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ON THE CHOICE OF THE SMOOTHING PARAMETER

FOR THE BHEP GOODNESS-OF-FIT TEST

CARLOS TENREIRO

Abstract: The BHEP test for assessing univariate and multivariate normality in-
troduced by Epps and Pulley (Biometrika 70 (1983) 723) and Baringhaus and Henze
(Metrika 35 (1988) 339) has shown to be a relevant test procedure, recommended in
some recent comparative studies. It is well known that the finite sample behaviour
of the BHEP goodness-of-fit test strongly depends on the choice of a smoothing pa-
rameter h. In this paper we give a theoretical and finite sample based description of
the role played by the smoothing parameter in the detection of departures from the
null hypothesis of normality. Additionally, we develop a Monte Carlo study in order
to propose an easy to use rule for the choice of h that produces a test with the om-
nibus property. In the important multivariate case, and contrary to the usual choice
of h, the BHEP test with the smoothing parameter proposed in this paper presents
a comparative good performance against a wide range of alternative distributions.
In practice, if no relevant information about the tail of the alternatives is available,
the use of this new bandwidth is strongly recommended. Otherwise, new choices
of h which are suitable for short tailed and long tailed alternative distributions are
also proposed.

Keywords: BHEP goodness-of-fit test, kernel density estimator, Bahadur eficiency,
multivariate normality, Monte Carlo power comparison.
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1. Introduction

Let X1, X2, . . . , Xn, . . . be a sequence of independent and identically dis-
tributed d-dimensional random vectors with unknown density function f .
Following an idea of Anderson, Hall and Titterington [1] that have used kernel
density estimators with fixed bandwidth for testing the equality of two mul-
tivariate probability density functions, Fan [17] uses the Bickel-Rosenblatt
statistic (cf. Bickel and Rosenblatt [10]; see also [16, 20]) with a constant
bandwidth for testing the composite hypothesis that f is a member of a gen-
eral parametric family of density functions. The test statistic is based on
the L2 distance between the kernel density estimator and an estimator of its
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mathematical expectation under the null hypothesis and it is given by

I2
n(h) = n

∫

{fn(x) − Ē0fn(x)}2dx, (1)

where the unspecified integral denotes integration over the whole space,

fn(x) =
1

n

n
∑

i=1

Kh(x−Xi),

for x ∈ R
d, Kh(·) = K(·/h)/hd with K a kernel, that is, a bounded and

integrable function on R
d, and h is a strictly positive real number.

A location-scale invariant version of the previous statistic was first con-
sidered by Bowman and Foster [11] (with h → 0) to test a multivariate
normality hypothesis. For a location-scale family g(·;m,S), and denoting by

X̄n =
1

n

n
∑

j=1

Xj

the sample mean vector and by

Sn =
1

n

n
∑

j=1

(Xj − X̄n)(Xj − X̄n)
′,

the sample covariance matrix where the prime denotes transpose, the location-
scale invariant version of I2

n(h), called IBRF statistic, is given by

I2
n(h) = n|S1/2

n |
∫

{f̄n(x) − ϕn(x; X̄n, Sn)}2dx, (2)

where, for x ∈ R
d,

f̄n(x) =
1

n

n
∑

i=1

KHn
(x−Xi),

KHn
(·) = |H−1

n |K(H−1
n ·),

Hn = hS1/2
n ,

with h > 0, S
1/2
n is the square root of Sn and, for m ∈ R

d and S a nonsingular
covariance matrix,

ϕn(x;m,S) =

∫

KHn
(x− y)g(y;m,S)dy.

For a general location-scale family g(·;m,S) and a general kernel K, Ten-
reiro [35] gives the limiting null distribution of I2

n(h), the consistency of the
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associated tests and derive its asymptotic power against sequences of local
alternatives.

In this paper our attention will be focused on the important case where
the previous parametric family is the Gaussian:

g(·;m,S) = |S−1/2|φ(S−1/2(· −m)), (3)

where φ is the d-variate Gaussian standard density

φ(x) = (2π)−d/2 exp(−1
2x

′x),

for x ∈ R
d. Although an extensive literature exists regarding the testing of

normality, there is a continued interest in this classical problem as attested
by the recent papers of Mecklin and Mundfrom [28], Arcones [2], Arcones
and Wang [3], Farrel, Salibian-Barrera and Naczk [19], Arcones [4], Coin [12]
and Yazici and Yolacan [36].

Concerning the IBRF statistic several simple choices for K are possible.
The choice K = φ is particularly interesting when g(·;m,S) is the Gaussian
family because in that case the calculation of I2

n(h) does not require any
integration (cf. [11, 24]):

I2
n(h) =

1

n

n
∑

i,j=1

Q(Yi, Yj; h), (4)

with

Yi = S−1/2
n (Xi − X̄n),

and

Q(u, v; h) = φ(2h2)1/2(u− v) − φ(1+2h2)1/2(u) − φ(1+2h2)1/2(v) + φ(2+2h2)1/2(0),

for u, v ∈ R
d.

