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of the underlying Lie algebroid.

Keywords: Lie algebroids, Jacobi structures, modular class.

AMS Subject Classification (2000): 17B62, 17B66, 53D10, 53D17.

1. Introduction

The modular class of a Poisson manifold is one of the most basic invariants
in Poisson geometry. It can be described as the obstruction to the existence of
an invariant density with respect to all Hamiltonian vector fields. Moreover,
unlike other invariants, it can be computed readily in many examples. The
modular class was first defined by Weinstein as a classical counterpart of the
modular automorphisms group of a von-Neumman algebra [16], although
the notion of modular vector field, which depends on a choice of density, had
already been introduced by Kozsul in [11] and used by Dufour and Haraki
[2] to classify quadratic Poisson structures.

The relevance of the modular class in Poisson geometry led to general-
izations by several authors to many different geometric settings: Even, Lu
and Weinstein [3] defined the modular class of a Lie algebroid; Kosmann-
Schwarzbach and Gengoux [9] the modular class of a twisted Poisson struc-
ture; Grabowsky, Marmo and Michor [5] the relative modular class of a Lie
algebroid morphism; Vaisman [15] and Iglesias, Lopez, Marrero and Padron
[7] the modular class of a Jacobi structure.

The aim of this paper is to introduce the modular class of a twisted Jacobi
structure and to relate it with the notion of modular class of a Lie alge-
broid in the sense of Evans, Lu and Weinstein. In this way, we are able to
unify the concept of modular class of Poisson, twisted Poisson and Jacobi
structures. We also show how to generalize to the Jacobi setting the rela-
tionship between the modular class of a twisted Poisson structure and the
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modular class of the Lie algebroid morphism associated to it, discovered by
Kosmann-Schwarzbach and Weinstein [10].

The paper is organized as follows. In Section 2, we recall the definition
of the modular class of a Lie algebroid due to Evans, Lu and Weinstein
and the relative modular class of a Lie algebroid morphism. In Section 3, we
present the modular class of a triangular Lie bialgebroid, as a straightforward
generalization of the definition of the modular class of a Poisson manifold.
Section 4 is devoted to the modular class of twisted Poisson structures on
a Lie algebroid and its relation with the modular class of the underlying
morphism of Lie algebroids. Section 5 deals with modular classes on Jacobi
algebroids: we give the definition of modular class of a Jacobi bivector on a
Jacobi algebroid, generalizing the case of Jacobi manifolds, and then we relate
it to the modular class of the underlying morphism of algebroids. Finally, in
the last section, we generalize all this to twisted Jacobi algebroids.

2. Modular class of a Lie algebroid

Let (A, [ , ] , ρ) be a Lie algebroid over the manifold M . For simplicity
we will assume that both M and A are orientable, so that there exist non-
vanishing sections η ∈ Γ(∧top)(A) and µ ∈ Ωtop(M).

The modular form of the Lie algebroid A with respect to η⊗µ is the A-form
ξ
η⊗µ
A ∈ Γ(A∗) defined by

〈ξη⊗µA , X〉η ⊗ µ = [X, η] ⊗ µ+ η ⊗Lρ(X)µ, X ∈ Γ(A). (1)

One checks that this A-form is closed, so defines a 1-cocycle in the Lie alge-
broid cohomology of A. Moreover, if one makes a different choice of sections
η′ and µ′, so that η′ ⊗ µ′ = fη ⊗ µ, for some non-vanishing smooth function
f ∈ C∞(M), one finds:

ξ
η′⊗µ′

A = ξ
η⊗µ
A − d log |f |. (2)

This means that the cohomology class [ξη⊗µA ] ∈ H1(A) is independent of the
choice of η and µ. This cohomology class is called the modular class of A
and we will denote it by modA.

