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LOCALIC REAL FUNCTIONS: A GENERAL SETTING

JAVIER GUTIÉRREZ GARCÍA, TOMASZ KUBIAK AND JORGE PICADO

Abstract: A [semi-]continuous real function of a frame (locale) L has up to now
been understood as a frame homomorphism from the frame L(R) of reals into L
[as a frame homomorphism (modulo some conditions) from certain subframes of
L(R) into L]. Thus, these continuities involve different domains. It would be desir-
able if all these continuities were to have L(R) as a common domain. This paper
demonstrates that this is possible if one replaces the codomain L by S(L) — the
dual of the co-frame of all sublocales of L. This is a remarkable conception, for
it eventually permits to have among other things the following: lower semicon-
tinuous + upper semicontinuous = continuous. In this new environment we will
have the same freedom in pointfree topology which so far was available only to the
traditional topologists, for the lattice-ordered ring Frm(L(R),S(L)) may be viewed
as the pointfree counterpart of the lattice-ordered ring RX with X a topological
space. Notably, we now have the pointfree version of the concept of an arbitrary
not necessarily continuous function on a topological space. Extended real functions
on frames are considered too.

Keywords: Frame, locale, sublocale, frame of reals, frame continuous real func-
tion, lower semicontinuous, upper semicontinuous, lower regularization, upper reg-
ularization, insertion theorem, normal, monotonically normal, extremally discon-
nected, perfectly normal, countably paracompact.
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1. Introduction

A continuous real function on a frame L has up to now been understood as
a frame homomorphism from the frame L(R) of reals into L (definitions are
given below). Similarly, lower and upper semicontinuous real functions on
L have up to now been understood as frame homomorphisms (modulo some
conditions) from certain subframes of L(R) into L. The main disadvantage of
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these three types of continuities is that the involved functions have different
domains. Our aim is to find a common framework for all those continuities.
Even if – naively speaking – pointfree topology is supposed to be more gen-
eral than the classical point-set topology, the parallel between functions and
sets in point-set topology does not yet have a fine counterpart in pointfree
topology. For instance, pointfree topology suffers of not having the concept
of an arbitrary not necessarily continuous real function on L which would
correspond to an arbitrary member of RX with X a topological space. After
this paper, the following quotation from [8, Chapter 1] will make sense in the
pointfree setting:

“The set C(X) of all continuous, real-valued functions on a
topological space X will be provided with an algebraic struc-
ture and an order structure. Since their definitions do not
involve continuity, we begin by imposing these structures on
the collection RX of all functions from X into the set R of real
numbers. [...] In fact, it is clear that RX is a commutative
ring with unity element (provided that X is non empty). [...]
The partial ordering on RX is defined by: f ≥ g if and only if
f(x) ≥ g(x) for all x ∈ X. [...] The set of all continuous func-
tions from the topological space X into the space R is denoted
C(X). [...] Therefore C(X) is a commutative ring, a subring
of RX .”

In actual fact, RX has many other important substructures such as the
lattices LSC(X) and USC(X) of all lower and upper semicontinuous real
functions. Living all in RX , members of LSC(X) ∪ USC(X) are comparable
and after making lattice or algebraic operations on them, formed in RX , they
are still in RX even though may travel far away from LSC(X)∪USC(X). We
just want to be able to do the same in the pointfree topology. On the other
hand, arbitrary members of RX have their lower and upper semicontinuous
regularizations (possibly in RX

, where R stands for the extended reals). Even
if all the individual concepts mentioned above do already exist in pointfree
topology, one cannot manage with them so freely as described above due to
the lack of a pointfree analogue of RX .