In this form the statistic I2
n(h) have been previously considered by several

authors and is known in the literature as BHEP statistic where the smoothing
parameter is usually denoted by β and is connected with h through the
relation h = 1/(β

√
2) (see Henze [24]). It has been introduced in the real

case by Epps and Pulley [15] and in the multivariate case by Baringhaus and
Henze [8] and Henze and Zirkler [23] as an empirical characteristic function
based goodness-of-fit test. In fact, similarly to what was pointed out by
Fan [17] in relation to statistic (1), the general IBRF statistic (2) can be
interpreted as a L2 weighted distance between the empirical characteristic
function and the parametric estimate of the characteristic function implied
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by the null model with weight function t→ |K̂(th)|2, where K̂ is the Fourier
transform of K. Theoretical properties about the BHEP test are given in
Baringhaus and Henze [8], Csörgő [13], Henze and Zirkler [23], Henze [24]
and Henze and Wagner [25].

As noticed in some of previous references, the empirical power of the test
based on I2

n(h) varies considerably with the parameter h. In the univariate
case, Epps and Pulley [15] considered the values h = 0.35, 0.49, 0.71, 0.92 and
conclude that with h = 0.49 or 0.71 the test is an omnibus normality test,
whereas for h = 0.35 and 0.92 the test appears to be suitable for platykurtic
and for leptokurtic distributions, respectively. In the multivariate case Henze
and Zirkler [23] conclude that for h = 1.41 the test is powerful against heavy
tailed distributions, but they also report some extremely poor results for
some alternatives where a small choice for h is much better. However, after
the initial papers about the BHEP test, it became a standard procedure to
consider in practice the values h = hEP := 0.71 and h = hHZ := 1.41 for the
univariate and multivariate cases, respectively, as we can see in the papers
of Baringhaus et al. [9], Arcones and Wang [2], Mecklin and Mundfrom [28]
and Farrel et al. [19].

The main purpose of this paper is to examine these usual choices of the
smoothing parameter h and, if necessary, to propose alternative choices for
h that produce a test that is generally powerful against a wide range of
alternatives. This question is particularly relevant in the multivariate case
where the BHEP has shown to be a relevant test procedure, recommended
in some recent comparative studies like those of Mecklin and Mundfrom [28]
and Farrel et al. [19].

Although less interesting in practice we start our study by the analysis
of the univariate case that we present in Section 3. This case will give us
some important guide lines about the test behaviour as a function of the
smoothing parameter h that will have natural counterparts in a multivariate
context. Contrary to the above mentioned studies about the choice of h that
are exclusively based on Monte Carlo experiments, we begin our study by
computing the Bahadur approximate indices of the univariate BHEP statis-
tic for a set of Edgeworth alternatives. For that we use a result presented in
Section 2 and proved in Section 5 about the Bahadur approximate slopes of
the general IBRF statistic. These indices enables us to get a better under-
standing on the role played by the smoothing parameter in the detection of
departures from the null hypothesis of normality in terms of each one of the



BHEP GOODNESS-OF-FIT TEST 5

third, fourth, fifth and sixth moments. They suggest that a large, but not
too large, bandwidth is adequate for detection of departures from normality
in skewness and kurtosis, whereas a small, but not too small, bandwidth is
adequate for detection of hight moments alternatives (see also Tenreiro [34]
for the test of a simple hypothesis of normality). These conclusions agree
with the finite sample power properties of the BHEP test that indicate that
a small bandwidth should be used for short tailed alternatives whereas a
large bandwidth is suitable for long tailed or skewed ones.

Taking into account the previous results, a Monte Carlo experiment based
on a set of univariate alternative distributions which are members of the gen-
eralized lambda family, was conducted to propose a practical choice of the
bandwidth. A similar simulation study is undertaken in Section 4 for the mul-
tivariate case (2 ≤ d ≤ 15). Here we have considered a set of meta-Gaussian
distributions whose marginal distributions are the univariate lambda distri-
butions taken in the univariate case analysis.

Two distinct behaviour patterns were observed for the BHEP empirical
power as a function of h which lead us to propose two distinct choices of the
bandwidth, depending on the data dimension, which are suitable for short
tailed and long tailed alternative distributions. If we do not have relevant
information about the tail of the alternative distributions, we propose to
consider the mean value of the two previous bandwidths, h̄, as rule-of-thumb
for the choice of h. This way we intend to obtain a test with a reasonable
performance against both types of alternatives.

In the univariate case, our proposal is identical to the one by Epps and
Pulley [15]. In the multidimensional case h̄ behaves much better than hHZ

for short tailed alternatives and is only slightly inferior than hHZ for long
tailed alternatives. In practice, we strongly recommend the use of h̄ that
should replace, in a multivariate context, the usual choice of the bandwidth
in the BHEP goodness-of-fit test. With this new bandwidth the BHEP test
revealed a comparative good performance against a wide range of alternative
distributions.

