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ABSTRACT: Pak and Vallejo have defined fundamental symmetry map as any Young
tableau bijection for the commutativity of the Littlewood-Richardson coefficients
cf;’,/ = c,))w. They have exhibited four fundamental symmetry maps and conjec-
tured that they are all identical (2004). The three first ones are based on standard
operations in Young tableau theory and, in this case, the conjecture was proved
by Danilov and Koshevoy (2005). The fourth fundamental symmetry, given by
the author in (1999;2000) and reformulated by Pak and Vallejo, is defined by non-
standard operations in Young tableau theory and is shown, in this paper, to be
identical to the first one defined by the involution property of the Benkart-Sottile-
Stroomer tableau switching. The proof of this equivalence exhibits switching as an
operation satisfying the interlacing property between normal shapes of the pairs of
tableaux and pairs of subtableaux. That property leads to a jeu de taquin-like on
Littlewood-Richardson tableaux which explains the mentioned nonstandard oper-
ations and provides a variation of the tableau switching on Littlewood-Richardson
tableau pairs.
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1. Introduction

Recently, with different approaches, several bijections exhibiting symme-
tries of Littlewood-Richardson coefficients have been constructed [PV2, KTW,
HK, DK]. Also the relationship between different combinatorial objects has
been studied [PV1]. In [KTW, HK] hives and octahedron recurrence are the
main tools while in [PV2] the bijections are within Young tableaux. The
fundamental symmetry map is defined in [PV2] as any bijection between sets
of Littlewood-Richardson tableaux of shape A/ with weight v, and those
of shape A/v with weight p. Namely in [PV2] four fundamental symmetry
maps pi, pa, Py and ps are provided and it is conjectured that they are
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equivalent in the sense that in all of them the outcome is the same. The
three first are based on standard algorithms in Young tableau theory, jeu de
taquin, Schiitzenberger involution and tableau switching, while p3 uses non-
standard operations in Young tableau theory and exhibits a Gelfand-Tsetlin
pattern. The fundamental symmetry map p3 is a jeu de taquin-like algorithm
which rectifies a Littlewood-Richardson tableau of shape A/u such that the
contracting slides decomposes the inner shape p into a sequence of interlac-
ing partitions defining a Gelfand-Tsetlin pattern of type [v, u, A] with v the
partition shape of the rectified Littlewood-Richardson tableau.

In [DK] it is shown that the Henriques-Kamnitzer commuter coincides with
the Pak-Vallejo fundamental symmetries p;, ps, py*, and ps = p;'. However
the fundamental symmetry ps in [PV2] is left out. Fundamental symmetry
map p3 mentioned in [PV1] and slightly reformulated in [PV2], has appeared
earlier in [AZ1, AZ2] and uses nonstandard operations in Young tableau the-
ory which exhibits an interlacing property. Here we show that p3 is equivalent
to p; defined by the involution switching tableau property. The switching
procedure [BSS| can be performed in almost any order without affecting the
outcome. We impose an order on the operations of the tableau switching
such that in the moving process if S UT is the initial pair with S of normal
shape and R U X is an intermediate perforated pair, the shape of S always
interlaces with the normal shape of the tableau obtained by full switching
of any perforated subtableau consisting of the first ¢ rows of R. When the
left tableau is a Yamanouchi tableau the sequence of interlacing partitions
encodes the Yamanouchi word of the right tableau of the outcome pair and
this leads to a jeu taquin-like algorithm to exhibit the commutative property
of Littlewood-Richardson coefficients.

The paper is divided into six sections. In the next section we give the
basic definitions and terminology for what follows. In the third section we
exhibit the tableau switching with the interlacing property of normal shapes.
In the fourth section we show that the bijection p3 is identical to the tableau
switching by exhibiting it as a jeu de taquin-like algorithm on Littlewood-
Richardson tableaux. This algorithm gives a special Littlewood-Richardson
tableau switching. In the fifth section we translate the jeu de taquin-like
operations to Littlewood-Richardson triangles [PV1] and get a Littlewood-
Richardson triangle switching. In the last section we relate the interlacing
property of the tableau switching with other occurrences of the interlacing
phenomenon as the interlacing of invariant factors of matrices over principal
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ideal domains and of eigenvalues of Hermitian matrices [FP, EMSa, TH,
QSSA]. Along the paper several examples are given.

2. Preliminaries

We think of Z x Z as consisting of boxes or dots @ and number the rows and
columns according the matrix style. Consider x and 2’ boxes in Z x Z. We
say that x is to the north of 2’ if the row containing z is above or equal the
row containing z’; and x is to the west of x if the column containing x is to
the left or equal to the column containing 2. The other compass directions
are defined analogously. When z and 2’ are distinct adjacent boxes they are
said neighbours. For instance, the neighbour to the north of = is the one
directly above z. Often we label boxes or dots with integers (or with letters
in a finite totally ordered alphabet) and in this case we identify these objects
with the corresponding letters.