Let φ : (A, [ , ]A , ρA) → (B, [ , ]B , ρB) be a Lie algebroid morphism over the
identity. One defines its relative modular class (see [5, 10]) as the cohomology
class modφ(A,B) ∈ H1(A) given by:

mod φ(A,B) := modA− φ∗modB. (3)
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The relative modular class of φ is represented by the A-form Wη⊗µ defined
by

Wη⊗µ(X)η ⊗ µ = [X, η]A ⊗ µ+ η ⊗ LBφ(X)µ, (4)

where η ⊗ µ ∈ Γ(∧topA) ⊗ Γ(∧topB∗) and LB denotes the Lie derivative in
B.

3. Modular class of a triangular Lie bialgebroid

Now consider a Lie algebroid (A, [ , ] , ρ) over a manifold M , equipped with
a Poisson bivector P , i.e., a section P ∈ Γ(∧2A) such that [P, P ] = 0. The
bracket on sections of A∗ defined by

[α, β]P = LP ♯αβ −LP ♯βα− d (P (α, β)) , α, β ∈ Γ(A∗),

is a Lie bracket and (A∗, [ , ]P , ρ ◦ P
♯) is a Lie algebroid. The differential of

this Lie algebroid is dP = [P,−]. Since dP is a derivation of the bracket [ , ]
and the differential d of A is a derivation of the bracket [ , ]P , the pair (A,A∗)
is a Lie bialgebroid. In fact it is a special kind of Lie bialgebroid called a
triangular Lie bialgebroid.

The definition of the modular class of a Lie algebroid with a Poisson tensor
is a straightforward generalization of the same concept in Poisson manifolds.
Let us recall it. A non-vanishing top-section of A∗, µ ∈ Γ(∧nA∗), defines an
isomorphism Φ : Γ(∧kA) → Γ(∧n−kA∗), given by

Φ(X) = iXµ. (5)

Associated with such a section, we have a curl operator Dµ : Γ(∧kA) →
Γ(∧k−1A) which is defined by

Dµ = Φ−1 ◦ d ◦ Φ. (6)

When k = 1, the curl of an A-section X is just the divergence of X, i.e., the
function on M given by:

DµX =
LXµ

µ
, X ∈ Γ(A), (7)

Definition 1. The modular vector field of a Poisson structure P on a
Lie algebroid A is the curl of the bivector field P :

Xµ = DµP. (8)
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Equivalently, the modular vector field of the Poisson structure P is the
A-section Xµ that satisfies:

〈α,Xµ〉µ = −α ∧ diPµ, α ∈ Γ(A∗). (9)

Using this expression, it is immediate to check that dPXµ = 0.
The modular vector field Xµ depends on the choice of µ as indicated by

the notation. However, if µ′ ∈ Γ(∧nA∗) is another non-vanishing top-section,
so that µ′ = fµ for some non-vanishing function f ∈ C∞(M), one can check
that

Xµ′ = Xµ + dP ln |f |. (10)

It follows that the A∗-cohomology class [Xµ] is independent of the choice of
top-section. The class

modP := [Xµ] ∈ H1(A∗)

is called the modular class of the Poisson bivector P .

Example 2. Let us take a Poisson bivector on A = TM . Then M is a
Poisson manifold with a Poisson tensor P , modP is the modular class of
(M,P ), as defined by Weinstein [16], and we have the following simple rela-
tion between the modular classes:

modT ∗M = 2 modP. (11)

Relation (11) does not hold for general triangular Lie bialgebroids. As
it was first explained by Kosmann-Schwarzbach and Weinstein in [10], one
needs to take into account the relative modular class of the Lie algebroid
morphism P ♯ : A∗ → A. This will be discussed in the next section in the
more general setting of Lie algebroids with a twisted-Poisson bivector.