2. Bahadur efficiency

In order to compare the test based on I2
n(h) given by (2) with other test

procedures, or to compare I2
n(h) tests obtained for different values of h, we

give in this section the Bahadur approximate slope CI(h) of the so-called

standard sequence of tests I(h) = (In(h)), where In(h) = I2
n(h)

1/2. Given two
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different tests, the one with highest Bahadur approximate slope is preferred.
We restrict our attention to the case of the Gaussian family (3) but the
following result is also valid for a general location-scale parametric family.
For the description of Bahadur’s concept of efficiency, see Bahadur [5, 6, 7]
or Nikitin [29].

Let us denote by K the set of bounded and integrable functions K on R
d

with continuous partial derivatives up to order three, such that the functions
defined for u = (u1, . . . , ud)

′, by

u→ sup
H∈VI

||u||k | ∂kK

∂ui1 . . . ∂uik

(Hu)|,

for k = 1, . . . , ℓ and i1, . . . , ik = 1, . . . , d, where || · || is a norm in R
d and VI is

some neighbourhood of the identity matrix I, are bounded and integrable on
R

d. Remark that every three times continuously differentiable function with
compact support belongs to K. The standard normal density function also
belongs to K. More generally, every spherical function K(x) = k(x′x), where
k : R

+ → R is three times continuously differentiable and each derivative
ψ(ℓ) is nonincreasing and satisfies

∫

(x′x)ℓ |k(ℓ)(x′x)|dx <∞, for ℓ = 0, 1, 2, 3,
belongs to K.

Denote by D the set of all bounded probability density functions f on R
d

such that
∫

||x||2f(x) dx < +∞ with nonsingular covariance matrix and by
D0 the subset of D of all densities that take the form (3) for some m ∈ R

d

and some nonsingular covariance matrix S. For f ∈ D let us write f ∗ the

density in D defined by f ∗(x) = |S1/2
f |f(mf + S

1/2
f x), for x ∈ R

d, where mf

and Sf are the mean and covariance matrix of f .
The next result follows from Gregory’s [21] and Bahadur’s [5] results. Its

proof is given in Section 5.

Theorem 1. Let K ∈ K with Fourier transform K̂ such that the set {t ∈
R

d : K̂(t) = 0} has Lebesgue measure zero. For f ∈ D \ D0 we have

CI(h)(f) = λ−1
1,h bI(h)(f),

where

bI(h)(f) =

∫

|Kh ⋆ f
∗(x) −Kh ⋆ φ(x)|2dx

= (2π)d

∫

|f̂ ∗(t) − φ̂(t)|2|K̂(ht)|2dt,
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and λ1,h is the largest eigenvalue of the symmetric positive semidefinite Hilbert-

Schmidt operator Ah defined, for q ∈ L2(R
d,B(Rd),Φ) =: L2(Φ), by

(Ahq)(u) =

∫

Q(u, v; h)q(v)dΦ(v),

where Φ = φλ with λ the Lebesgue measure in B(Rd) and Q(·, ·; ·) is the

function defined, for u, v ∈ R
d and h > 0, by

Q(u, v; h) =

∫

K(x, u; h)K(x, v; h)dx, (5)

where for u = (u1, . . . , ud), x = (x1, . . . , xd) ∈ R
d and h > 0,

K(x, u; h) = Kh(x− u) −Kh ⋆ φ(x) +
d

∑

p=1

Kh ⋆ φp(x) up

+
1

2

∑

1≤p≤q≤d

Kh ⋆ φpq(x) (upuq − δpq),

with φp(x) = −xpφ(x), φpq(x) = (xpxq − δpq)φ(x) and δpq the Kronecker

symbol.

If the null density φ belongs to a family of probability density functions
of the form {f(·; θ) : θ ∈ Θ}, where Θ is a nontrivial closed real interval
containing the origin and φ = f(·; 0), it is natural to compare the set of
competitor tests I2(h), h > 0, through its Bahadur local approximate slopes
CI(h)(f(·; θ)) when θ→0. Under some regularity conditions on the previous
parametric family, two useful representations can be given for CI(h)(f(·; θ)).

Assumptions on {f(·; θ) : θ ∈ Θ} (P)
For all θ ∈ Θ, f(·; θ) has zero mean and identity covariance matrix, and

for all x ∈ R
d the function θ→ f(x; θ) is continuously differentiable on Θ,

and there exists a neighbourhood of the origin V ⊂ Θ such that the function
x→supθ∈V |∂f

∂θ (x; θ)| is integrable on R
d.

Under assumption (P), we have

CI(h)(f(·; θ)) = λ−1
1,h

∫

∣

∣

∣
Kh ⋆

∂f

∂θ
(·; 0)(x)

∣

∣

∣

2

dx θ2(1 + o(1)), θ→0. (6)

We conclude that the Bahadur local approximate slopes take the form θ2(1+
o(1)), up to the multiplication by a constant, when θ→0, and therefore for
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the comparison of tests I2(h) it is sufficient to compare the coefficients of θ2

called approximate local indices.
An informative alternative representation can be given for the previous

local approximate slope. Denote by {qk,h, k ∈ N0} the orthonormal basis of
L2(Φ) consisting of eigenfunctions ofAh, i.e., for all k and j,

