
Pré-Publicações do Departamento de Matemática
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Abstract: In this paper, we propose mathematical models for the growth dy-
namics of aberrant crypt foci in the human colon, as well as for some of their
characteristics, namely the apoptosis and proliferation indices. The models rely on
logistic type differential equations and clinical observations at different times, and
can arguably be used as an auxiliary screening tool for colon cancer. We report
several results using available medical data.
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1. Introduction

Colorectal cancer is one of the most frequent types of malignant tumors
in the world and the first leading cause of cancer related death in Portugal.
Unlike most other malignancies, it is possible to prevent colorectal cancer.
This is due to the long period of time elapsed between the appearance of an
adenoma (a benign epithelial tumor) and the eclosion of the carcinoma, which
allows for the detection and removal of the benign lesion. In this context,
Aberrant Crypt Foci (ACF in short) may have a crucial and determinant
role. These are clusters of aberrant (deviant from normal) crypts (small
pits, which are compartments of cells, in the colonic epithelium) that are
thought to be the precursors of colorectal cancer (cf. [6], [7]). It is necessary
to identify features in the ACF that allow doctors to predict which will
evolve to neoplasia, so that when they are detected in an individual it can
be possible not only to predict what is the risk of presenting an adenoma
in the future, but also to adopt screening procedures. Therefore, the time
evolution of ACF is a challenging issue of crucial importance.

In this paper, we propose mathematical models for the growth dynamics
of ACF and some of their characteristics, more precisely the rate of apop-
totic and proliferative cells in ACF . They consist of logistic type differential
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equations and aim at simulating the dynamics of ACF . Using only one or
two clinical observations these models anticipate the likely growth dynam-
ics of the overall population of ACF and the values of the apoptosis and
proliferation indexes in ACF for a large time.

This type of mathematical models seems adequate for the simulation of
the dynamics of ACF , and of the apoptosis and proliferation indexes in
ACF , if we think of a large scale of time. To clarify this assertion we give
now a more detailed explanation of what normal and aberrant crypts are.
A normal crypt is a cylindrical tube (with an opening in the top, directed
at the lumen’s colon) that contains different populations of cells. These
are aligned along the crypt wall: stems cells are believed to reside in the
bottom of the crypt, transit cells along the middle part of the crypt axis
and differentiated cells at the top of the crypt. In normal colonic crypts
the cells renew completely each 3-4 days, through a programmed mechanism
which includes the proliferation of cells, their migration along the crypt wall
towards the top and their apoptosis, as they reach the top and the cell cycle
is finished. If this programmed mechanism changes, disease may appear: the
shape of the crypts change and they become aberrant crypts. These have
much more cells than normal crypts and aggregate in foci. In conclusion,
we can say crypts become aberrant because of the deregulated mechanism of
their cells dynamics.

It is well accepted in the scientific community that the dynamics of cells
follow logistic type differential equations, which take into account the fact
that a growing population will reach a threshold if all the available resources
are consumed and the environment does not support any more individuals.
Therefore, it seems appropriate to use logistic type equations to model the
evolution of the number of ACF because, in the long run, ACF are, in a
certain sense, commanded and directed by the cells’ populations which reside
inside the aberrant crypts. Analogously, it is also reasonable to use logistic
type equations to model the behaviour of the apoptosis and proliferation
indices in ACF .

In the literature, a reasonable collection of articles concerning the math-
ematical modelling of cell populations in individual colonic crypts can be
found, as well as works dealing with the mathematical modelling of colorec-
tal cancer and, more generally, of tumor growth. We refer, in particular, to
[4], [9], [11], [15], [19], [20], [26], [27] and [37] for models concerning dynamics
of cell populations, to [5], [13], [17], [20], [21], [23], [32] and [38] for papers
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reporting models related to colorectal cancer, to [1], [3], [22], [25], [28], [30],
[31] and [34] for the mathematical modelling of tumor growth, and finally
to [16], [18], [29], [33], [35] and [36] for medical papers related to ACF and
colorectal cancer. To the best of our knowledge, there are very few works
reporting the mathematical modelling of ACF in the literature (we have only
found [2] and [8]) and none that uses logistic models for ACF . In the arti-
cle [8], which is somehow related to the present paper, exponential growth
equations are used to model the dynamics of normal crypts and two subpop-
ulations of ACF (one consisting of foci with only one aberrant crypt and the
other with foci with more than two crypts).