A partition (or normal shape) A = (A1,---,\,) is a finite sequence (or
infinite sequence with finite support) of nonnegative integers by weakly de-
creasing order. We ignore the distinction between two partitions that differ
only at a string of zeros at the end. The diagram of A consists of \; boxes
(or dots e) in the first row, Ay boxes in the second row, etc, justified on the
left. We look at partitions and diagrams indistinctly. If A and p are two
partitions with \; > u; for all 7, we write u C A. The skew-diagram of shape
A/ is the difference set of A and p. Whenever p C \ we say \/u extends
p and the outer border of p is the inner border of \/u. The tableau T of
shape \/u, written shT = \/u, is a filling (or labeling) of the skew-diagram
A/ using letters of a finite totally ordered alphabet such that the entries in-
crease weakly along rows and strictly down columns. The weight of a tableau
is v = (v, -+ ,v,) where y; is the multiplicity of the letter 7 in the filling of
the tableau. A tableau of (normal) shape A is a tableau of shape A/0. We
say the tableau T" extends the tableau S if the shape of T" extends the shape
of S.

A word is a sequence of letters over a finite totally ordered alphabet. We
define the word of a tableau by reading the entries along the rows from left to
right and bottom to top. The Yamanouchi tableau of shape A\, denoted Y (),
is the tableau whose shape and weight is A, that is, the tableau obtained by
filling the first row of A with A\; 1’s, the second with Ay 2’s etc. A Yamanouchi
word of weight A is a word Knuth equivalent with Y(\). A Littlewood-
Richardson (LR for short) tableau of type [, v, A] is a tableau of shape \/u
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and weight v whose word is Yamanouchi. Denote by LR|[u, v, A] the set of
all LR tableaux of type [u,r, A]. The cardinal of this set is the Littlewood-
Richardson coefficient cﬁ’y [F, LLT, Sa, S].

Definition 2.1. [PV2]| The fundamental symmetry is a bijection
p: LR, v, \] — LR[v, i, \].

In [PV2] the version p; of the fundamental symmetry is based on the in-
volution property of the tableau switching [BSS]. In the last section we shall
present the version ps of the fundamental symmetry [AZ1, AZ2, PV2] in
terms of a jeu de taquin-like and this allows us to conclude that p; and ps3
have the same outcome.

We recall now the rules of jeu de taquin slides. Let us consider a black

dot e with the two possible south-east neighbours ; . A contracting slide

into the black dot e is performed according to the following rules (a) if it
has only one neighbour, swap with that neighbour; (b) if it has two different
neighbours, swap with the smaller one; (c¢) if it has equal neighbours, swap
with the one to the south. In the case of two possible north-west neighbours

d . . :
o oM expanding slide into the black dot e is performed analogously. Two

tableaux are said Knuth equivalent if one of them can be transformed by
contracting and expanding slides into the another one. The full contraction
of a tableau is called rectification. Thus two tableaux are Knuth equivalent if
they have the same rectification. The shape of the rectified tableau is called
the normal shape of the tableau.

Thus another perspective for Litlewood-Richardson coefficients is that cﬁ’y
counts the number of LR tableaux of type [u, v, \] that are Knuth equivalent
to Y(v) [F, LLT, Sa, S]. This point of view will be explored here.

Gelfand-Tsetlin (GT for short) patterns are related with LR tableaux as
follows [GZ].

Definition 2.2. A Gelfand-Tsetlin pattern of size n is a map G : {(,7) :
1 <j<i<n} — Zsuch that G(i,j) > G(i — 1,5) > G(i,7 + 1) for all ¢
and j.

The base of a Gelfand-Tsetlin pattern is the sequence of integers that ap-
pears on the bottom row and the weight of a GT pattern is the sequence of
differences of row sums from top to bottom.
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There exists a GT pattern of size n, base v and weight A — p if and only if
there exists a sequence of partitions ps) = (1/1(8), cey Vés)), s =1,...,n, with

v = v satisfying the interlacing inequalities

v > S 1< <i<a, (2.1)
schematically
o
V1(2) V§2)
V1(3) V2(3) V§3)
Vl(n—l) Vén—l) V:gn 1) Vgi—ll)
R N

and the system of linear inequalities

r—1 r
Mi—1+Z(V](-Z_1)—VJ('Z_2)) > ,LLZ-—FZ(V](-Z)—VJ(.Z_U), r=1,...,i—1,i=2,...,n,
j=1 j=1

(2.2)
pi+ Y ) =y =N i=1, (2.3)

This GT pattern is said of type [, v, A] and sometimes p is called a bound-
ary of the GT pattern. There is a standard bijection between Littlewood-
Richardson tableaux of type [u, v, A\] and the GT patterns of type [u, v, A]
|GZ]. This bijection sends an LR tableau T" to the GT pattern whose value
at (i,7) is the number of j's in the first i rows of 7. An alternative way to
look at this bijection is to put the i-th row of the GT pattern as the shape
of the Yamanouchi tableau of the word in the first ¢ rows of T'. Equivalently
the shape of the rectified LR subtableau defined by the first ¢ rows of T". This
point of view will be useful in the next section.