We finish this section with the following simple remark. The relative mod-
ular class of the Lie algebroid morphism P ♯ : A∗ → A is given by

mod P ♯

(A∗, A) = modA∗ − (P ♯)∗modA = modA∗ + P ♯ modA. (12)

It follows from (4) that a representative of this modular class is the A-section
Wη defined by

〈α,Wη〉η ⊗ η = [α, η]P ⊗ η + η ⊗LP ♯(α)η, α ∈ Γ(A∗), (13)

where η ∈ Γ(∧topA∗).
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4. Modular class of a twisted Poisson structure

Twisted Poisson structures on manifolds were first studied by Ševera and
Weinstein [14] and then extended to Lie algebroids by Roytenberg [13]. We
explain now how one can define its modular class.

Given any bivector field P on a Lie algebroid (A, [ , ] , ρ), the associated
morphism P ♯ : Γ(A∗) → Γ(A) can be extended to a homomorphism ∧kP ♯ :
Γ(∧kA∗) → Γ(∧kA), by setting:

∧0 P ♯(f) = f and ∧k P ♯η(α1, . . . , αk) = (−1)kη(P ♯(α1), . . . , P
♯(αk)),

(14)
for f ∈ C∞(M), η ∈ Γ(∧kA∗) and α1, . . . , αk ∈ Γ(A∗).

A twisted Poisson structure on a Lie algebroid (A, [ , ] , ρ) is a pair (P, ψ),
where P is a section of ∧2A (a bivector) and ψ is a section of ∧3A∗ (a 3-form),
such that

1

2
[P, P ] = (∧3P ♯)ψ and dψ = 0.

It induces a structure of Lie algebroid on A∗ with anchor ρ∗ = ρ ◦ P ♯ and
Lie bracket given by

[α, β]P,ψ = LP ♯αβ − LP ♯βα− d(P (α, β)) + ψ(P ♯α, P ♯β,−), α, β ∈ Γ(A∗).
(15)

The differential of this Lie algebroid is given by

dP,ψf = [P, f ] = −P ♯(df) and dP,ψX = [P,X]A+ψ(P ♯−, P ♯−, X), (16)

for all f ∈ C∞(M) and X ∈ Γ(A).

Remark 3. The pair (A,A∗) is a special kind of quasi-Lie bialgebroids, called
a triangular quasi-Lie bialgebroid (see [13]).

The modular vector field of a twisted Poisson structure was defined in [9]
using generators of the Gerstanhaber algebra (Γ(∧•A∗), [ , ]P ) (see also [8]).
Fix a global section η of ∧topA∗. The modular vector field of the twisted
Poisson structure (P, ψ) is the section of A given by

Zη = Xη + P ♯iPψ, (17)

where Xη is defined by

〈α,Xη〉η = −α ∧ diPη, α ∈ Γ(A∗).

Now, as before, one checks that the A∗-cohomology class of Zη is independent
of the choice of top-section.
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Definition 4. The modular class of the twisted Poisson structure

(P, ψ) is the cohomology class

mod (P, ψ) := [Zη] ∈ H1(A∗).

The general relationship between the modular class of a (twisted) Poisson
structure and the underlying Lie algebroid, generalizing Example 2, is given
by the following proposition:

Proposition 5 ([10]). Let (A, P, ψ) be a Lie algebroid with a twisted Poisson
structure (P, ψ). Then

2 mod (P, ψ) = mod P ♯

(A∗, A). (18)

5. Modular class of a Jacobi algebroid

In this section we will generalize the concept of modular class to twisted
Jacobi structures. First we start with some background about Jacobi alge-
broids.

A Jacobi algebroid [4] or generalized Lie algebroid [6] is a pair (A, φ0) where
A = (A, [ , ] , ρ) is a Lie algebroid over a manifold M and φ0 ∈ Γ(A∗) is a
1-cocycle in the Lie algebroid cohomology with trivial coefficients, dφ0 = 0.