The structure of the paper is the following: after this introduction, we
describe the logistic type model for the dynamics of ACF in the human
colon, and derive some of its properties in an abstract setting. Then, in
section 3, we apply these results to specific clinical examples using available
medical data. We report on the conclusions inferred with the models and
comment on how they can be used for screening purposes. Finally, in the
last section, we summarize the main results of the paper and discuss the
possibility of using more involved logistic type differential equations, that
could lead to a more accurate mathematical modelling of ACF .

2. The mathematical model

We assume the aberrant crypt foci (ACF , for short) population is split
into two disjoint subpopulations, ACF1 and ACF2, according to a predefined
medical classification (see section 3 for examples and details). We represent
by F1(t) and F2(t) the number of foci in ACF1 and ACF2, respectively, at
time t.

We propose that the evolution in time of the populations ACF1 and ACF2

is described by the following system of logistic type differential equations
(see, e.g., [10], [12], [24])
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The parameters k1, k2, λ1 and λ2 are strictly positive constants: k1 and k2

represent the intrinsic growth rates of the populations ACF1 and ACF2, re-
spectively, while λ1 and λ2 are the carrying capacities of F1 and F2. Moreover,

we remark that the negative terms −k1
F1(t)

2

λ1

and −k2
F2(t)

2

λ2

can be understood
as competition terms from individuals of the species F1 and F2, respectively,
which compete for the same resources. In the model (1) all these parameters
are unknown.

Each of the equations in (1) is a first-order ordinary differential equation
involving two parameters, known in the literature as a logistic equation. The
solution is well-known, depends on both parameters and the initial condition,
and is given by

Fi(t) =
λi Fi(0)

Fi(0) + (λi − Fi(0)) e−ki t
, i = 1, 2. (2)

The functions Fi(t) are positive (since the initial condition is the number of
foci at the initial time, a positive number) and monotone, being increasing or
decreasing depending on whether λi > Fi(0) or λi < Fi(0) (when λi = Fi(0)
the function is constant and equal to λi). Their asymptotic profiles are given
by

Fi(+∞) := lim
t→+∞

Fi(t) = λi, i = 1, 2, (3)

where the λi are the carrying capacities.
Our next aim is to express the values of the parameters λi in terms of Fi(0),

Fi(1) and Fi(2), i.e., in terms of three evaluations of Fi at the equidistant
times t = 0, t = 1 and t = 2. From (2), we easily obtain, evaluating Fi at
t = 1,

ki = − ln

(

Fi(0) [λi − Fi(1)]

Fi(1) [λi − Fi(0)]

)

(4)

Since Fi is a monotone function converging to λi, the right hand side in (4)
is well defined because the fraction is positive and less than 1. Introducing
now the value of the parameter ki in the expression of Fi(t) given by (2), we
obtain

Fi(t) =
λi Fi(0)

Fi(0) + (λi − Fi(0))
(

Fi(0) [λi−Fi(1)]
Fi(1)[λi−Fi(0)]

)t
. (5)
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Evaluating now at t = 2, we can express the parameter λi as a function of
Fi(0), Fi(1) and Fi(2) as follows

λi =
Fi(0) Fi(1)2 + Fi(1) Fi(2) [Fi(1) − 2 Fi(0)]

Fi(1)2 − Fi(0) Fi(2)

(6)

=
[Fi(0) − Fi(1)]2 Fi(2) + Fi(0)

[

Fi(1)2 − Fi(0) Fi(2)
]

Fi(1)2 − Fi(0) Fi(2)
, i = 1, 2.