Here is an LR tableau of type [ = (6,4,3,1);v = (5,4,2,1); A = (9, ,6 4)]
and the corresponding GT pattern with base v, weight )\ w=(3,3,3,3)
and boundary pu,
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We recall now the switching procedure and some related terminology [BSS].
A perforated tableau T of shape A/ is a labeling of some of the boxes satisfy-
ing some restrictions: whenever x and 2’ are letters in 7" and x is north-west
of 2/, x < 2’; within each column of T the letters are distinct. If S and T
are perforated tableaux of some given shape A and together they completely
label A\ such that no box is labeled twice, then S U T (as union of subsets
of Z x 7Z) is called a perforated pair of shape A. In particular, given two
tableaux S and T' of shapes p and A/u respectively, S U T is a perforated
pair of shape .

For convenience, when considering pairs of perforated tableaux S U T, the
letters in S and T belong to different alphabets either 0 < 1 < --- < @1 or
0<1<---<n Let SUT be a perforated pair and assume that s and t

are two adjacent letters S t or ® from S and T respectively. Swapping S

t
and t is called a switch whenever we have simultaneously a contracting slide
in 7" and a an expanding slide in S. The switching procedure starts with two
tableaux S and 7T such that T extends S and, by switching letters from S
with letters from T', transforms S UT into a pair of tableaux PU () such that
Q@ extends P, S is Knuth equivalent to () and 7' is Knuth equivalent to P.
We say that PU(Q) is the switching of S and T'. The switching transformation
is an involution. In this paper the switching procedure always start with a
pair S UT where S has normal shape.

3. Tableau switching and shape interlacing property

We have seen that the i-th row of a GT-pattern of base u encodes the
normal shape of the rectified LR subtableau defined by the first ¢+ rows of an
LR tableau of weight .

If SUT is a pair of tableaux of shapes p and A/p which switching procedure
transforms into a pair P U () where P is a tableau of normal shape v, then
the sequence of normal shapes of the subtableaux defined by the first ¢ rows
of T is a GT pattern of type [u, v, A], and the sequence of normal shapes
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of the subtableaux defined by the first ¢ rows of () is a GT pattern of type
[v, i, A]. This follows from Haiman results on dual equivalence [H].

Theorem 3.1. [H, BSS| Let U and V' tableaux of the same shape. If W is
any tableau that extends U and extends V', then switching transforms U UW
into PUQ and V UW into PU R where () and R are dual equivalent.

Let P U QW be the subpair defined by the first i rows of P U Q. If
switching transforms PO UQ® into SOUT® for all t, and in each SOUTO we
substitute S with Y (sh S), then switching will transform Y (sh S®)uT)
into P U Q where Q(i) is an LR tableau of type [sh P%), sh S \]. Thus
S = (ShS ., sh S )) define a GT pattern of type [v, i, AJ.

On the other hand by symmetry, when by switching we pass from PUQ to
SUT we get another GT pattern P = (sh P, - sh P™) of type [, v, Al
where P is the rectification of the subtableau deﬁned by the first ¢ rows
of T. Thus switching transforms S UT into P U @ and at the same time
transforms the GT pattern P of base v and boundary 1 into the G'T pattern
S of base 1 and boundary v.

Now we give an algorithmic approach to these results. We define a certain
choice of order in the switching procedure which exhibits a pair of Gelfand-
Tsetlin patterns. Let S’ U T’ be an intermediate perforated pair of this
procedure, S’ UT"%) the subpair defined by the first i rows and S'0 U T'()
the pair after full contraction of S’ and full extension of 7"%). Start with the
GT pattern (p1), (g1, po), -, = (p1, - - -, i) associated Wlth the tableau
S of normal shape p. Along the procedure, this pattern is transformed
successively into patterns of base p whose ith row is the shape of S0 On
the other hand, along the procedure, the GT pattern of base v associated
with 7' is transformed successively into patterns of base v whose ith row
is the shape of T"® and eventually into the GT pattern (1), (v1,1), ...,
v=(v1,..., ).

Lemma 3.2. Suppose S and T are two-row tableaux where S has shape p =
(g1, p2) and T extends S. Then we may switch S with T using at most jq — o
vertical switches. In particular, if switching transforms SUT into PUQ) then
the length of the first row of Q) and u define a a GT pattern of base .

Proof: 1st Step: Switch horizontally the letters of the first row of T" with the
letters of the first row of S such that the letters of T get the leftmost possible
positions.
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2nd Step: Then switch horizontally the letters of the second row of S with
the letters of the second row of T" such that the letters of S get the rightmost
possible positions. In this transformation possibly some of the letters of the
second row of T" will go to the left and we might have to switch again some
of the letters of the first row of T" with some letters of the first row of S to
their left. At this point the letters of the first row of T are in the left most
possible positions, and the letters of the second row of S are in the rightmost
possible positions.