Associated with a Jacobi algebroid we have the following geometric data:

• The Schouten-Jacobi bracket on the graded algebra Γ(∧•A) of multi-
vector fields on A given by

[P,Q]φ0 = [P,Q] + (p− 1)P ∧ iφ0
Q− (−1)p−1(q − 1)iφ0

P ∧Q, (19)

for P ∈ Γ(∧pA), Q ∈ Γ(∧qA).
• The φ0-differential of A given by

dφ0ω = dω + φ0 ∧ ω, ω ∈ Γ(∧•A∗). (20)

dφ0 is the cohomology operator associated with the representation of
the Lie algebra Γ(A) on C∞(M) given by ρφ0(X)f = ρ(X)f+f〈φ0, X〉.

• The φ0-Lie derivative:

Lφ0

X ω = iX dφ0ω + (−1)p−1dφ0 iXω, X ∈ Γ(∧pA), ω ∈ Γ(∧•A∗). (21)

Consider the vector bundle Â = A × R over M × R. Sections of this
bundle may be seen as time-dependent sections of A and they are generated
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as a C∞(M × R)-module by the sections of A (which are simply the time-

independent sections of Â). If one introduces an anchor map on Â by

ρ̂(X) = ρ(X) + 〈φ0, X〉
∂

∂t
, X ∈ Γ(A), (22)

and a graded Lie bracket on time independent multivectors by

[X, Y ]Â = [X, Y ] , X, Y ∈ Γ(∧•A), (23)

together they define a Lie algebroid structure on Â, called the induced Lie
algebroid structure from A by φ0. Notice that, if d̂ is the differential in Â, we
have φ0 = d̂ t, which means that the 1-cocycle φ0 can be seen as an exact
1-form on Â.

The Jacobi-Schouten bracket (19) on A and the Schouten bracket (23) on

Â are related by: [
X̃, Ỹ

]

Â
=

˜
[X, Y ]φ0, (24)

where X → X̃ denotes the gauging on Γ(∧•A) defined by

X̃ = e−(p−1)tX, X ∈ Γ(∧pA). (25)

Definition 6. A Jacobi bivector on A is a bivector P ∈ Γ(∧2A) such that

[P, P ]φ0 = 0. (26)

A Jacobi bivector P on A determines a Poisson bivector P̃ on Â, by gauging
P̃ = e−tP , and hence a Lie algebroid structure on Â∗ overM×R. The anchor
on Â∗ is given by:

ρ̂∗(α) = ρ̂ ◦ P̃ ♯(α) (27)

while the Lie bracket is given by:

[α, β]P̃ = L̂P̃ ♯αβ − L̂P̃ ♯βα− d̂P̃ (α, β), (28)

where α, β ∈ Γ(Â∗) and L̂ is the Lie derivative in Â.
In particular, if α, β ∈ Γ(A∗) are time-independent sections, we find that

[
etα, etβ

]
P̃

= et(Lφ0

P ♯α
β −Lφ0

P ♯β
α− dφ0P (α, β)). (29)

This shows that the Lie bracket

[α, β]P = Lφ0

P ♯α
β −Lφ0

P ♯β
α− dφ0P (α, β), (30)

together with the anchor
ρ∗ = ρ ◦ P ♯, (31)
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endows A∗ with a Lie algebroid structure over M . Finally, the section of A
defined by

X0 := −P ♯(φ0),

is a 1-cocycle of A∗. We conclude that (A∗, X0) is also a Jacobi algebroid.

Since dX0

∗ is a derivation of (Γ(∧•A), [ , ]φ0) or, equivalently, dφ0 is a deriva-

tion of (Γ(∧•A∗), [ , ]X0

∗ ), the pair ((A, φ0), (A
∗, X0)) is a special kind of Ja-

cobi bialgebroid called triangular Jacobi bialgebroid and we will denote it by
(A, φ0, P ).

Now, the gauging (25) can be extended to multisections of A∗ if we set:

ω̂ = eptω, ω ∈ Γ(∧pA∗), (32)

and one checks that:

Proposition 7. Let α, β be multisections of A∗. Then
[
α̂, β̂

]

P̃
= [̂α, β]P (33)

and P ♯ : A∗ → A is a Lie algebroid morphism over identity.

