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CONVERGENCE RATES FOR THE STRONG LAW OF
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Abstract: We prove convergence rates for the Strong Laws of Large Numbers
(SLLN) for associated variables which are arbitrarily close to the optimal rates for
independent variables. A first approach is based on exponential inequalities, a usual
tool for this kind of problems. Following the optimization efforts of several authors,
we improve the rates derived from exponential inequalities to log2 n

n1/2 . A more recent
approach tries to use maximal inequalities together with moment inequalities. We
prove a new maximal order inequality of order 4 for associated variables, using a
telescoping argument. This inequality is then used to prove a SLLN convergence
rate arbitrarily close to log1/4 n

n1/2 .
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equalities.
AMS Subject Classification (2000): 60F15, 60E15.

1. Introduction
Characterizing convergence rates in the Strong Law of large Numbers

(SLLN) has been studied under various dependence structures. For asso-
ciated variables several recent results have proved almost optimal rates, that
is, rates that are arbitrarily close to the best rates for independent variables.
The first SLLN for associated variables seems to have been proved by New-
man and Wright [8], Newman [9] and Birkel [2] under suitable decrease rates
on the covariance structure. These results gave no indication about con-
vergence rates as there was no exponential inequality available for this type
of dependence. Some moment inequalities were proved in Birkel [1], Shao
and Yu [14] and Shao [13], but the main focus of these references was on
central limit problems. Some convergence rates for the SLLN for associated
variables appeared in Ioannides and Roussas [10], where the first exponential
inequality for this dependence structure was proved, assuming the variables
to be bounded and using a block decomposition and coupling. This was later
extended for general associated variables in Oliveira [11]. The convergence
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rate derived was of order log5/3 n
n1/3 , assuming the covariances to decrease geo-

metrically. A convergence rate of the same order had appeared in Yang [17]
published in Chinese. The same method of approach was used in Sung [15]
to prove the rate log n

n1/3 and in Xing and Yang [16] who were able to optimize

the proof to reach the rate log2 n (log log n)1/2

n1/2 , both assuming geometrically de-
creasing covariances. Another approach to this problem is based on moment
inequalities, enabling results for polynomially decreasing covariances. This
approach emerged while studying the consistency of the kernel density esti-
mator with almost optimal rates proved in Masry [6]. The approach based
on exponential inequalities to the convergence of this estimator was used in
Henriques and Oliveira [5], with an almost optimal rate with geometrically
decreasing covariances but a milder assumption on the distributions. More
recently, using moment inequalities together with a maximal approach Yang,

Su and Yu [18] proved the almost optimal rate (log n)1/2(log log n)δ/2

n1/2 , where δ > 1,
under an assumption on the covariance that allows for polynomial decrease.

In this paper we start by showing that the approach based on exponential

inequalities may be improved to derive the almost optimal SLLN rate (log n)2

n1/2 ,
improving the rate derived by Xing and Yang [16]. Using a different approach,

we find conditions under which the better convergence rate (log n)1/4+δ

n1/2 , δ > 0,
holds. The assumptions made allow for polynomial decreasing covariances
with an extra assumption on conditional moments. The proof of this result
is based on a maximal inequality of order 4 for associated variables, proved
by using a telescoping series argument (see Garsia [4] or Dedecker and Rio [3]
and Peligrad and Utev [12] for similar contexts).

Given a sequence of random variables Xn, n ≥ 1, denote Sn = X1+· · ·+Xn.
The random variables are associated if, for any m ∈ N and any two real-
valued coordinatewise nondecreasing functions f and g it holds

Cov
(
f (X1, . . . , Xm) , g (X1, . . . , Xm)

)
≥ 0,

whenever this covariance exists.
In the framework of association, it is usual to state conditions on the co-

variance structure in terms of decrease rate of

u(n) =
∞∑

j=n+1

Cov(X1, Xj).
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Throughout this paper we will denote by c a generic positive constant, which
may take different values in each appearance.

2. Using exponential inequalities
Given an associated sequence of random variables Xn, n ≥ 1, and c > 0

define

Xc,i = −cI(−∞,−c)(Xi) +XiI[−c,c](Xi) + cI(c,+∞)(Xi), (1)

where IA represents the characteristic function of the set A. Notice that, for
each n ≥ 1 fixed, all these variables are monotone transformations of the
initial variables Xn, so they are associated.