S
¢

4th Step: Now we may slide in the second and first rows of the perforated
pair the letters of S totally to the right.

3th Step: We perform the vertical switches

The number of vertical switches i performed in 3th step is at most p; — o

times, otherwise, after step 4, we would get a pair of tableaux where the skew
tableau Knuth equivalent with S would have a row word of length at least
p1 + 1. This is absurd since the shape of S is = (1, p2) and therefore the
longest row of any word Knuth equivalent with .S has length ;. u

Moreover, note that if RU () is an intermediate perforated pair with S the
full contraction of R and T the full expansion of () then the length of the
first row of R interlaces with .

Ezample 3.1. Let = (3,1) and d > b. Then

sur- abe234 ab234c ab234c
—d 2 34 d 2 314 2 3 4d
a234be 2 23 4bec 223 4bc

~ 2344 ~ a344d —~PUC@= 145, 53

The GT pattern 3 3 | of base pu, is transformed into the GT pattern
2

3 10fbase,u.

Proposition 3.3. Let S and T be a three-row pair of tableauzx, where S has
shape p and T extends S. Suppose switching transforms S UT into P U Q)
and let PY U QY be the sequence of pairs of tableaux defined by the first i
rows of PUQ = P uQ®, 1 << 3. If switching transforms PW U QW
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into SOy T for all i, then sh S(l), sh S(Q), sh S®) define a G'T pattern of
base .

Proof: We start with the GT pattern of base p, defined by sh S, sh S®),
sh S®) where S is the tableau defined by the 7 first rows of S, for all 4,

H1
1 H2 : (3.1)
M1 M2 M3

Apply the 1st Step of switching, as in the Lemma, to the pair of tableaux
defined by last two rows of S UT. Then either switching procedure involves
only these two rows or some letters of the 1st row of S will slide down to the
2nd row of S UT. The last case occurs as follows. Suppose there is in the
2nd row a letter z of T' with a west neighbour a and north neighbour b in S
such that a < b. Moreover there is no smaller letters of T in the 1st row to
the east of 2. Then we have to switch vertically = with b,

z z

, v < 2. (3.2)

—

8 Tl

X a X a b
Otherwise either no letters in the 1st row of S are involved, or there is a
smaller letter z of T', in the 1st row to the east of x which switches horizontally
with b. Clearly, this operation does not slide down any letter of S to the
second row of the perforated pair. Next apply to the outcome perforated pair
the 2nd Step of the Lemma followed by the 3th Step. The number of vertical
switches in the last two rows is at most equal to the number of those letters
slid from 1st row to the 2nd row of S as shown in (3.2) plus pus — 3. Denote
the outcome perforated pair by S' U T" and let S U T'®) be the perforated
subpair defined by the first ¢ rows of S’UT". Let S UT"® be the pair after
full contraction of S’ and full extension of T""). Therefore, the second row
of S"UT’ will have at least 3 letters of S. In the case the letters of the first
row of S were not involved the GT pattern (3.1) is transformed into the GT
pattern

H1
i 115 (3.3)
M1 M2 M3
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with po > pbh > ps. Otherwise the GT pattern (3.1) is first transformed into
the GT (3.3), then to GT pattern

Tt
i 115 (3.4)
251 2 M3

with gy > pf > pf, and then to the GT pattern defined by the interlacing
shapes shS'"™W) = (i), shS'® = (uh, %) and shS'®) = shS = p,

= > s,
1 >y > g >y > .

Schematically shS'V = (uf); shS'® = (), 1) and shS = p define a
Gelfand-Tsetlin pattern of base

w
1 1y : (3.5)
H1 M2 H3

Now apply again the 1st Step of the Lemma to the first two rows of S’UT”
followed by the 2nd Step. Then apply Step 3 of Lemma and denote the
outcome perforated pair by PUQ. After this the GT pattern of base p (3.5)
is transformed into another GT pattern of the same base as follows

241
1 fy (3.6)
241 2 3

To conclude the process of switching S and 7', the only vertical switches
that we might to do are in the last two rows in consequence of the vertical
switches performed in the two first rows in the last step. That is, some letters
of T' can be brought to the second row. Consider the two last rows of P U @)
and suppose that they are of the form 5 l_) E ; y z, where €
is a letter that was not in the 2nd row of S" UT’. This means that, apart
the situation described in (3.2), this letter € slid from the first row. Now we
have two kind of possible switches:

. -
(1) if € < e, we have s b © & y z
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(2) if € > &, either we have I Gy
r a b ¢ y =z
g .08 . T ®
a r b c y =z a g b c y =z

Clearly the number of vertical switches performed now is at most the number

of vertical of switches performed from the first row of PUQ) to the second row.