Let A have rank n and ν be a section of ∧nA∗. From (9), the modular

vector field of the triangular Lie bialgebroid (Â, P̃ ) with respect to ν̂ = entν

is the section X̂ ν̂ ∈ Γ(Â) defined by:

〈α, X̂ ν̂〉ν̂ = −α ∧ d̂ iP̃ ν̂, α ∈ Γ(Â∗)

The following lemma follows from a straightforward computation:

Lemma 8. The modular vector field of (Â, P̃ ) is given by:

X̂ ν̂(α)ν̂ = e−tα ∧ ((1 − n)φ0 ∧ iP ν̂ − diP ν̂), α ∈ Γ(A∗). (34)

This motivates the definition of the modular vector field of the Jacobi struc-
ture (P, φ0): it is the A-section Xν

(A,φ0,P ) defined by

〈α,Xν
(A,φ0,P )〉ν = −α ∧ ((n− 1)φ0 ∧ iPν + diPν)

= (n− 1)〈α,X0〉ν − α ∧ diPν.

This definition generalizes the definition of modular vector field of a Jacobi
manifold given by Vaisman [15], which one recovers when we set A = TM .
Again, one checks that it is 1-cocycle in the A∗-cohomology, and that its class
is independent of the choice of top-section.
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Definition 9 ([7]). The modular class of the triangular Jacobi alge-

broid is the cohomology class:

mod (A, P, φ0) := [Xν
(A,φ0,P )] ∈ H1(A∗).

Just like in the Poisson case, we have the following relation between the
modular class of the Jacobi structure and the relative modular class of the
morphism P ♯.

Proposition 10. Let (A, P, φ0) be a triangular Jacobi algebroid of rank n.
Then

2 mod (A, P, φ0) = mod P ♯

(A∗, A) + n [X0] . (35)

Proof: The relation follows immediately from the definition of Xν
(A,φ0,P )

and the following relation obtained in [1]:

ξ
ν⊗µ
A∗ + P ♯(ξη⊗µA ) = (n− 2)X0 − 2〈α ∧ diPν, η〉,

where η ∈ Γ(∧nA) and ν ∈ Γ(∧nA∗) are such that 〈ν, η〉 = 1. �

6. Modular classes of twisted Jacobi algebroids

A twisted Jacobi structure on a Jacobi algebroid A = (A, φ0) (also called a
twisted Jacobi algebroid [12]), is a pair (P, ψ), where P is a bivector and ψ

is a 3-form on A, such that

1

2
[P, P ]φ0 = ∧3P ♯(ψ) and dψ = ψ ∧ φ0. (36)

Proposition 11. The Lie algebroid Â = A × R is a twisted Poisson Lie
algebroid.

Proof: The twisted Poisson structure on Â is given by the gauged bivector
P̃ = e−tP and the 3-form ψ = etψ. Relation (24) and (36) imply that

1

2

[
P̃ , P̃

]
=
e−2t

2
[P, P ]φ0 = e−2t ∧3 P ♯(ψ) = ∧3P̃ ♯(ψ)

and, since dψ = ψ ∧ φ0, we have

d̂ψ = d̂(etψ) = et(φ0 ∧ ψ + dψ) = 0.

�
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The twisted Poisson structure on Â induces a Lie algebroid structure on
Â∗ (see (15)), and this defines a Lie algebroid structure on A∗ with anchor
ρ∗ = ρ ◦ P ♯ and Lie bracket

[α, β]P,ψ = Lφ0

P ♯α
− Lφ0

P ♯β
− dφ0(P (α, β)) + ψ(P ♯α, P ♯β,−), α, β ∈ Γ(A∗).

(37)
Several properties of the untwisted case still remain valid:

Proposition 12. Let α and β be multisections on A∗.Then

(1)
[
α̂, β̂

]

P̃ ,ψ
= ̂[α, β]P,ψ.

(2) P ♯ : A∗ → A is a Lie algebroid morphism over the identity: P ♯ [α, β]P,ψ =[
P ♯α, P ♯β

]
.