The domain of the function λi, for i = 1, 2, is defined by the set of all
points (Fi(0), Fi(1), Fi(2)) ∈ R

3
+ such that Fi(1)2 − Fi(0) Fi(2) 6= 0, λi > 0

and Fi(0) < Fi(1) < Fi(2) < λi if Fi is a monotone increasing function
or Fi(0) > Fi(1) > Fi(2) > λi if Fi is a monotone decreasing function.
Equivalently, it can be shown that it is the set
{

(Fi(0), Fi(1), Fi(2)) ∈ R
3
+ :

Fi(0) Fi(1)

2 Fi(0) − Fi(1)
< Fi(2) < Fi(1) < Fi(0)

}

(7)

if Fi is a monotone decreasing function; or the set
{

(Fi(0), Fi(1), Fi(2)) ∈ R
3
+ : Fi(0) < Fi(1) < Fi(2) <

Fi(1)2

Fi(0)

}

(8)

if Fi is a monotone increasing function.
Notice that λi is a monotone function in each of its three variables because

the partial derivatives with respect to Fi(0), Fi(1) and Fi(2) satisfy

∂λi

∂Fi(0)
=

(

Fi(1) [Fi(1) − Fi(2)]

Fi(1)2 − Fi(0) Fi(2)

)2

> 0

∂λi

∂Fi(1)
= −

2Fi(0) Fi(2) [Fi(0) − Fi(1)] [Fi(1) − Fi(2)]

[Fi(1)2 − Fi(0) Fi(2)]2
< 0

∂λi

∂Fi(2)
=

(

Fi(1) [Fi(1) − Fi(0)]

Fi(1)2 − Fi(0) Fi(2)

)2

> 0.

(9)

3. Auxiliary diagnosis models

In this section, we use the abstract results of the previous section to show
how it is possible, by means of model (1), to predict the number of ACF

and/or to quantify some of their characteristics and behavior, for a large
time t. We choose particular medical criteria and use available medical data
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for the test examples. Although we use mean values in the examples, the
analysis presented here must be implemented for each individual patient. In
particular, each patient has his/her own graphs.

3.1. Percentages of ACF ’s subpopulations. In this example we split the
ACF population into two disjoint sets, ACF1 and ACF2, such that the index
of proliferative cells (PI for short) is larger or smaller or equal than the PI

of the colon normal mucosa. Then

• F1(t) is the total number of clusters of aberrant crypts of type ACF1

at time t;
• F2(t) is the total number of clusters of aberrant crypts of type ACF2

at time t.

We assume the initial conditions are F1(0) = F2(0) = 1 and perform one
clinical observation at time t = 1. We take, using [14], p. 186, table 30,

F1(1) = 10 and F2(1) = 16. (10)

Then, the expressions of F1(t) and F2(t) in (5), are given by

F1(t) =
λ1

1 + (λ1 − 1)
(

λ1−10
10(λ1−1)

)t
; F2(t) =

λ2

1 + (λ2 − 1)
(

λ2−16
16(λ2−1)

)t
,

and the carrying capacities defined in (6) are now equal to

λ1 =
100 + 80F1(2)

100 − F1(2)
, for 10 < F1(2) < 100

λ2 =
256 + 224F2(2)

256 − F2(2)
, for 16 < F2(2) < 256.

(11)

Observe that, according to the values at t = 0 and t = 1, we are in the case
of monotone increasing functions Fi so the domains of the λi are given by
(8).

We now consider the ratio λ1

λ1+λ2

as a function of the pair (F1(2), F2(2)).
This fraction represents the percentage of ACF1 in the overall population
of ACF for a large time. We express it as a function of the number of
ACF1 and ACF2 at the future time t = 2. The corresponding surface and
contour plots are depicted in figure 1. For instance, if at time t = 2 we
have (F1(2), F2(2)) = (85, 40), so the number of ACF1 is larger than twice
the number of ACF2 at time t = 2, then the graphs in figure 1 show that,
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for large time, the percentage of ACF1 in the overall population of ACF is
approximately equal to 90%.
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Figure 1. Percentage of ACF1 in the overall population of
ACF , at a large time t, as a function of the number of ACF1

and ACF2 at the future time t = 2; surface plot (left) and con-
tour plot (right).