The aim of this paper is to remove that inconvenient situation and to ex-
hibit an environment which would give pointfree topologists the same freedom
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which up to now was only available to the traditional topologists. Specifi-
cally, the pointfree counterpart of the lattice-ordered ring RX will just be the
lattice-ordered ring Frm(L(R),S(L)) where S(L) is the dual of the co-frame
of all sublocales of L (recall that the set Frm(L(R),M) of all frame homo-
morphisms from L(R) into an arbitrary frame M is a lattice-ordered ring;
see [2]). In order to motivate the idea of our approach, we first recall that
the familiar (dual) adjunction

Top
O // Frm
Σ

oo

between the categories of topological spaces and frames yields the bijection

Top(X,R) ' Frm(L(R),OX)

where OX is the topology of the topological space X and R is endowed with
its natural topology. The reason for that is that the spectrum ΣL(R) is
homeomorphic to the space R (cf. [15] and [2]). If we now observe that the
set RX is in an obvious bijection with Top((X,P(X)), (R, τ)) where τ is any
topology on the set R, we would, in particular, have a bijection

RX ' Top((X,P(X)),R)) ' Frm(L(R),P(X)),

where R carries the natural topology.
Now, for a general frame L, the role of the lattice P(X) of all subspaces of

X, is taken by the lattice S(L) of all sublocales of L, which justifies to think
of the members of

Frm(L(R),S(L))

as arbitrary not necessarily continuous real functions on the frame L.
We also notice that by the homeomorphism between ΣL(R) and R, real

numbers are thought as frame homomorphisms from L(R) to the two-point
frame {0, 1}. In our new framework, arbitrary real function on L can be
interpreted as S(L)-valued real numbers (cf. [2, Remark 9]).

At this stage, the reader might have noticed what often happens in math-
ematics: one situation which superficially seems to generalize another one,
may well be viewed as its particular case. Indeed, replacing L in Frm(L(R), L)
by S(L) yields a larger class of morphisms due to the embedding L ↪→ S(L)
via a 7→ ↑a. On the other hand, one may say that we deal with a particular
case of Frm(L(R),M) with M = S(L). Then we replace M by the larger
frame S(M) and we are back to our framework. Instead of thinking as to
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whether replacing M by S(M) eventually stabilizes, we emphasize that the
point of this paper is that in Frm(L(R),S(L)) we can do things that cannot
be done within Frm(L(R), L), thereby having a lot of various possibilities
which were not possible within Frm(L(R), L). (This is as simple as that:
studying X and its powerset P(X) is not the same as studying an arbitrary
set Y .) It is the aim of this paper to exhibit these possibilities. Of course,
we shall utilize as far as possible results that hold for Frm(L(R),M) with
arbitrary M . For instance, we need not check that Frm(L(R),S(L)) is a
lattice-ordered ring.

This paper is, in some sense, a continuation of our previous papers [9, 10,
11], opening new horizons for the research programme started with [18] and
[14].

In Sections 2 and 3 we recall the needed background on the frame of sublo-
cales and the frame of reals as well as on semicontinuous and continuous real
functions on a frame. Section 4 provides details of how to generate continu-
ous real functions on frames. Section 5 introduces the main idea of the paper:
the ring of all real functions on a frame, while Section 6 presents the relations
between the old notions and the newly established ones. Section 7 provides
a general procedure of constructing the lower and upper regularizations of
an arbitrary real function on a frame. We conclude, in Section 8, with a list
of our insertion and extension theorems formulated in the new setting.

Our general references for frames and locales are [15] and [20].

Convention. If not otherwise stated, L stands for an arbitrary frame.

2. The frame of sublocales

We begin by briefly recording some familiar notions and standard results
on sublocales that we shall need. We use the approach of [19] in terms of
sublocale sets.

In pointfree topology the points of a space are regarded as secondary to
its open sets. Accordingly, in pointfree topology spaces are represented by
generalized lattices of open sets, called frames, abstractly defined as complete
lattices L in which the distributive law

a ∧∨
S =

∨{a ∧ s : s ∈ S}
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holds for all a ∈ L and S ⊆ L. In particular, a classical space X is represented
by its lattice O(X) of open sets. Continuous maps are represented by frame
homomorphisms, that is, those maps between frames that preserve arbitrary
joins (hence 1, the top) and finite meets (hence 0, the bottom). Frm is then
the corresponding category of frames and frame homomorphisms. The set of
all morphisms from L into M is denoted by Frm(L,M).