(3) The A-section X0 = −P ♯(φ0) is a 1-cocycle on A∗.

Given a section ν ∈ Γ(∧topA∗), we have the induced section ν̂ = entν of

Â∗. We can use this section to represent the modular class of the twisted
Poisson structure (P̃ , ψ) by the modular vector field associated with ν̂ (see
(17)):

Z ν̂ = X ν̂ + P̃ ♯iP̃ψ, (38)

where X ν̂ is given by

〈α,X ν̂〉ν̂ = −α ∧ d̂ iP̃ ν̂

= −e−(n+1)tα ∧ ((n− 1)φ0 ∧ iPν + diPν)

= e−t ((n− 1)〈α,X0〉ν̂ − α ∧ diP ν̂) .

Since P̃ ♯iP̃ψ = e−tP ♯iPψ, we see that etZν̂ is a time independent section

of Â, and so it is determined by a section Xν
φ0,P,ψ

of A. One checks that
Xν
φ0,P,ψ

is a 1-cocycle for the A∗-cohomology and that its cohomology class
is independent of the choice of top-form ν. This motivates the following
definition:

Definition 13. The modular vector field of the twisted Jacobi struc-

ture (φ0, P, ψ) is the A∗-cohomology class:

mod (φ0, P, ψ) := [Xν
φ0,P,ψ

] ∈ H1(A∗).

The natural question arises about its relation with the modular class of the
Lie algebroid A∗.
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Proposition 14. Let (A, φ0) be a Jacobi algebroid with a twisted Jacobi struc-
ture (P, ψ). Then

2 mod (φ0, P, ψ) = mod P ♯

(A∗, A) + n [X0] . (39)

Proof: Let ν ∈ Γ(∧nA∗) be a top-form on A, then ν̂ = entν is a top-form

on Â. The relative modular class of P̃ ♯ is represented by the Â-section W ν̂

(see (12)) defined by:

〈α̂,W ν̂〉ν̂ ⊗ ν̂ = [α̂, ν̂]P̃ ⊗ ν̂ + ν̂ ⊗ L̂P̃ ♯α̂ν̂

= ent [α, ν]P ⊗ ν̂ + ν̂ ⊗ L̂P ♯α(e
ntν)

= ent [α, ν]P ⊗ ν̂ + ν̂ ⊗ ent(n〈φ0, P
♯α〉ν + LP ♯αν)

= 〈α, nX0 +Wν〉ν̂ ⊗ ν̂,

where Wν is a representative of the relative modular class of the morphism
P ♯. Since W ν̂ = 2Z ν̂ (see, also, [10]) we conclude that

〈α, nX0 +Wν〉 = 〈α̂,W ν̂〉 = 2〈α̂, Z ν̂〉 = 2〈α, etZ ν̂〉 = 2〈α,Xν
φ0,P,ψ

〉,

and 2mod (φ0, P, ψ) = mod P ♯

(A∗, A) + nX0. �

Remark 15. This result includes as special cases the (twisted) Poisson struc-
tures and the Jacobi structures: when φ0 is zero, P is a twisted Poisson
structure and we recover (18); when ψ is zero, then P is a Jacobi structure
and we recover relation (35).
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structure, Travaux Mathématiques (Luxembourg) 16 (2005), 315–339.

[10] Y. Kosmann-Schwarzbach and A. Weinstein, Relative modular classes of Lie algebroids,
C. R. Math. Acad. Sci. Paris 341 (2005), no. 8, 509–514.

[11] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, Ast. Num. Hors Serie (1985),
257–271.

[12] J.M. Nunes da Costa and F. Petalidou, On quasi-Jacobi and Jacobi-quasi bialgebroids, Lett.
in Math. Phys.(80) 2 (2007), 155–169.

[13] D. Roytenberg, Quasi-Lie bialgebroids and twisted Poisson manifolds, Lett. in Math. Phys.
(61) 2 (2002), 123–137.
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