Consider a sequence of natural numbers pn such that, for each n ≥ 1,
pn <

n
2 and define rn as the greatest integer less or equal to n

2pn
. Define then,

for n ≥ 1 and j = 1, . . . , 2rn,

Yc,j,n =

jpn∑
l=(j−1)pn+1

(
Xc,l − E(Xc,l)

)
Zc,n,od =

rn∑
j=1

Yc,2j−1,n, Zc,n,ev =

rn∑
j=1

Yc,2j,n,

(2)

We start by proving un upper bound for second order moments of partial
sums.

Lemma 2.1. Let c > 0 and Sc,n =
∑n

i=1 (Xc,i − E(Xc,i)). Assume that
random the variables Xn, n ≥ 1, are associated, stationary and u(0) < ∞.
Then E(S2

c,n) ≤ 2nc∗, where c∗ ≥ c2 + u(0).

Proof: Using the stationarity, it follows easily that

E(S2
c,n) = nVar(Xc,1)+2

n−1∑
j=1

(n−j)Cov(Xc,1, Xc,j+1) ≤ 2nc2 +2nu(0) ≤ 2nc∗,

since Cov(Xc,1, Xc,j+1) ≤ Cov(X1, Xj+1).

This inequality will help improving the bound in Lemma 3.1 of Oliveira [11],
as stated below.
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Lemma 2.2. Assume the variables Xn, n ≥ 1, are associated, stationary
and u(0) <∞. If dn > 1 and 0 < λ < dn−1

dn
1

2c pn
, then

rn∏
j=1

E
(
eλYc,2j−1,n

)
≤ exp

(
λ2nc∗dn

)
,

and the same bound holds for
∏rn

j=1 E
(
eλYc,2j,n

)
.

Proof: Remembering that |Yc,2j−1,n| ≤ 2cpn, it follows, using a Taylor expan-
sion and Lemma 2.1, that, for each j = 1, . . . , rn,

E
(
eλYc,2j−1,n

)
≤ 1 + λ2E(Y 2

c,2j−1,n)
∞∑
k=2

(2cλpn)
k−2

≤ 1 + λ22pnc
∗ 1

1− 2cλpn

≤ exp
(
2λ2pnc

∗dn
)
,

according to the assumptions on dn and λ. Finally, remember we chose the
sequences such that 2rnpn ≤ n.

Theorem 2.3. Assume the variables Xn, n ≥ 1, are centered, associated,
stationary and u(0) <∞. Let dn > 1 and assume that

∃δ > 3 : sup
|t|≤δ

E(etX1) ≤M <∞, (3)

ε2
n =

648α dn log3 n

n
, 3 < α ≤ δ, (4)

ndn log n

p2
n

−→∞, (5)

dn
(dn − 1)2

p2
n log n

n
<

1

2α
, (6)

1

dn log n
exp

(
α

2

n log n

dn

)1/2

u(pn) ≤ C0 . (7)

Then, for sufficiently large n,

P

(
1

n
|Sn| ≥ εn

)
≤

(
4

(
1 +

αC0

4

)
− M

162α3

n2

dn log3 n

)
e−α log n. (8)
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Proof: We retrace the proofs in Henriques and Oliveira [5] and Oliveira [11]
to prove an exponential inequality for the sum of the bounded variables Xc,n,
using the block decomposition of the sum

∑n
i=1(Xc,i − E(Xc,i)), with blocks

defined by (2). Next, Lemma 4.1 of [11] is used to handle the sum of the
unbounded variables (Xi − c)I(c,+∞)(Xi) and (Xi + c)I(−∞,−c)(Xi).