∫

Q(·, v; h)qk,h(v)
dΦ(v) = λk,hqk,h, a.e. (Φ) and 〈 qk,h, qj,h 〉 = δkj, where 〈·, ·〉 denotes the

usual inner product in L2(Φ). Under assumption (P), if ∂ ln f
∂θ (·; 0) ∈ L2(Φ)

the approximate local indice CI(h)(f(·; θ)) can be expressed in terms of the
weights (λk,h) and the principal components (qk,h):

CI(h)(f(·; θ)) =

∞
∑

k=1

λ−1
1,h λk,h a

2
k,h θ

2(1 + o(1)), θ→0, (7)

where

ak,h =
〈

qk,h,
∂ ln f

∂θ
(·; 0)

〉

,

for k = 1, 2, . . ..
If the eigenvalues sequence (λk,h) converges quickly to zero, it is clear from

this representation that only a finite number of alternatives directions effec-
tively contribute to CI(h)(f(·; θ)). As we will see in the next section, in the

particular case of the BHEP statistic (4), the weights γk,h = λ−1
1,h λk,h, for

k = 2, 3, . . ., strongly depend on the choice of h.

3. Testing a univariate hypothesis of normality

In this section, in the particular case of testing a univariate hypothesis
of normality, we use the results of the previous section to get a better un-
derstanding of the role played by the smoothing parameter in the detection
of departures from the null hypothesis. From now on we take for K the
standard normal density K = φ. Therefore I2

n(h) is the BHEP statistic (4).

3.1. Most significant weights. As described in Section 2, the Bahadur ap-
proximate slopes of I2(h) depend on the weights (γk,h), where γk,h = λ−1

1,h λk,h,

and on the principal components (qk,h). Numerical evaluations of the most
significant weights are shown in Table 1 for four values of h. These ap-
proximations have been obtained along the lines described in Tenreiro [34].
For comparison and following Stephens [33] we also give the most significant
weights for the Anderson-Darling test of normality.
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h = 0.01 h = 0.1 h = 1.0 h = 2.0 A2

γ2,h 9.99 × 10−1 9.77 × 10−1 4.54 × 10−1 1.75 × 10−1 7.33 × 10−1

γ3,h 9.71 × 10−1 7.34 × 10−1 5.31 × 10−2 7.20 × 10−3 3.65 × 10−1

γ4,h 9.70 × 10−1 7.11 × 10−1 2.08 × 10−2 1.09 × 10−3 2.95 × 10−1

γ5,h 9.44 × 10−1 5.43 × 10−1 3.31 × 10−3 6.31 × 10−5 1.84 × 10−1

γ6,h 9.42 × 10−1 5.22 × 10−1 1.20 × 10−3 8.75 × 10−6 1.61 × 10−1

γ7,h 9.17 × 10−1 4.03 × 10−1 2.18 × 10−4 5.91 × 10−7 1.17 × 10−1

γ8,h 9.15 × 10−1 3.86 × 10−1 7.55 × 10−5 7.74 × 10−8 1.02 × 10−1

γ9,h 8.91 × 10−1 3.00 × 10−1 1.48 × 10−5 5.69 × 10−9 7.90 × 10−2

γ10,h 8.89 × 10−1 2.86 × 10−1 4.95 × 10−6 7.15 × 10−10 7.04 × 10−2

γ11,h 8.65 × 10−1 2.24 × 10−1 1.03 × 10−6 5.50 × 10−11 5.70 × 10−2

γ12,h 8.64 × 10−1 2.12 × 10−1 3.33 × 10−7 6.57 × 10−12 5.16 × 10−2

Table 1. Weights γk,h for I(h)

From these values and the representation (7) for the Bahadur local ap-
proximate slopes, we expect that the test based on I2

n(h) for small values of
h could use information contained in others components different from the
first ones. This conclusion agrees with the asymptotic properties of the test
based on the invariant Bickel-Rosenblatt statistic I2

n(hn) where hn tends to
zero when n goes to infinity (see [10, 35]). For moderate or large values of h,
I2
n(h) might exclusively use information contained in the first components.

3.2. Approximate local indices. Using representation (6), in the following
we compute the approximate local indices of I2(h) for a set of local alterna-
tives which are based on the Edgeworth series for the density and express
departures from the null hypothesis in the jth moment (about Edgeworth
expansion see Hall [22] and the references therein). We assume that the local
alternatives satisfy (P) with f = fj, and are such that

(A. j)
∂ ln fj

∂θ
(·; 0) = Hj(·)/

√

j! , (8)

for j = 3, . . . , 6, where Hj is the jth Hermite polynomial defined by

H3(x) = x3 − 3x;
H4(x) = x4 − 6x2 + 3;
H5(x) = x5 − 10x3 + 15x;
H6(x) = x6 − 15x4 + 45x2 − 15.
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Figure 1. Approximate local indices for I(h), h ∈ [0.01, 2]

The skeweness and kurtosis alternatives considered by Durbin et al. [14]
satisfy (A.3) and (A.4), respectively.

The approximate local indices plotted in Figure 1, for h ∈ [0.01, 2], agree
with the previous conclusions. It is clear that a large, but not to large,
bandwidth is adequate for detection of departures from normality in skewness
and kurtosis, whereas a small, but not too small, bandwidth is adequate for
detection of hight moment alternatives.

