the notation $\mathcal{E}^{4m} := \{X \in \Gamma(\mathcal{H}) \mid i_X d\eta_{\alpha} = 0\}$, while \mathcal{E}^{4l} will be the orthogonal complement of \mathcal{E}^{4m} in $\Gamma(\mathcal{H}), \mathcal{E}^{4l+3} := \mathcal{E}^{4l} \oplus \Gamma(\mathcal{V})$, and $\mathcal{E}^{4m+3} := \mathcal{E}^{4m} \oplus \Gamma(\mathcal{V})$.

We now consider the class of 3-quasi-Sasakian manifolds such that $[\xi_{\alpha}, \xi_{\beta}] = c\xi_{\gamma}$ with $c \neq 0$ and let 4l + 3 be the rank. In this case, according to [3], we define for each structure $(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ two (1, 1)-tensor fields ψ_{α} and θ_{α} by putting

$$\psi_{\alpha}X = \begin{cases} \phi_{\alpha}X, & \text{if } X \in \mathcal{E}^{4l+3}; \\ 0, & \text{if } X \in \mathcal{E}^{4m}; \end{cases} \quad \theta_{\alpha}X = \begin{cases} 0, & \text{if } X \in \mathcal{E}^{4l+3}; \\ \phi_{\alpha}X, & \text{if } X \in \mathcal{E}^{4m}. \end{cases}$$

Note that, for each $\alpha \in \{1, 2, 3\}$ we have $\phi_{\alpha} = \psi_{\alpha} + \theta_{\alpha}$. Next, we define a new (pseudo-Riemannian, in general) metric \bar{g} on M setting

$$\bar{g}(X,Y) = \begin{cases} -d\eta_{\alpha}(X,\phi_{\alpha}Y), & \text{for } X,Y \in \mathcal{E}^{4l}; \\ g(X,Y), & \text{elsewhere.} \end{cases}$$

This definition is well posed by virtue of normality and of [7, Lemma 5.3]. $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, \bar{g})$ is in fact a hyper-normal almost 3-contact metric manifold, in general non-3-quasi-Sasakian. We are now able to formulate the following decomposition theorem, proven in [7].

Theorem 3.2. Let $(M^{4n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-quasi-Sasakian manifold of rank 4l+3 with $[\xi_{\alpha}, \xi_{\beta}] = 2\xi_{\gamma}$. Assume $[\theta_{\alpha}, \theta_{\alpha}] = 0$ for some $\alpha \in \{1, 2, 3\}$ and

 \bar{g} positive definite on \mathcal{E}^{4l} . Then M^{4n+3} is locally the product of a 3-Sasakian manifold M^{4l+3} and a hyper-Kählerian manifold M^{4m} with m = n - l.

We now consider the class of 3-quasi-Sasakian manifolds such that $[\xi_{\alpha}, \xi_{\beta}] = 0$ and let 4l + 1 be the rank. In this case we define for each structure $(\phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ two (1, 1)-tensor fields ψ_{α} and θ_{α} by putting

$$\psi_{\alpha}X = \begin{cases} \phi_{\alpha}X, & \text{if } X \in \mathcal{E}^{4l}; \\ 0, & \text{if } X \in \mathcal{E}^{4m+3}; \end{cases} \quad \theta_{\alpha}X = \begin{cases} 0, & \text{if } X \in \mathcal{E}^{4l}; \\ \phi_{\alpha}X, & \text{if } X \in \mathcal{E}^{4m+3}. \end{cases}$$

Note that for each α the maps $-\psi_{\alpha}^2$ and $-\theta_{\alpha}^2 + \eta_{\alpha} \otimes \xi_{\alpha}$ define an almost product structure which is integrable if and only if $[-\psi_{\alpha}^2, -\psi_{\alpha}^2] = 0$ or, equivalently, $[\psi_{\alpha}, \psi_{\alpha}] = 0$. Under this assumption the structure turns out to be 3-cosymplectic:

Theorem 3.3 ([7]). Let $(M, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-quasi-Sasakian manifold of rank 4l + 1 such that $[\xi_{\alpha}, \xi_{\beta}] = 0$ for any $\alpha, \beta \in \{1, 2, 3\}$ and $[\psi_{\alpha}, \psi_{\alpha}] = 0$ for some $\alpha \in \{1, 2, 3\}$. Then M is a 3-cosymplectic manifold.

As we have remarked before, 3-Sasakian and 3-cosymplectic manifolds belong to the class of 3-quasi-Sasakian manifolds, having respectively rank $4n + 3 = \dim(M)$ and rank 1. We now briefly collect some additional properties of these two important subclasses. We have seen that the vertical distribution \mathcal{V} is integrable already in any 3-quasi-Sasakian manifold. Ishihara ([10]) has shown that if the foliation defined by \mathcal{V} is regular then the space of leaves is a quaternionic-Kählerian manifold. Boyer, Galicki and Mann have proved the following more general result.

Theorem 3.4 ([5]). Let $(M^{4n+3}, \phi_{\alpha}, \xi_{\alpha}, \eta_{\alpha}, g)$ be a 3-Sasakian manifold such that the Killing vector fields ξ_1, ξ_2, ξ_3 are complete. Then

- (i): M^{4n+3} is an Einstein manifold of positive scalar curvature equal to 2(2n+1)(4n+3).
- (ii): Each leaf of the foliation \mathcal{V} is a 3-dimensional homogeneous spherical space form.
- (iii): The space of leaves M^{4n+3}/\mathcal{V} is a quaternionic-Kählerian orbifold of dimension 4n with positive scalar curvature equal to 16n(n+2).