Therefore shS’?) interlaces with the third and first rows of the previous GT
fa

pattern (3.6). The final GT is therefore {11 fio . This concludes

H1 H2 H3
the proof. n

The general case follows easily by successive application of previous propo-
sition.

Theorem 3.4. Let S and T be tableaux of shape p and )\/,u respectz'vely.
Suppose switching transforms S U T into P U Q and let PY Q be the
sequence of pairs of tableaux defined by the ﬁrst T TOWS ofPUQ PMyQM
1< < n. If swztchzng transforms P% U QW into S(@) ) for all 1, then
shSW ... shSM define a G'T pattern of base .

Ezample 3.2. (1) We start to apply switching to the last two rows of SUT’;
then to the two first rows of S’ UT’; and finally to the last two rows

of PUQ.

01355 01315 01315
SUT=12414—-12454— 2345 4=85UT—
6 2 3 45 2 346 5 1246 5
10135 13443 13443
— 23454 PUQQ=20155—-20155 —
12465 12465 12456
1 3 443
— 25015
12456
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Along the switching procedure we have the following sequence of
GT patterns of base u = (5,3,1) the shape of S,

— 3 .
5 3 1
(2) We do as in the previous example
122441 122441 122141
SUur=23351 —-23315 —23345 —
35 2 35 2 35 2
122141 112241
—- 22345 =5uUT"—-22345 —
335 335
11122414
—-PUQ=22345
335

We have the the following GT pattern sequence of base shS = (5, 4, 2)

5! 4 4

o 4 2 5! 4 2 ) 4 2

(3) The same as in the previous examples with a perforated pair with four

TOwS
132441 123441 133141
53451 53415 53445
(SUT =37 5 4 3494 —~ 237 9 4
6 3 35 6 3 3 5 6 3 35
133141 i323141 113341
23215 33235 22315
34 4 4 3 3 4 4 3 3 4 4
6335 34165 316 5



TABLEAU SWITCHING AND A PAK-VALLEJO’S CONJECTURE 13

112241 112241 112241
_)(5)2231_15 _)(6)23)31_15 _>2§4§5 .
3 3 4 4 32 5 4 3 2 95 4
3465 3446 3446
111224 114224 114224
2 3435 23135 23135
~ 3251 ~M3 553 —PU@= 35353
3446 3446 3446
The sequence (1); (2); (3); (4); (5); (6); (7) defines the GT pattern se-
quence of base sh(S) = (5,4,2,1)
5! 4 4
5 4 _ ) 4 _ 4 4 .
) 4 2 5 4 2 5! 4 2
) 4 2 1 5 4 2 1 ) 4 2 1
4 4 4
4 4 _ 4 3 _ 4 2 _
4 4 1 4 3 2 4 3 1
) 4 2 1 5 4 2 1 5) 4 2 1
3
. 4 2
4 3 1

If S is the Yamanouchi tableau Y (u) then from previous Lemma and Propo-
sition we conclude

Corollary 3.5. Let T be a skew-tableau of shape \/p and suppose switching
transforms Y (u) UT into U UV. The following conditions hold

(1) V is a Littlewood-Richardson tableau of type [v, u, A], where U of shape
v is Knuth equivalent to T'. |
(2) Let M; = (mgz), . .,m(-z)) with m,(;) the number of letters slid down

7

from the k-th row of Y (i) to the i-th row of V' (that is, the number of
k’s in the i-th row of V'), 1 <k <i <mn. Then
(a) pt = plm — Z?:Hl M;, 1 < i < mn, is the GT pattern of type

[v, u, A] defining V.
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(b) if UD UV s the pair of tableaux defined by the first i rows of
UUV, switching transforms UDUVE into a pair Y OUT® where
Y@ 4s the Yamanouchi tableau of shape ,u(i), 1 < <n.

Applying backwards Corollary 3.5, 2.(b) to U UV, with U = Y (v), from
top to bottom, we have for example

11111111111 11111111111
CLp_222222212 222222122
=333371 9 331233
11233 12331
11111111111 11111111111
222221222 222122222

3313233 331333
12334 12331

11111111111
59292123333

—UUV=135431333
12331

Our aim is now to give operations realizing this information. Those oper-
ations will be described in the next section and are called jeu de taquin-like
slides.

4. A jeu de taquin-like algorithm for Litllewood - Richard-
son tableaux

We shall now develop operations that shall make use of the information
given in Corollary 3.5, 2.(b). The following technical statement defines the
jeu de taquin-like operations and relate them with the switches in the switch-
ing transformation. This explains the nonstandard operations on the basis of
the involution ps described with different flavours in [AZ1, AZ2] and [PV2].