3.3. The finite sample performance. The main purposes of this section
are to know if the finite sample power performance of the I2(h) tests for
fixed alternatives is in accordance with the theoretical properties based on
Bahadur efficiency and also to provide some suggestions on the choice of h.

In order to examine the performance of the I2(h) tests for alternatives
in skewness and kurtosis, we consider four symmetric and four asymmetric
alternative distributions (four of them are platykurtic and the other four
are leptokurtic), whose densities are shown in Figure 2. These distributions
are members of the generalized lambda family discussed in Ramberg and
Schmeiser [31]. The distributions of this family are easily generated because
they are defined in terms of the inverses of the cumulative distribution func-
tions: F−1(u) = λ1 + (uλ3 − (1 − u)λ4)/λ2, for 0 < u < 1. The parameters
defining the distributions used in the study and the associated moments µi

of orders three to six are given in Table 2. All the considered distributions
have zero mean and unit variance. Some of these distributions are used in
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Symmetric Alternative Densities Asymmetric Alternative Densities
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Figure 2. Densities used in the simulation study

Fan [16] to examine the performance of the Bickel-Rosenblatt test with a
bandwidth converging to zero as n tends to infinity.

In Figure 3 we present the empirical power of I2
n(h) as a function of h with

h = 0.05, (0.05), 2, at level 0.05, for some of the previous distributions for
n = 40, 60, 80, 100. For the evaluation of the critical values of I2

n(h) we have
used 104 repetitions generated by the R function rnorm (cf. [30]) and the
Monte Carlo power results are based on 2000 samples from the considered
set of alternatives.

Case µ3 µ4 µ5 µ6 λ1 λ2 λ3 λ4

Symmetric distributions

S.1 0 1.80 0 3.86 0 0.577350 1 1
S.2 0 2.08 0 5.54 0 0.463251 0.5 0.5
S.3 0 4.06 0 35.90 0 0.017829 0.01 0.01
S.4 0 11.61 0 7211.95 0 −0.397012 −0.16 −0.16

Asymmetric distributions

AS.1 0.31 2.09 1.69 6.05 0.578020 0.465781 1 0.3
AS.2 0.51 2.22 2.74 7.40 0.835034 0.459063 1.4 0.25
AS.3 0.90 4.21 10.32 40.88 −0.635145 0.096880 0.025 0.094
AS.4 1.52 7.46 33.83 209.04 −0.628997 −0.037156 −0.0075 −0.03

Table 2. Distributions used in the simulation study
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Figure 3. Empirical power as a function of h for n = 100 (solid
line), n = 80 (large broken line), n = 60 (broken and dotted line),
n = 40 (short broken line), at level 0.05.

These empirical results are globally in accordance with the theoretical ones
based on Bahadur efficiency. For short tailed alternatives their departure
from normality in skewness and kurtosis is necessarily small which explains
the hight power observed for small (but not too small) values of h and the low
power observed for large values of h. This is particularly true for symmetric
alternatives. For long tailed, symmetric or asymmetric, alternatives a large
value for h should be chosen. As mentioned in the introductory section, these
conclusions are also supported by the simulation studies undertaken by Epps
and Pulley [15] and Baringhaus et al. [9].
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Figure 4. Distribution of hf,n at level 0.05

3.4. A rule-of-thumb for the choice of h. In order to get an easy-to-use
rule for choosing the bandwidth h, for each one of the previous alternative dis-
tributions and for sample sizes n = 20, 40, 60, 80, 100, we compute the nearly
optimal bandwidth hf,n. This bandwidth is obtained from the bandwidth h∗f,n

that maximizes the empirical power over the setH = {0.05, 0.1, 0.15, . . . , 3.0}
of values of h by taking hf,n = h∗f,n for short tailed alternatives and hf,n =
inf{h ∈ H : p(h) > 0.995 p(h∗f,n)}, where p(h) denotes the empirical power of
the BHEP test associated to the bandwidth h, for long tailed alternatives.
This way we avoid very large bandwidths that do not lead to a significant
power improvement (see distribution AS.4 in Figure 3).

We remark that h∗f,n does not depend significantly on the sample size n
but it strongly depends on the underlying alternative distribution tail type.
The sample distribution of the bandwidths hf,n is described in Figure 4 for
the BHEP test at level 0.05 for short tailed and long tailed alternatives,
respectively.

As a rule-of-thumb for the choice of h for these to types of underlying distri-
butions we propose to use the medians of the previous empirical distributions.
For short tailed distributions we obtain hS = 0.45, whereas for long tailed dis-
tributions we get hL = 0.975. If we do not have relevante information about
the alterative distribution, we propose to use for smoothing parameter the
mean value of the two previous bandwidths h̄ = (hS + hL)/2 ≈ 0.71 = hEP.
This proposal leads to the choice of h suggested by Epps and Pulley [15]
and also considered in other studies like those of Baringhaus et al. [9] and
Arcones and Wang [3].