We notice that the function λ1

λ1+λ2

is monotone increasing with respect to

the variable F1(2), but it is monotone decreasing with respect to F2(2). In
fact, because of the third formula in (9), the partial derivatives verify

∂ λ1

λ1+λ2

∂F1(2)
=

λ2

(λ1 + λ2)2

dλ1

dF1(2)
> 0 and

∂ λ1

λ1+λ2

∂F2(2)
=

−λ1

(λ1 + λ2)2

dλ2

dF2(2)
< 0.

This monotonicity property can be observed in figure 1: if F1(2) = 40, for
example, the graphs show that the percentage λ1

λ1+λ2

decreases as the number

of ACF2 at time t = 2 increases. On the other hand, if F2(2) = 60, the
percentage increases as the number of ACF1 at time t = 2 increases.

A similar analysis can be performed using instead the index of apoptotic
cells. The combination of the input given by the analysis of both cases,
namely the data available from the graphs, might be very useful for doctors
for the identification of a possible risk situation. This would be so, in par-
ticular, if the occurrence of cancer could be related to the number of ACF

classified according to the order of magnitude of their PI and AI with respect
to PI and AI of the normal mucosa.

3.2. Extrapolating from one clinical observation. In this example, and
in contrast to the previous one, we do not count the number of ACF . Our
objective is to describe the possible values of the AI in ACF for a large time
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t, based on only one clinical observation and assuming this index follows a
logistic type law. This is a reasonable assumption since this type of indices
are defined from counting the number of cells with a certain property. The
same type of analysis can be performed for the AI in the normal mucosa
(NM for short) or for the PI in ACF or in the NM .

We use medical data concerning four groups of patients: with adenomatous
polyps (group A), with carcinoma (group B), without lesions in the colon
(group C) and with non-adenomatous polyps (group D). We set for time
t = 0 the following mean values, taken from [14, p.181, table 26]:

values of AI at t = 0
A B C D

ACF 1.8 1.1 2.2 1.7
NM 1.5 2.0 2.0 2.1

values of PI at t = 0
A B C D

ACF 8.6 10.0 11.3 11.4
NM 8.9 9.5 11.2 7.5

We analyze only one case but it is possible to compare what happens in the
sixteen different scenarios.

Let F (t) represent the AI in ACF at time t for a patient with carcinoma
(class B). Assume, according to the table, that F (0) = 1.1. We will describe
all the possible values of the carrying capacity λ (i.e., the asymptotic value
of the AI as t is large) as a function of two future clinical observations at
equidistant times, say as a function of F (1) and F (2). According to (6), we
have

λ =
1.1 × F (1)2 + F (2)

[

F (1)2 − 2.2 × F (1)
]

F (1)2 − 1.1 × F (2)
.

The behaviour of this function depends dramatically on wether F is decreas-
ing or increasing, its domains of definition being respectively (see (7) and
(8))

0 <
1.1 × F (1)

2.2 − F (1)
< F (2) < F (1) < 1.1

and

1.1 < F (1) < F (2) <
F (1)2

1.1
.

The graphs in figure 2 will become an effective diagnosis tool once a critical
threshold value for the AI is established. Suppose, for instance, that there is
strong medical evidence suggesting that values of the AI in ACF under a yet
unknown cut-off are linked to a significant increased risk of colorectal cancer
in the future. After the two further clinical observations, the analysis of the
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Figure 2. AI in ACF for a patient of group B, at a large time
t, as a function of F (1) and F (2), and when F is monotone
decreasing (top) and monotone increasing (bottom): surface plots
(left) and contour plots (right).

graphs can help screening the patients condition and immediately establish if
the situation is of increased risk or not. Note that the function λ is decreasing
as a function of F (1) and increasing as a function of F (2), in accordance with
the abstract analysis of section 2 (cf. the second and third equations in (9)).