The above representation is contravariant (continuous maps f : X → Y
are represented by frame homomorphisms h : O(Y ) → O(X)). This is
easily mended, in order to keep the geometric (topological) motivation, by
considering, instead of Frm simply its opposite category. It is called the
category of locales and localic maps, and we have “generalized continuous
maps” f : L → M that are precisely frame homomorphisms h : L ←− M .

In the whole paper we keep the algebraic (frame) approach and reasoning.
The reader should keep in mind that the geometric (localic) motivation reads
backwards.

Being a Heyting algebra, each frame L has the implication → satisfying
the standard equivalence a ∧ b ≤ c iff a ≤ b → c. The pseudocomplement of
an a ∈ L is the element

a∗ = a → 0 =
∨{b ∈ L : a ∧ b = 0}.

Then: a ≤ a∗∗ and (
∨

A)∗ =
∧

a∈A a∗ for all A ⊆ L. In particular, (·)∗ is
order-reversing.

A subset S of L is a sublocale of L if, whenever A ⊆ L , a ∈ L and
b ∈ S, then

∧
S ∈ L and a → b ∈ S . The intersection of sublocales is

again a sublocale, so that the set of all sublocales is a complete lattice under
inclusion. In fact, it is a co-frame, in which {1} is the bottom and L is the
top [19].

Convention. For notational reasons, we shall make the co-frame of all
sublocales into a frame S(L) by considering the opposite ordering:

S1 ≤ S2 ⇔ S2 ⊆ S1.

Thus, given {Si ∈ S(L) : i ∈ I}, we have

∨
i∈I

Si =
⋂
i∈I

Si and
∧
i∈I

Si = {∧ A : A ⊆ ⋃
i∈I

Si}.
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Then {1} is the top element and L is the bottom element in S(L) that we
just denote by 1 and 0, respectively. The pseudocomplement of S in S(L)
will standardly be denoted by S∗.

Among the important examples of sublocales are the closed sublocales

c(a) = ↑a = {b ∈ L : a ≤ b}
and the open sublocales

o(a) = {a → b : b ∈ L}
where a ∈ L. We shall freely use the following properties:

Properties 2.1. For all a, b ∈ L and A ⊆ L:

(1) c(a) ≤ c(b) if and only if a ≤ b,
(2) c(a ∧ b) = c(a) ∧ c(b),
(3) c(

∨
A) =

∨
a∈A c(a),

(4) c(
∧

A) ≤ ∧
a∈A c(a).

We note that the map a 7→ c(a) is a frame embedding L ↪→ S(L). The
subframe of S(L) consisting of all closed sublocales will be denoted by cL.
Clearly, L and cL are isomorphic. Denoting by oL the subframe of S(L)
generated by all o(a), a ∈ L, the triple (S(L), cL, oL) constitutes a biframe
[3], the so called sublocale biframe.

Lemma 2.2. Let a, b ∈ L. Then:

(1) o(a) ≥ c(b) if and only if a ∧ b = 0,
(2) o(a) ≤ c(b) if and only if a ∨ b = 1,
(3) c(a) = o(b) if and only if a and b are complements of each other,
(4) c(a) ∨ o(a) = 1 and c(a) ∧ o(a) = 0.