Consider a sequence cn for the truncation in (1). First, we obtain an
exponential inequality for the sum of these bounded variables. Use then the
arguments of the proof of Theorem 3.6 in [11] or of Theorems 1 or 2 in [5] to
obtain, applying our Lemma 2.2,

P

(
1

n

∣∣∣∣∣
n∑
i=1

(Xcn,i − E(Xcn,i))

∣∣∣∣∣ > εn
3

)
≤ 4(1 + C1) exp

(
− 1

182

nε2
n

c∗ndn

)
, (9)

where c∗n relates to cn according to Lemma 2.1, if

εn <
9(dn − 1)c∗n

pncn
, (10)

in order to meet the requirement on λ of Lemma 2.2, and also if

nε2
n

648(c∗n)
2d2
n

exp

(
nεncn
18c∗ndn

)
u(pn) ≤ C1, (11)

nεn
pncn

−→∞. (12)

Use now Lemma 4.1 of [11], with t = α and cn = log n, to get, under (10),
(11), (12) and (3),

P

(
1

n
|Sn| > εn

)
≤ 4Mn exp(−α log n)

α2ε2
n

+ 4(1 + C1) exp

(
− 1

182

nε2
n

c∗ndn

)
.

Finally, choose c∗n = 2 log2 n and insert (4) into the last inequality and into
conditions (10), (11) and (12).

Assuming a geometric decrease rate of the covariances Cov(X1, Xn), the
previous theorem yields a convergence rate for the strong law of large numbers
near the best possible convergence rate in the independent setting.

Corollary 2.4. Assume the variables Xn, n ≥ 1, are centered, associated,
stationary and that u(n) ≤ ρ0ρ

n, where ρ0 > 0 and ρ ∈ (0, 1). Assume
further that (3) holds true. Then, 1

nSn converges almost surely to zero with

rate log2 n
n1/2 .
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Proof: Using the assumption on u(n), condition (7) follows from

log

(
1

dn log n

)
+

(
α

2

n log n

dn

)1/2

+ pn log ρ ≤ c.

This suggests the choice pn ∼
(
n log n
dn

)1/2
. Now, in order satisfy (6), choose

dn ∼ log n. Then, also (5) and (7) are verified. Additionally, εn ∼ log2 n
n1/2 and

the upper bound in (8) defines a convergent series provided that α > 3.

3. Maximal inequalities and convergence rates
In this section we will use maximal inequalities to characterize convergence

rates in the SLLN. This approach has been used in Yang, Su and Yu [18]
to prove some almost optimal convergence rates. We will use a maximal
inequality due to Newman and Wright [7] to improve the convergence rate
obtained in the previous section, as well as relax the assumption of geometric
decrease rate of the covariances. Next we will prove a new maximal inequality
for associated variables and use it to derive a faster convergence rate, even
closer to the optimal rate.

Lemma 3.1 (Newman and Wright [7]). Let Xn, n ≥ 1, be centered, associ-
ated and square integrable variables. Then

E

(
max
i=1,...,n

|Si|2
)
≤ 2ES2

n.

Theorem 3.2. Let Xn, n ≥ 1, be centered, associated, square integrable and
stationary variables, such that u(0) <∞. Then 1

nSn converges almost surely

to zero with rate (log n)1/2+δ

n1/2 .

Proof: Define εn = (log n)1/2+δ

n1/2 , for some δ > 0. According to the arguments
of the proof of Theorem 2.1 in Yang, Su and Yu [18], it is enough to prove

that maxj=1,...,2k
|Sj |

2kε2k
→ 0 almost surely. To prove this we use the Markov

inequality and the maximal inequality of Lemma 3.1 to find

P

(
max

j=1,...,2k
|Sj| > 2kε2kη

)
≤

2E(S2
2k)

22kε2
2kη

2 .



CONVERGENCE RATES FOR THE STRONG LAW OF LARGE NUMBERS 7

The arguments used in the proof of Lemma 2.1 yield E(Sn)
2 ≤ c n, so that

we get

P

(
max

j=1,...,2k
|Sj| > 2kε2kη

)
≤ c

2k

22kε2
2k
≤ c(k log 2)−(1+2δ),

replacing the εn by the above choice. So the almost sure convergence to zero

of maxj=1,...,2k
|Sj |

2kε2k
follows by the Borel-Cantelli Lemma and the theorem is

proved.