3.3. Ratio between indices. It can also be of interest to have available
the possible values of the ratio between the indices (AI or PI) in ACF and
the NM . Let us consider the PI in a patient with carcinoma (class B), with
F1(t) and F2(t) representing, respectively, the PI in AFC and the PI in the
NM at time t. Moreover, we now take two medical observations:

• at time t = 0, we use the mean values of the PI for a patient without
lesions; according to the table, F1(0) = 11.3 and F2(0) = 11.2;
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• at time t = 1, we use the mean values in the table for a patient of
class B, namely F1(1) = 10.0 and F2(1) = 9.5.

PIHACFL�PIHNML

9.0

9.5

10.0

F1H2L 8.5

9.0

9.5

F2H2L

0.0
0.5

1.0

1.5

2.0

0.11

0.22

0.33

0.44

0.55

0.66

0.77

0.88

0.99

1.1

1.21 1.32

1.43

1.54

1.65
1.76

1.87

1.98
2.09

2.2

9.0 9.2 9.4 9.6 9.8 10.0

8.4

8.6

8.8

9.0

9.2

9.4

PIHACFL�PIHNML

Figure 3. Ratio of the PI in ACF and in the NM , at a large
time t, for a patient in group B: surface plot (left) and contour
plot (right).

We then have the carrying capacity λ1 (representing the value of the PI

in ACF for large t) as a function of F1(2) and the carrying capacity λ2

(representing the value of the PI in the NM for large t) as a function of
F2(2). Again using (6), the ratio is then given by

λ1

λ2
=

102 × 11.3 +
[

102 − 2 × 11.3 × 10
]

F1(2)

102 − 11.3 F1(2)

9.52 × 11.2 +
[

9.52 − 2 × 9.5 × 11.2
]

F2(2)

9.52 − 11.2 F2(2)

and defined, since F1 and F2 are decreasing, for

8.97 ≈
11.3 × 10

2 × 11.3 − 10
< F1(2) < 10

and

8.25 ≈
11.2× 9.5

2 × 11.2 − 9.5
< F2(2) < 9.5 .

The interest of the graphs displayed in figure 3 is the possibility of easily
assessing, at the third medical observation at time t = 2, if the corresponding
ratio represents a risk for the patient. For example, if this leads us close to
the line where the ratio is equal to one in the contour plot, we may conclude
the PI’s in ACF and the NM will be asymptotically very similar, arguably
an indication that there is no risk. Likewise, a very large ratio in the case of
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the PI or a very small ratio in the case of the AI could be a clear indication
that the adequate screening medical procedures should be implemented.

3.4. Predicting the effect of a drug agent. This example is somehow
related to example 3.2 but now we extrapolate from two medical observations.
The aim is to compare, for a large time t, the value of AI and PI in ACF

and in the NM .
Using the AI and PI measured in ACF and NM , we also predict what is

the effect of a drug administrated in ACF and NM , in a trial that involves
two medical observations. With this in mind, the group of patients of class
A, defined in example 3.2, is divided in two subgroups with the same number
of individuals. During a fixed period of time, the drug is administrated to
one subgroup of patients and a placebo to the other subgroup. The AI and
PI are measured in each subgroup, both in ACF and in the NM , before and
after the administration of the drug or the placebo. Thus, for this example,

• F1(t) is the AI (or the PI) in ACF at time t,
• F2(t) is the AI (or the PI) in the NM at time t.

We use the following data, available from [14, p.202, fig.22]. It represents the
values of AI and PI, for the two subgroups of patients, in ACF and in the
NM , measured before (t = 0) and after (t = 1) the administration of the
placebo and the drug.

administration of placebo
AI F1(t) F2(t)

t = 0 2.1 1.2
t = 1 1.1 1.6

PI F1(t) F2(t)
t = 0 9.7 10.3
t = 1 11.2 7.1

administration of drug
AI F1(t) F2(t)

t = 0 1.7 1.6
t = 1 2.6 2.3

PI F1(t) F2(t)
t = 0 8.2 8.7
t = 1 5.5 8.2

The curves plotted in figures 4 and 5 show the values of AI and PI, re-
spectively, for a large time t. They correspond to the values of the carrying
capacities λ1 and λ2, as functions of F1(2) and F2(2), respectively, for the
two subgroups of patients, and for the two types of sample tissues, ACF and
NM .