Theorem 4.1. Consider the following skew-tableau with inner shape

e o o o o o o o o o 3
® o o o o o o o V| 2

e o o o o Y By 0y 2

as O3 3 € O3 ¢ 03 23

Ag oq ya by 04
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such that z; > 0,41, for all 1,

04 > (53 > 09 > (51,‘ 0, > 193 > 192,' Y4 > Y3 > Y2, Q4 > (3,

and ) > 09 > O3, €3 > Oy > 01 > v3; B3 > 70 > a3z > Ay The following
conditions hold

(1) T is Knuth equivalent to

e o o o o o o o o o O 2
® o o o o o o b by z_l

e o o o o (3 3 g @ 29

Q 2] 3 Y4 €3 0y @ Z3

T = , (4.1)

where T" is obtained from T by sliding one row up the chains d; >
03 > 09 > 01; 04 > 03 > 0y; 4 > 3 > Yo, ag > ag and \y. The inner
shape 1/ of T' interlaces with the inner shape p of T,

Hi 2 Hist = iy

such that p; — p is equal to the number of chains that have reached
row 1 of T. (The underlines indicate the slid chains while the non
underlined letters were kept fized.) We call these sliding operations
jeu de taquin-like slides.

(2) Suppose Y (u)UT with n rows is by switching transformed into UUV .
Then the last row of U UV has (u; — ;) i’s, for all i, and U UV,
defined by the first n—1 rows of UUV, can be transformed by switching
into Y (W)U T, with T" as in (4.1).

Proof: Considering the inequalities above, by switches Y (u)UT can be trans-
formed into

0 0 00OOOODOUOTU O 0 2z
1 1 116 1111147

i i Y2 i 82 i 52 i i z9

3 az B3 13 €3 03 ¢ O3 z3

Ay g vy Oy Oy

Then again by the following sequence of switches
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N> O

O
N

Nl R=]

TRl R=]

= Ol

>~
=

o
N

V4

NI =IO

(I RSE I e SR ol S S =] S

NS =R O

NS =R O

Wi NLE > o LI NP S Ol Wl LD > o

Wi NP 2> o
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N =IO DD =IO N D =IO

D =IO

N =P O

N =P O

NS =IO < S = ol < S = ol

NS =IO

N =S O

N =S O

NS =IOl NS =IOl NS =IOl

NS =IO

= Ol & =IOl

o
w

NI = Ol

N
w

NI =1 Ol

N
w

NI = Ol

N
w

NI =1 Ol

N
w

NI =1 Ol

NI = Ol

= Ol

<1

20

<0

<0

20

20

<0
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)\4 a3 Y2 V3 (51 6 6 6 6 6 0 20
0 00 0 066111 z
Y ﬁg 82 i i i i 53 i 29 —
Y4 €3 i ?7/} Q 2 2 Q Z3
1 6, 60 2 3
)\4 a3 Y2 3 51 6 6 6 6 6 6 20
(0% 53 (92 (_) (_) (93 (52 i i i 21
— Y4 €3 (_) w i i i 53 i 29
194 (_) 54 i Q Q Q Q z3
0 1 1 2 3

According to Corollary 3.5, in the last row of the previous perforated pair,
the multiplicity of a letter k — 1 is precisely the number of letters slid from
the kth row of Y'(u) to the nth-row of Y (u) UT.

Now we show that the last perforated tableau pair with the last row sup-
pressed

)\4 a3 Y2 V3 51 (_) (_) (_) (_) (_) 0 20
(0% 53 (92 (_) (_) (93 (52 i i i 21
Y4 €3 6 w i i i 53 i z9
194 (_) 54 i Q Q Q Q z3
can be transformed by switches into
0 00 00 O0O0UOUO 0 & =
i i i i i i i Y2 62 52 21
/— —_ — — — _ = = .
= 2 2 2 2 2 a3 3 03 03 = ' (4.2)
A4 Qy 3 V4 €3 @ (0 @ <3

Performing the following sequence of switches we get the desired result

)\4 a3 Y2 V3 51 (_) (_) (_) (_) 00 20
Yy 53 82 6 6 63 i i i 52 21
v e 01 1 1 ¢ 2 6 2 -
4 0 1 2 2 2 2 04 23

)\4 a3 Y2 3 51 6 6 6 6 6 6 20
Oy 53 192 (_) (_) i i i i (52 21

Y4 €3 6 i i 63 i i (53 29 -
6 1 i i i 94 ¢ 54 Z3
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Example 4.1. We may use the jeu de taquin-like slides defined in the previous
theorem to conclude that
o o o o /4

e o 2 4 is Knuth equivalent to
356

4 4
6

o Ut b

e o o
e L e
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According to our previous study we now reformulate the bijection p3 pre-
sented in [AZ1, AZ2] and [PV2], Section 6. In this context, since switching
is an involution, it is easy to see that ps3 is also an involution. However in
[AZ2] is defined another bijection p; ' which is shown, using a rather difficult
argument, to coincide with p3. This new bijection is not discussed here.