14 C. TENREIRO

3.5. Finite sample power analysis. Based on a simulation study under-
taken for a large number of univariate alternative distributions usually con-
sidered in power studies for testing univariate normality, we conclude that
the choices hS and hL present good performance for short tailed and high
moment alternatives and for long tailed alternatives, respectively. Moreover,
h̄ present a reasonable performance against both types of alternatives. These
conclusions agree quite well with the results described in Epps and Pulley
[15].

We limit ourself to present in Figure 5 the empirical power results obtained
for some of the considered alternatives. They give us a good picture about the
overall observed power results. The uniform and beta distributions are short
tailed distributions whereas the student and lognormal distributions are long
tailed one (symmetric and asymmetric ones, respectively). The considered
generalized exponential power distributions, GEP, whose distribution shape
depends on two parameters, are high moment alternatives. They have zero
mean, unit variance and their third and fourth order moments are equal to
the ones of the normal distribution (see Johnson et al. [26] about the GEP
distribution family).

The evaluation of the critical values of I2
n(h) for h = hS, hL, h̄ was based on

105 repetitions under the null hypothesis and the power results are based on
104 samples of different sizes from the considered set of alternatives. With
104 repetitions, the margin of error for approximate 95% confidence intervals
for the proportion of rejections do not exceed 0.01.

Finally we remark that the previous rules-of-thumb can also be used for the
BHEP test at levels 0.01 and 0.1, since the distributions of the bandwidths
hf,n for these two levels are very similar to that one shown in Figure 4.

4. Testing a multivariate hypothesis of normality

The test of a multivariate normality hypothesis is discussed in this section.
Contrary to the real univariate case, where theoretical and simulation based
results have been used to study the test properties, the performance of the
multivariate BHEP test is assessed exclusively through a Monte Carlo study.

However, it is natural to expect that the behaviour of the test I2
n(h) as a

function of h described in the univariate case could have a natural counterpart
in a multivariate context. A first indication in this direction is given by
the simulation study undertaken by Henze and Zirkler [23] who considered
the bandwidths h = 0.23, 0.71, 1.41 and compared these tests with other
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Figure 5. Empirical power for h = hS(#), h = hL(�) and h = h̄(△)

procedures for assessing multivariate normality. The test with h = 0.23 was
generally inferior to the other two BHEP tests and the choice h = 1.41 gives
excellent results for asymmetric or long tailed distributions but also very
weak results for symmetric and short tailed distributions.
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4.1. A rule-of-thumb for the choice of h. In order to propose a practical
rule for the choice of the bandwidth, we conduct a simulation study based on
a set of meta-Gaussian distributions whose marginal distributions are the uni-
variate distributions considered in paragraph 3.3 (see Fang et al. [18] for the
idea of meta-type distribution). If Z = (Z1, . . . , Zd) is a multivariate normal
distribution with mean zero and unitary diagonal covariance matrix Σ, and
F is the cumulative distribution function of one of the generalized lambda
distributions S.1,. . . ,AS.4, the alternative distributions we consider are the
distributions of the vector X = (X1, . . . , Xd), defined by Xi = F−1(Φ(Zi)),
for i = 1, . . . , d, where Φ is the cumulative distribution function of the uni-
variate standard normal distribution. Since we consider Σ = [σij] = Σρ such
that σii = 1 and σij = ρ, with 0 ≤ ρ < 1, for 1 ≤ i ≤ j ≤ d, the previous
distributions will be denoted by S.1d(ρ),. . . ,AS.4d(ρ).

After some simulation work it appears that the value of h that maximizes
the empirical power of the BHEP test does not depend significantly on the
sample size n. However, it depends on the data dimension, and mainly on
the underlying alternative distribution. Moreover, as in the univariate case,
if we want a test with the omnibus property, extreme choices of h have to
be avoided. These facts are illustrated in Figure 6 where we present the two
typical behaviours, for short tailed and long tailed distributions, of the BHEP
empirical power as a function of h, for n = 40, 60, 80, 100, d = 2, 5, 10 and
h = 0.05, (0.05), 3.0. For the evaluation of the critical values we generated
104 samples using the R function mvrnorm (cf. [30]), and the power estimates
are based on 2000 samples from the considered set of alternatives.

In general, the bandwidth that maximizes the power seems to be an in-
creasing function of the data dimension d. However, it is interesting to
remark the large empirical power obtained for small values of h for the short
tailed distributions S.1d(ρ), S.2d(ρ),AS.1d(ρ),AS.2d(ρ) when ρ is small and
d is large. This type of behaviour was for the first time pointed out by
Henze and Wagner [25] for d = 5 for the uniform distribution over the unit
d-cube and for a symmetric Pearson Type II distribution. A nonasymp-
totic argument can explain this type of behaviour. For a fixed n, from
representation (4) we see that for large values of d and depending on the
sparseness of the observations, the term n−1

∑

1≤i<j≤n φ(2h2)1/2(Yi − Yj) loose

its influence and the sum
∑n

i=1 φ(1+2h2)1/2(Yi) determines the random be-

haviour of test statistic I2
n(h) for small values of h. Assuming a normal

approximation for the distribution of previous sum, we conclude that the
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Figure 6. Empirical power as a function of h for n = 100 (solid
line), n = 80 (large broken line), n = 60 (broken and dotted line),
n = 40 (short broken line), and d = 2, 5, 10 at level 0.05.
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power function of the test for an alternative f is an increasing function of√
n(Eφφ(1+2h2)1/2(Y1) − Ef∗φ(1+2h2)1/2(Y1)) and therefore detect alternatives f

satisfying
∫

φ(1+2h2)1/2(u)φ(u)du >
∫

φ(1+2h2)1/2(u)f ∗(u)du. This is in partic-
ular true for short tailed distributions.