From figure 4 we conclude that, for a large time t, the AI in ACF , for the
patients who have taken the placebo, is significantly smaller than the AI in
ACF for the patients who have taken the drug (compare the two graphs of
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Figure 4. Values of AI in ACF and NM with placebo (top)
and drug (bottom), for a large time t: λ1 = 2.541−3.41z

1.21−2.1z
and 1.1 >

z > 0.745161 (top left), λ2 = 3.072−1.28z

2.56−1.2z
and 1.6 < z < 2.13333

(top right), λ1 = 11.492−2.08z

6.76−1.7z
and 2.6 < z < 3.97647 (bottom

left), λ2 = 8.464−2.07z

5.29−1.6z
and 2.3 < z < 3.30625 (bottom right), with

z = Fi(2) for i = 1, 2.

the left column in figure 4). This means that the drug has a positive effect
since an increase of the AI in ACF possibly indicates a reduction of ACF

carcinogenic potential. Moreover, the curves in the top right and bottom left
graphs of figure 4 are somehow similar, which shows the AI in ACF for the
patients with drug tend to have the same values as the AI in the NM for the
patients with placebo. On the other hand, the effect of the placebo and the
drug in the AI of the NM seems to be similar for the two groups of patients
(see the two graphs of the right column in figure 4).

By analyzing the graphs in figure 5, we infer that, at a large time t, the
placebo and the drug have a similar effect in terms of the PI of the NM in
the two groups of patients (see the two graphs of the right column in figure
5). In contrast, this effect is very different in the PI of ACF (compare the
two graphs of the left column in figure 5): for the patients who have received
placebo the PI can achieve the value 22 (which is the value in carcinoma,
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Figure 5. Values PI in ACF and NM with placebo (top) and
drug (bottom), for a large time t: λ1 = 1216.77−91.84z

125.44−9.7z
and 11.2 <

z < 12.932 (top left), λ2 = 519.223−95.85z

50.41−10.3z
and 7.1 > z > 5.41704

(top right), λ1 = 248.05−59.95z

30.25−8.2z
and 5.5 > z > 4.13761 (bottom

left), λ2 = 584.988−75.44z

67.24−8.7z
and 8.2 > z > 7.75435 (bottom right),

with z = Fi(2) for i = 1, 2.

see [14], p.187, table 32), while for those who have taken the drug the PI is
much smaller, comparable to the value of PI in the NM with placebo (see
the top right graph in figure 5), and never reaches such high values as 22.

4. Conclusions and future work

In this paper, logistic mathematical models are proposed for the growth
dynamics of aberrant crypt foci in the human colon. These models predict
the number of ACF at a large time and quantify the AI and the PI in
ACF , as functions of one or two unknown clinical observations. This type of
information, specially if appropriately combined, might be useful for doctors
as an auxiliary screening tool.

Other more involved logistic type models could have been considered. For
instance, logistic delay models (see [24] and [31]), which might be more re-
alistic for the modelling of ACF because they incorporate a time delay that
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would take into account the time required by ACF to develop. Another pos-
sibility would be to assume that the two sub-populations of ACF interact,
their dynamics being then modeled by a predator-prey model (if the growth
rate of one population is decreased and that of the other is increased) or a
competition model (if the growth rate of both populations is decreased), or
even with a mutualism or symbiosis model (if each population’s growth rate
is enhanced) (see [24]).

We are aware that these more involved logistic type models could produce
more accurate and reliable results, that would also be more consistent with
real phenomena and observations when appropriately adjusted and comple-
mented with external medical or biological information. In future work, we
intend to pursue along these lines and address more complex issues.
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