Thus c(a) and o(a) are complements to each other in S(L). More generally,
we have:

Lemma 2.3. Let a ∈ L and S ∈ S(L). Then:

(1) S ∧ c(a) = 0 if and only if S ≤ o(a),
(2) S ∧ o(a) = 0 if and only if S ≤ c(a),
(3) S ∨ c(a) = 1 if and only if o(a) ≤ S,
(4) S ∨ o(a) = 1 if and only if c(a) ≤ S.
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Proof : To show (1), let S ∧ c(a) = 0. Then

o(a) = o(a) ∨ (S ∧ c(a)) = o(a) ∨ S,

hence S ≤ o(a). Conversely, if S ≤ o(a), then 0 ≤ S∧ c(a) ≤ o(a)∧ c(a) = 0.
The proof of (2) is similar to that of (1). To show (3), let S ∨ c(a) = 1. Then

o(a) = o(a) ∧ (S ∨ c(a)) = o(a) ∧ S,

hence o(a) ≤ S. Conversely, if o(a) ≤ S, then 1 = o(a)∨ c(a) ≤ S∨ c(a) ≤ 1.
Again, the proof of (4) is similar to that of (3).

Given a sublocale S of L, its closure and interior are defined, respectively,
by

S =
∨{c(a) : c(a) ≤ S} = c(

∧
S)

and

S◦ =
∧{o(a) : S ≤ o(a)}.

Proposition 2.4. Let S, T ∈ S(L), a ∈ L and A ⊆ L. Then:

(1) 1 = 1, S ≤ S, S = S, and S ∧ T = S ∧ T ,
(2) 0◦ = 0, S◦ ≥ S, S◦◦ = S◦, and (S ∨ T )◦ = S◦ ∨ T ◦,
(3) S◦ =

(
S∗

)∗
= o(

∧
S∗),

(4) c(a)◦ = o(a∗),
(5) o(a) = c(a∗).

Proof : (1) can be seen in [19], while (2) is dual to (1). For (3), we have

S◦ =
∧{o(a) : S ≤ o(a)}

=
∧{o(a) : c(a) ∧ S = 0}

=
∧{o(a) : c(a) ≤ S∗}

= (
∨{c(a) : c(a) ≤ S∗})∗

=
(
S∗

)∗
= o(

∧
S∗).

To show (4), we have c(a)◦ = o(
∧

o(a)) = o(a∗), since a∗ = a → 0 ≤ a → b

for every b ∈ L. To show (5), we have
(
o(a)

)∗
=

(
c(a)∗

)∗
= c(a)◦ = o(a∗)

which yields o(a) = c(a∗).
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3. Frames of reals and their continuity notions

Notation. We write L = 〈A〉 if L is generated by A ⊆ L.

There are various equivalent definitions of the frame of reals (see e.g. [15]
and [2, 4]). In [2, 4], the frame L(R) of reals is the frame generated by all
pairs (p, q) ∈ Q×Q satisfying the following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,
(R3) (p, q) =

∨{(r, s) : p < r < s < q},
(R4)

∨
p,q∈Q(p, q) = 1.

One writes: (p, —) =
∨

q∈Q(p, q) and (—, q) =
∨

p∈Q(p, q).

As we shall deal with frames of lower and upper reals too, we take (r, —)
and (—, r) as primitive notions. We thus adopt the equivalent description of
L(R) proposed in [17]. Specifically, the frame of reals L(R) is the one having
generators of the form (r, —) and (—, r) subject to the following relations:

(r1) (r, —) ∧ (—, s) = 0 whenever r ≥ s,
(r2) (r, —) ∨ (—, s) = 1 whenever r < s,
(r3) (r, —) =

∨
s>r(s, —),

(r4) (—, r) =
∨

s<r(—, s),
(r5)

∨
r∈Q(r, —) = 1,

(r6)
∨

r∈Q(—, r) = 1.

With (p, q) = (p, —) ∧ (—, q) one goes back to (R1)-(R4).

So, we have the frame of reals

L(R) = 〈{(r, —), (—, r) : r ∈ Q, (r, —), (—, r) satisfy (r1)—(r6) for all r ∈ Q}〉 ,
and its two subframes:

Lu(R) = 〈{(r, —) : r ∈ Q, (r, —) satisfy (r3) and (r5) for all r ∈ Q}〉 ,
Ll(R) = 〈{(—, r) : r ∈ Q, (—, r) satisfy (r4) and (r6) for all r ∈ Q}〉 .