We consider now the horizontal distribution: on the one hand, in the 3-Sasakian subclass \mathcal{H} is never integrable. On the other hand, in any 3-cosymplectic manifold \mathcal{H} is integrable since each η_{α} is closed. Furthermore,

the projectability with respect to \mathcal{V} is always granted, as the following theorem shows.

Theorem 3.5 ([8]). Every regular 3-cosymplectic manifold projects onto a hyper-Kählerian manifold.

As a corollary, it follows that every 3-cosymplectic manifold is Ricci-flat.

In [8] the horizontal flatness of such structures has been studied. In particular it has been proven to be equivalent to the existence of Darboux-like coordinates, that is local coordinates $\{x_1, \ldots, x_{4n}, z_1, z_2, z_3\}$ with respect to which, for each $\alpha \in \{1, 2, 3\}$, the fundamental 2-forms $\Phi_{\alpha} = d\eta_{\alpha}$ have constant components and $\xi_{\alpha} = a_{\alpha}^1 \frac{\partial}{\partial z_1} + a_{\alpha}^2 \frac{\partial}{\partial z_2} + a_{\alpha}^3 \frac{\partial}{\partial z_3}$, a_{α}^{β} being functions depending only on the coordinates z_1, z_2, z_3 . Consequently, in view of Theorem 3.4 and Theorem 3.5 we have the following result.

Theorem 3.6 ([8]). A 3-Sasakian manifold does not admit any Darboux-like coordinate system. On the other hand, a 3-cosymplectic manifold admits a Darboux-like coordinate system around each of its points if and only if it is flat.

4. Final Remarks

A number of natural questions arose during the development of our work on 3-quasi-Sasakian manifolds. We have seen that 3-Sasakian manifolds do not admit any Darboux coordinate system, while on 3-cosymplectic manifolds such coordinate exist if and only if the manifold is flat, so it is natural to wonder whether these coordinates do not exist on any 3-quasi-Sasakian manifold of rank greater than one. Another important topic would be to study the projectability of 3-quasi-Sasakian manifolds for understanding the general relation between this class and the quaternionic structures, since the 3-Sasakian manifolds project over quaternionic-Kähler structures while the structure of the leaf space turns out to be globally hyper-Kählerian in the 3cosymplectic case. Finally, as both 3-Sasakian and 3-cosymplectic manifolds are Einstein manifolds a natural question would be to ask whether all 3-quasi-Sasakian manifolds are Einstein. However, since we have already found an example of an η -Einstein, non-Einstein 3-quasi-Sasakian manifold in [7], the natural problem now becomes to establish if there is any 3-quasi-Sasakian manifolds which is not η -Einstein. We will try to address some of these questions in the next future.

References

- B. S. Acharya, J. M. Figueroa-O'Farrill, C. M. Hull and B. J. Spence, Branes at conical singularities and holography, Adv. Theor. Math. Phys. 2 (1999), 1249–1286.
- [2] I. Agricola, T. Friedrich, P. A. Nagy, C. Puhle, On the Ricci tensor in the common sector of type II string theory, Classical Quantum Gravity 22 (2005), 2569–2577.
- [3] D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geom. 1 (1967), 331–345.
- [4] D. E. Blair, *Riemannian geometry of contact and symplectic manifolds*, Birkhäuser, Boston, 2002.
- C. P. Boyer, K. Galicki, B. M. Mann, The geometry and the topology of 3-Sasakian manifolds, J. Reine Angew. Math. 455 (1994), 183–220.
- G. W. Gibbons and P. Rychenkova, Cones, tri-Sasakian structures and superconformal invariance, Phys. Lett. B 443 (1998) 138–142.
- B. Cappelletti Montano, A. De Nicola, G. Dileo, 3-quasi-Sasakian manifolds, Ann. Glob. Anal. Geom. (2007), DOI:10.1007/s10455-007-9093-5.
- [8] B. Cappelletti Montano, A. De Nicola, 3-Sasakian manifolds, 3-cosymplectic manifolds and Darboux theorem, J. Geom. Phys. 57 (2007), 2509–2520.
- T. Friedrich, S. Ivanov, Almost contact manifolds, connections with torsion, and parallel spinors, J. Reine Angew. Math. 559 (2003), 217–236.
- [10] S. Ishihara, Quaternion Kählerian manifolds and fibred Riemannian spaces with Sasakian 3structure, Kodai Math. Sem. Rep. 25 (1973), 321–329.
- [11] S. Kanemaki, Quasi-Sasakian manifolds, Tôhoku Math. J. 29 (1977), 227–233.
- [12] Z. Olszak, Curvature properties of quasi-Sasakian manifolds, Tensor **38** (1982), 19–28.
- [13] S. Tanno, Quasi-Sasakian structures of rank 2p + 1, J. Differential Geom. 5 (1971), 317–324.
- [14] Ph. Tondeur, Geometry of foliations, Monographs in Mathematics, 90, Birkhäuser, Basel, 1997.
- [15] H. Yee, AdS/CFT with tri-Sasakian manifolds, Nuclear Phys. B 774 (2007), 232–255.

BENIAMINO CAPPELLETTI MONTANO

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI BARI, VIA E. ORABONA 4, 70125 BARI, ITALY

E-mail address: cappelletti@dm.uniba.it

Antonio De Nicola

CMUC, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COIMBRA, 3001-454 COIMBRA, PORTUGAL

E-mail address: adenicola@mat.uc.pt

Giulia Dileo

DIPARTIMENTO DI MATEMATICA, UNIVERSITÀ DEGLI STUDI DI BARI, VIA E. ORABONA 4, 70125 BARI, ITALY

E-mail address: dileo@dm.uniba.it