In order to get an easy-to-use rule for choosing the bandwidth, we procede
as in the univariate case. For data dimensions d = 2, (1), 10, 12, 15, for
each one of the alternative distributions S.1d(ρ),. . . ,AS.4d(ρ), where we take
ρ = 0, 0.3, 0.7, and for n taking the values n = 20, 40, 60, 80, 100, we obtain
the nearly optimal bandwidth hf,n defined in paragraph 3.4. However, when
the empirical power present the behaviour shown by distribution S.110(0.3)
in Figure 6, the small values of h that maximize the empirical power are not
considered. In this case a large local maximum is taken for hf,n.
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Figure 8. Considered choices of h as a function of d: h = hS(#),
h = hL(�), h = h̄(△) and h = hHZ(▽)

For each one of the considered data dimension d, the sample distribution of
the bandwidths hf,n for the BHEP test at level 0.05 is described in Figures 7
for short tailed and long tailed alternatives, respectively. A linear regression
of the corresponding sample medians over the data dimension, leads to the
following relation that we will use as rule-of-thumb for the choice of h when
the data dimension is d. For short tailed distributions we obtain

hS = 0.448 + 0.026d,

whereas for long tailed distributions the relation is

hL = 0.928 + 0.049d.

These rules-of-thumb can also be used for the BHEP test at levels 0.01 and
0.1, since the distributions of the bandwidths hf,n for these two levels are
very similar to that one shown in Figure 7.

As in the univariate case, if we do not have relevante information about the
tail of the alternative distribution, we propose to choose h = h̄ := (hS+hL)/2.
In Figure 8 these bandwidths are plotted as a function of d. Contrary to the
usual choice hHZ = 1.41 proposed by Henze and Zirkler [23] that seems to be
more suitable for long tailed alternatives, we expect that h̄ could produce a
omnibus test of normality showing a reasonable performance against a large
set of alternative distributions.

4.2. Finite sample power analysis. A simulation was conducted to com-
pare the power of the BHEP tests for the following choices of the smoothing
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Figure 9. Empirical power for the multivariate uniform dis-
tribution from the Pearson Type II family for h = hS(#),
h = hL(�), h = h̄(△) and h = hHZ(▽)

parameter: h = hS, hL, h̄, hHZ. The set of alternative distributions considered
include all the alternatives proposed by Mecklin and Mundfrom [28] and also
other alternatives some of them previously considered in the simulation stud-
ies of Henze and Zirkler [23] and Romeu and Ozturk [32]. The Mecklin and
Mundfrom’s set of distributions, also considered in Farrel al. [19], include a
large variety of alternatives which are described in detail in [28]. We used
the algorithms described in Johnson [27] to generate all the multivariate dis-
tributions. The evaluation of the test statistic critical values was based on
105 repetitions under the null hypothesis and the power results are based on
104 samples of different sizes from the considered set of alternatives. The
standard level of significance α = 0.05 was used.
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Figure 10. Empirical power for the Pearson Type II distribu-
tion with m = 10 for h = hS(#), h = hL(�), h = h̄(△) and
h = hHZ(▽)

The pattern revealed by the tests in analysis was very clear: i) For short
tailed distributions the best results were obtained by hS. The bandwidth h̄
is better, and some times much better, than hHZ. For lower dimensions d
the test based in hHZ reveals a power performance against these alternatives.
Figures 9 and 10 illustrate this situation showing the empirical powers for
the Pearson Type II distributions with m = 0 and m = 10 (see [27] chapter
6). Contrary to the simulation results reported in Mecklin and Mundfrom
[28] and Farrel al. [19] for the multivariate uniform distribution, the test
based in hHZ reveals a poor performance. This behaviour, which was also
observed for all the considered members of the Pearson Type II family, agree
with the simulation results reported in Henze and Zirkler [23]. Similarly
to the univariate case, the previous behaviour was also observed for a high
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Figure 11. Empirical power for the high moment Khintchine
distribution with GPE marginals for h = hS(#), h = hL(�),
h = h̄(△) and h = hHZ(▽)