These subframes may be called, respectively, the frame of upper reals and
the frame of lower reals. When dropping (r5) and (r6), we get the extended
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variants of frames just introduced, viz.:

L(R) = 〈{(r, —), (—, r) : r ∈ Q, (r, —), (—, r) satisfy (r1)-(r4) for all r ∈ Q}〉 ,
Lu(R) = 〈{(r, —) : r ∈ Q, (r, —) satisfy (r3) for all r ∈ Q}〉 ,
Ll(R) = 〈{(—, r) : r ∈ Q, (—, r) satisfy (r4) for all r ∈ Q}〉 .
Members of

lsc(L) = Frm(Lu(R), L),

usc(L) = Frm(Ll(R), L),

c(L) = Frm(L(R), L)

are called extended, respectively, lower semicontinuous, upper semicontinu-
ous, and continuous real functions on L, while members of

lsc(L) = {f ∈ Frm(Lu(R), L) :
∨

r∈Q
o(f(r, —)) = 1},

usc(L) = {f ∈ Frm(Ll(R), L) :
∨

r∈Q
o(f(—, r)) = 1},

c(L) = Frm(L(R), L)

are called lower semicontinuous, upper semicontinuous, and continuous real
functions on L [14].

Remark. The extra conditions in the definitions of lsc(L) and usc(L) come
from [14], to which we refer for their role. The latter has been then exhibited
in [9, 10, 11]. Their role will also be seen in this paper (cf. the proof of (4) of
Proposition 6.1). Comparing with [14], we recall that, in this paper, we make
the co-frame of sublocales into the frame S(L) by reversing the ordering.

Partial orderings. (1) The set lsc(L) is partially ordered by

f1 ≤ f2 ⇔ f1(r, —) ≤ f2(r, —) for all r ∈ Q.

Under this ordering, lsc(L) is closed under finite meets and arbitrary nonempty
joins:

(f1 ∧ f2)(r, —) = f1(r, —) ∧ f2(r, —),

(
∨F) (r, —) =

∨
f∈F

f(r, —),

where ∅ 6= F ⊆ lsc(L). The constant map with value 1 is the top, while
there is no bottom in lsc(L).
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(2) The set usc(L) is partially ordered by the reverse pointwise ordering:

f1 ≤ f2 ⇔ f2(—, r) ≤ f1(—, r) for all r ∈ Q,

under which it is closed with respect to finite joins and arbitrary nonempty
meets:

(f1 ∨ f2)(—, q) = f1(—, q) ∧ f2(—, q),

(
∧F) (—, r) =

∨
f∈F

f(—, r),

where ∅ 6= F ⊆ usc(L). The constant map with value 1 is the bottom
element, while there is no top element in usc(L).

(3) The set c(L) is partially ordered by

f1 ≤ f2 ⇔ f1|Lu(R) ≤ f2|Lu(R) ⇔ f2|Ll(R) ≤ f1|Ll(R).

Remark. There is an order-isomorphism −(·) : lsc(L) → usc(L) defined by

(−f)(—, r) = f(−r, —) for all r ∈ Q.

When restricted to lsc(L) it becomes an isomorphism from lsc(L) onto usc(L).
Its inverse, denoted by the same symbol, maps a g ∈ usc(L) into −g ∈ lsc(L)
defined by (−g)(r, —) = g(—,−r) for all r ∈ Q, etc.

4. Generating frame homomorphisms by scales

A way of generating continuous real functions on frames by the so called
scales has been described in detail in [2] with L(R) being generated by pairs
of rationals satisfying the relations (R1) − (R4) (cf. also [15, p. 127]). In
what follows we decompose the investigations of [2] into two pieces so as to
have ways of generating all the types of real functions on frames by means
of scales. In what follows p, q, r, s stand for rationals.

Definition 4.1. A family C = {cr : r ∈ Q} ⊆ L is called an extended scale
in L if

cr ∨ c∗s = 1 whenever r < s.