We will now establish a maximal inequality of order 4 for associated ran-
dom variables, which enables an improvement of the convergence rate proved
in the previous theorem, at the cost of a stronger assumption on the covari-
ance decrease rate. For that define, for each n ≥ 1, M+

n = max(0, S1, . . . , Sn)
and M−

n = max(0,−S1, . . . ,−Sn). We start by writing the telescoping rep-
resentation:

(M+
n )4 =

n∑
k=1

[
(M+

k )4 − (M+
k−1)

4] , (13)

as done in Garsia [4]. The terms in the summation are obviously nonnegative
and may be rewritten as(

(M+
k )− (M+

k−1)
)
×
(
(M+

k ) + (M+
k−1)

)
×
(
(M+

k )2 + (M+
k−1)

2) .
It is now evident that each term in (13) is nonnegative if and only if Sk >
M+

k−1. But then M+
k = Sk and (M+

k )2 = S2
k. Thus, it follows that

(M+
k )4 − (M+

k−1)
4 ≤ 2S2

k

[
(M+

k )2 − (M+
k−1)

2] .
As every term is nonnegative, we find that

(M+
n )4 ≤ 2S2

n(M
+
n )2 − 2

n∑
k=1

(M+
k−1)

2 (S2
k − S2

k−1
)
.

Notice further that 2S2
n(M

+
n )2 ≤ 1

2(M+
n )4+2S4

n. Inserting this on the previous
expression, we easily derive that

(M+
n )4 ≤ 4S4

n − 4
n∑
k=1

(M+
k−1)

2 (S2
k − S2

k−1
)
. (14)
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Writing
(
S2
k − S2

k−1

)
= −

(
(S2

n − S2
k)− (S2

n − S2
k−1)

)
, we may rewrite (14) as

(M+
n )4 ≤ 4S4

n − 4
n∑
k=1

(
(M+

k )2 − (M+
k−1)

2) (S2
n − S2

k

)
. (15)

Taking now mathematical expectations, we get

E(M+
n )4 ≤ 4E(S4

n)− 4
n∑
k=1

E
[(

(M+
k )2 − (M+

k−1)
2) (S2

n − S2
k

)]
. (16)

We may now repeat the arguments with M−
n . Putting the two inequalities

together yields, with Mn = max(|S1| , . . . , |Sn|),

E(M 4
n) ≤ 8E(S4

n)

−4
n∑
k=1

E
[[(

(M+
k )2 − (M+

k−1)
2)+

(
(M−

k )2 − (M−
k−1)

2)] (S2
n − S2

k

)]
.

(17)

Lemma 3.3. Let Xn, n ≥ 1, be random variables with finite moments of
order 4. If, for every i < j, E(XiXj|σ(X1, . . . , Xi)) ≥ 0, then E(M 4

n) ≤
8E(S4

n).

Proof: The mathematical expectation in the summation on (17) is equal to

E

[[(
(M+

k )2 − (M+
k−1)

2)+((M−
k )2 − (M−

k−1)
2)]E[(S2

n − S2
k

)
|σ(X1, . . . , Xk)

]]
.

The term in square brackets outside the inner mathematical expectation is
clearly nonnegative. As for the conditional expectation, we rewrite it as

2
k∑
i=1

n∑
j=k+1

E
[
XiXj|σ(X1, . . . , Xi)

]
+ E

[
(Sn − Sk)2|σ(X1, . . . , Xk)

]
,

which, under the assumption made, is also nonnegative. The lemma now
follows readily from (17).

Theorem 3.4. Let Xn, n ≥ 1, be centered, associated and stationary ran-
dom variables such that E(Xr

1) < ∞, for some r > 4, u(n) ≤ c n−1 and
E(XiXj|σ(X1, . . . , Xi)) ≥ 0, for every i < j. Then 1

nSn converges almost

surely to zero with rate (log n)1/4+δ

n1/2 , where δ > 0.
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Proof: Let εn = (log n)1/4+δ

n1/2 , for some δ > 0. Following the arguments of
the proof of Theorem 3.2, but applying now the maximal inequality of
Lemma 3.3, we find

P

(
max

j=1,...,2k
|Sj| > 2kε2kη

)
≤

4E(S4
2k)

24kε4
2kη

4 .

Now, we use Theorem 4.2 from Shao and Yu [14], where we take f to be the
identity function, p = 4, θ = 1 and ε = 1, to obtain E(S4

n) ≤ c n2. We then
have

P

(
max

j=1,...,2k
|Sj| > 2kε2kη

)
≤ c

22k

24kε4
2k
≤ c(k log 2)−(1+4δ),

replacing the εn by the above choice, which concludes the proof.
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