Algorithm 4.2. Start with an LR tableau 7" with n rows. Remove rows one
by one from T, beginning with the bottom row, and replace each removed
row by another one as follows. In each row to be removed, build a chain
of integers in previous rows, starting with the last element and going to the
first element. For each such element x, find the largest y < x in the previous
row, not used by the previous chains, starting from row containing x, then
the largest element z < y in the row above that of y not used by the previous
chains, etc. This chain will finish either in a e, in row n — k of the inner
shape of T" whenever the length of the chain is k£, or in the first row of T
This last situation occurs when the length of the chain is n. Now replace y
with z, z with y, etc, until the top element of the chain remove a e in row
n — k of the inner shape of T" unless the chain reaches the first row of 7" and,
in this case, stay. The removed e is recorded as a letter n — k in the row of
T to be removed. Note that each entry of the last row of the inner shape of
T forms a chain of length 0 which will be recorded in the same row as n.

Ezample 4.2. Consider the LR tableau T of type [n = (8,7,4,1),v = (6,3,2); A =
(11,9,6,5)] and apply the jeu de taquin-like

e 0o 00 0 0 0 0 | 11 e o 0o 0 0 0 0 1 111
e e 0o 06 0 0 0 | 2 e o 0 0 0 0 | 2 2
T:....12 ~ e e 1 2 3 3 -
e 1233 12334
e o 0o 0o 0 0o 1 1111 e o 0o 0o 0o 1 1 1111
e o 0o 0 01 2 22 222122222
331233 7331233 -
12334 1233 4
11111111111
2 2212 2222
7331233
123 3 4.
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The outcome is an LR tableau of type [v, u, A] with the LR tableau of type
(e, v, A] rectified in the Yamanouchi tableau Y (). One has now operations
realizing the last example in previous section.

5. Littlewood-Richardson triangle switching

As we have seen in Section 3 the switching operation on a pair S UT with
S of normal shape p and T of weight v is accompanied by a pair of GT
patterns, one with boundary v and base i, and the other one with boundary
1 and base v which switch between each other. This suggests that the jeu de
taquin-like operations can be translated to Littlewood-Richardson triangles
[PV1].

Let k be a positive integer and T}, the space of triangles of size k [KB]
consisting of all sequences

A=WV yvm o yk)y

where V1) = (ajj, ..., ax) € R* 7+ 0 < j < k, and agy = 0. As a vector
(k+1)(k42) ¢
space T, ~ R 2 .

k+2
2

arranged in a triangular grid, consisting of k% small equilateral triangles

The hive graph Ay of size k is a graph in the plane with ( ) vertices

VAVAVAVAN o
[NINININ/N
INININININ/N
INONINININININ

T}, is identified with the vector space of all labeling A = (ai;)o<j<i<i of Ay
by real numbers such that agg = 0. We write A € T}, as a triangular array of
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real numbers

apo

ai ai
A= 0 e T;.
az0 asq as9

aso asi asg ass

A Littlewood-Richardson (LR) triangle of size k [PV1] is an element A =
(aij)o<j<i<k of Ty that satisfies the following inequalities

(P) ai; >0, 0<i,j<k,
(I) Zq ja(ﬂ Z Zlq+§+1aq3+l7 1§] §i< IIC,
(S) Y0 gan >3 g, 1<j<i<k

For each j = 1,...,k — 1, we consider, in Ay (5.1),the labeled parallelo-
gram p; = [ajj,..., ar_14, VU], (We convention pr_1 = [ax_141, ark]
as a degenerated parallelogram.) The labels of parallelograms p;, 1 <
j S k — 1, satisfy inequalities (I). For k = 8, we have the parallelogram

= [ABC’ A'B'C"] in Ag

N\/\A (5.2)
AVAVAVAVAN

ARRRBE
VAVAVAVAVAVAVAVAY

Cl
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where the labels of

A
x 4 BL—A
, B@ " ol N (5.3)
B’ ¢’
satisfy the inequalities
A>A
A+B>A+ B
A+B+C>A+B+C".
For i = 1,...,k — 1, we consider the labeled trapezoids t; = [a;o, a1, - - -,
Q5 Q31109 Aj+-115 - - - ai—l—Li—i—l] in Ak (54) The labels of tj, 1 S ] < ]ﬂ, satisfy

inequalities (S). For k = 8, we have the trapezoid t, = [ABC; A’B'C'D'] in
Asg
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The labels of
A B (C

A B C" D
(5.5)

satisfy

A> A+ B,
A+B>A + B+,
A+B+C>A+B+C'+ D,

LRy, denotes the cone of all Littlewood-Richardson triangles in T}, and is
called the Littlewood-Richardson cone of order k.

To each triangle A = (a;;)o<j<i<k € T} we associate the real vectors p =
(s pir), v = (v1,...,v) and A = (Aq,..., A\g), where

pi = ayp, 1<i<k
Vj = Z’;:jaqj, 1 S] S k
)‘i = ZZ:Oai(J? 1 S 1 S k.