moment alternative like the Khintchine distribution with GEP marginals
(see [27] chapter 8 and paragraph 2.4) as we can see in Figure 11. This
non-normal distribution present an interesting departure from multivariate
normality since the values of Mardia’s skewness and kurtosis are equal to the
one of the multivariate normal distribution. ii) For long tailed or moderately
skewed alternatives the best results were obtained by the bandwidths hL and
hHZ. However, for large values of d (d > 10) hL is better than hHZ. Although
inferior to hHZ, the bandwidth h̄ reveled a reasonable performance against all
the considered long tailed alternatives. Figures 12 and 13 present the power
estimates for the multivariate Student distribution t10 from the Pearson Type
VII family (see [27] chapter 6) and for the asymmetric multivariate Burr-
Pareto-Logistic distribution with normal marginals with parameter α = 1
(see [27] chapter 7). Finally, Figure 14 reports the power estimates for one
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Figure 12. Empirical power for the multivariate Student dis-
tribution t10 for h = hS(#), h = hL(�), h = h̄(△) and h =
hHZ(▽)

of the fifteen different mixtures of two multivariate normals considered in
Mecklin and Mundfrom [28] (normal mixture 13). This mixture reflects a
mild contamination level and is skewed and leptokurtic.

4.3. Conclusion. The previous results show that the usual choice h = hHZ

gives the best results for long tailed or moderately skewed alternatives but it
also produce very weak results for short tailed alternatives. In practice, if no
relevant information about the tail of the alternatives is available, we strongly
recommend the use of h̄ that should replace, in a multivariate context, the
usual choice of the bandwidth in the BHEP goodness-of-fit test. With this
new bandwidth the BHEP test present a reasonable performance against all
the considered alternatives. Moreover, for short tailed alternatives and long
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Figure 13. Empirical power for the multivariate Burr-Pareto-
Logistic distribution with normal marginals with α = 1 for h =
hS(#), h = hL(�), h = h̄(△) and h = hHZ(▽)

tailed or moderately skewed alternatives the choices h = hS and h = hL,
respectively, are recommended.

5. Proof of Theorem 1

The following result follows straightforward from Lemma 2.4 of Gregory
[21] and Bahadur’s [5] results.

Lemma 1. Let X1, X2, . . . a sequence of independent and identically dis-

tributed random variables whose distribution is determined by a parame-

ter θ taking on values in a parametric set Θ. Let T = (Tn) with Tn =
Tn(X1, . . . , Xn) ≥ 0, a sequence of test statistics to test θ ∈ Θ0 against

θ ∈ Θ \ Θ0, with Θ0 ⊂ Θ, that satisfies the following conditions:
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Figure 14. Empirical power for the mixture of normals distri-
bution for h = hS(#), h = hL(�), h = h̄(△) and h = hHZ(▽)

A. For all θ ∈ Θ0 we have

T 2
n

d

n→+∞
−→ µ+

∞
∑

k=1

λk(Z
2
k − 1),

where µ ≥ 0, λk ≥ 0, k ∈ N,
∑∞

k=1 λ
2
k <∞, and (Zk) are iid standard normal

random variables.

B. For all θ ∈ Θ \ Θ0,

T 2
n

n

p

n→+∞
−→ B(θ),

for some real and positive function B on Θ \ Θ0.

Then the Bahadur approximate slope of T is given by

CT (θ) = λ−1
1 B(θ),

for all θ ∈ Θ \ Θ0.
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Taking in Lemma 1, Θ = D, Θ0 = D0 and Tn = I2
n(h)

1/2, Theorem 1 follows
easily from Theorems 1 and 2 of Tenreiro [35] since conditions A. and B. are
satisfied with

µ =

∫

Q(u, u; h)dΦ(u),

λk = λk,h,

and

B(f) = (2π)d

∫

|f̂ ∗(t) − φ̂(t)|2|K̂(ht)|2dt.
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Vladimir Koltchinskii, Wenbo Li, Joel Zinn, Eds., 51, 196–206.

[3] Arcones, M.A., Wang, Y. (2006) Some new tests for normality based on U-processes.

Statis. Probab. Lett. 76, 69-82.

[4] Arcones, M.A. (2007). Two tests for multivariate normality based on the characteristic

function. Math. Methods Statist. 16, 177–201.

[5] Bahadur, R.R. (1960). Stochastic comparison of tests. Ann. Math. Statist. 31, 276–295.

[6] Bahadur, R.R. (1967). Rates of convergence of estimates and test statistics. Ann. Math.

Statist. 38, 303–324.

[7] Bahadur, R.R. (1971). Some Limit Theorems in Statistics. Philadelphia, SIAM.

[8] Baringhaus, L., Henze, N. (1988). A consistent test for multivariate normality based on

the empirical characteristic function. Metrika 35, 339–348.

[9] Baringhaus, L., Danschke, R., Henze, N. (1989). Recent and classical tests for normality.

A comparative study. Comm. Statist. Simulation Comput. 18, 363–379.

[10] Bickel, P.J., Rosenblatt, M. (1973). On some global measures of the deviations of density

function estimates. Ann. Statist. 1, 1071–1095.

[11] Bowman, A.W., Foster, P.J. (1993). Adaptive smoothing and density-based tests of

multivariate normality. J. Amer. Statist. Assoc. 88, 529–537.

[12] Coin, D. (2007). A goodness-of-fit test for normality based on polynomial regression.

Comput. Statist. Data Anal. 52, 2185–2198.
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