We call [u, v, A] the type of A, v the weight of A, and u the boundary of Tj.
Note that u is the label of the right edge of the hive graph Aj.

Let x be a real vector, and denote by |z| the sum of its entries. If A €
LRy, it follows from (P), (S) and (I) that the vectors u, v, and A satisfy
pp > > >0, 00> 20, >0, A >0 > A >0, and |p] + [v] = |A]
<A

(1) (b2) . :

Let LRy(Z) := LR, NZ = 2 ! be the set of all integral LR triangles
of size k, that is, the set of integral points of LR;. Since LR; is a ratio-
nal polyhedral cone, LRy(Z) is a finitely generated semigroup and the cone
generated by LRy(Z) is LRy.

Let Py denote the set of all k-tuples z = (z1, . . ., x;) of nonnegative integers
such that z; > --- > x; > 0. Let u, v, X partitions in P such that u < A and
|| + |v| = |A|. To each Littlewood-Richardson tableau T" of type [u, v, A], we
associate an integral Littlewood-Richardson triangle A = (a;j)o<j<i<r € Tk
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defined by

agp =0, app =i, 1 <1 <k,
a;; the number of j’'sinrow i of T', 0 < j <@ < k.

For example,

— & e e
O e e e
- e e
W — e
w N e
DO —

(5.6)

Proposition 5.1. [PV1] Let p, v, A partitions in Py such that |\ = |u| + |V|
and i < A. Then the correspondence T «—— Ar is a bijection between the
integral points of the set of LR triangles of type |u, v, \| and LR[u, v, A].

Ezample 5.1. Let v = (5,4,2,1) and pu = (5,3,2,0). We consider the two
following triangles one of type [u, v, A] and the other one of type [v, u, A]

0 0
5 3 5 5
3 1 2 4 0 3 (BT
2 0 1 2 2 0 0 2
o 1 1 0 1 1 0 0 0 O

Now we attach the second triangle on the left edge of the first triangle, and
translate the jeu de taquin-like slides on the LR tableau in (5.6) to the LR
triangles (5.7)
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2 4 5) 0
0 0 0 5) 3
0 0 3 1 2
1 2-1 0 1+1 2
0 1 1-1 0 1
2 4 5] 0
0 0 0 5] 3
0 0 3 1 2
2 1-1 0+1 2 2
0 1—-1 0 0 1
2 4 5] 0
1 0 5—-1 3+1
0 0 3 1-1 2+1
2 0 1 2—1 2
0 1
2 4 5 0
0 1 0 4 4
0 1 3—-1 0 3+1
2 0 1 1-1 2
0 1
2 4 5] 0
1 4 4
0 1+1 2-1 0+1 4
2 0 1-1 0 2

25
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0 0 0 0 1

The first triangle in (5.7) is thus transformed into the triangle with bound-
ary u = (5,3,2,0) and weight v = (5,4,2, 1)

0 0 0 0 1

The LR tableau in (5.6) is therefore transformed into the LR tableau of
type [v, 1, Al
111
2

e 6 o o
e o o
(NI I ]
[N ]

wH— e e

3

We observe that the jeu de taquin-like can be extended to any Litlewood-
Richardson triangle in LRy.

6. Final Remarks

To finish we may say that the interlacing property between the normal
shape of a rectified tableau and the normal shape of any rectified subtableau
gave rise to jeu de taquin-like operations. Moreover those operations give
a variation of the tableau switching on Littlewood-Richardson tableau pairs
and a Litlewood-Richardson triangle switching in the cone L Rj.
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Interlacing inequalities occur in several contexts as matrix theory, module
theory as well as in the combinatorics of Young tableaux. For instance in
[QSSA] an explanation of analogies between interlacing of invariant factors of
matrices over principal ideal domains and eigenvalues of Hermitian matrices
is given. In [AZ1, AZ2], Introduction, and [AW] is also discussed a relation-
ship between Littlewood-Richardson combinatorics and invariant factors of
a product of matrices. In analogy with the interlacing property between the
normal shape of a rectified tableau and the normal shape of any rectified
subtableau, we recall two classical results in matrix theory:

[EMSa, TH] Let R be a principal ideal domain and let n > 2 be a positive
integer. Given elements c,|...|c1 and an_1]| ... |a1 in R, there exists an n X n
matriz over R with the ¢; as invariant factors, containing an (n — 1) X n
submatriz with the a; as invariant factors, if and only if ¢;i1|ai|c;.

[FP] Given real numbersyy > «+- > v, and ag > +++ > ay,_1, there ezists an
nxn Hermitian matriz with the ; as eigenvalues if and only if viv1 < a; < ;.

Acknowledgements: The author is grateful to Christian Krattenthaler,
Igor Pak and Ernesto Vallejo for stimulating conversations and helpful re-
marks on bijection p3. In particular, to draw her attention to the paper

BSS].
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