An extended scale is called a scale if
∨

r∈Q
cr = 1 =

∨
r∈Q

c∗r.
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Remark 4.2. An extended scale C = {cr : r ∈ Q} is necessarily an antitone
family. Furthermore, if C consists of complemented elements, then C is an
extended scale if and only if it is antitone. Indeed, if C is antitone and each
cr is complemented, then cr ∨ c∗s ≥ cr ∨ c∗r = 1 whenever r < s.

Lemma 4.3. Let C = {cr : r ∈ Q} be an extended scale in L and let

f(r, —) =
∨
s>r

cs and f(—, r) =
∨
s<r

c∗s

for all r ∈ Q. Then the following assertions hold:

(1) The above two formulas determine an f ∈ c(L).
(2) If C is a scale, then f ∈ c(L).

Proof : (1) We must check that f turns conditions (r1)-(r4) into identities in
L. To show (r1), let q ≤ p. Then f(p, —) ∧ f(—, q) ≤ cp ∧ c∗q ≤ cp ∧ c∗p = 0.
As for (r2), if p < r < s < q, then f(p, —) ∨ f(—, q) ≥ cr ∨ c∗s = 1 by the
definition of an extended scale. To show (r3), we have

∨
r>p

f(r, —) =
∨
r>p

∨
s>r

cs =
∨
s>p

cs = f(p, —).

Condition (r4) holds since
∨
s<q

f(—, s) =
∨
s<q

∨
r<s

c∗r =
∨
r<q

c∗r = f(—, q).

(2) Now we check (r5)-(r6) for C being a scale. As for (r5), we have
∨
r

f(r, —) =
∨
r

∨
s>r

cs = 1.

To have (r6), we observe that
∨

r f(—, r) =
∨

r

∨
s<r c∗s = 1. We have shown

that f ∈ c(L).

Lemma 4.4. Let f, g ∈ c(L) be generated by the extended scales {cr : r ∈ Q}
and {dr : r ∈ Q}, respectively. Then:

(1) f(r, —) ≤ cr ≤ f(—, r)∗ for all r ∈ Q,
(2) f ≤ g if and only if cr ≤ ds whenever r > s in Q.

Proof : (1) We have

f(r, —) =
∨
s>r

cs ≤ cr ≤ c∗∗r ≤ ∧
s<r

c∗∗s = (
∨
s<r

c∗s)
∗ = f(—, r)∗.

(2) First notice that if r > s, then

f(—, r)∗ = f(—, r)∗ ∧ (f(s, —) ∨ f(—, r)) = f(—, r)∗ ∧ f(s, —).
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So, if f ≤ g, then cr ≤ f(—, r)∗ ≤ f(s, —) ≤ g(s, —) ≤ ds.
For the reverse implication, let q > r > s. Since d∗s ≤ c∗r, we have

d∗s ≤
∨
r<q

c∗r = f(—, q).

So, g(—, q) =
∨

s<q d∗r ≤ f(—, q), i.e. f ≤ g.

Even if we know that c(a)∗ = o(a), we keep at the notation in terms of c
in order to be in tune with Definition 4.1.

Lemma 4.5. Let {dr : r ∈ Q} ⊆ L be antitone. Then:

(1) {c(dr) : r ∈ Q} is an extended scale in S(L),
(2) If

∨
r∈Q dr = 1 and

∨
r∈Q c(dr)∗ = 1, then {c(dr) : r ∈ Q} is a scale in

S(L).

Proof : (1) follows immediately by Remark 4.2. One detail for (2) is that∨
r c(dr) = c(

∨
r dr) = c(1) = 1.

5. Localic real functions

In general topology one sometimes sees the phrase:

Let X be a topological space and let f be an arbitrary not nec-
essarily continuous real-valued function on X.

In this section this will become possible in the pointfree setting.

Notation 5.1. We let
F(L) = Frm(L(R),S(L)) = c(S(L)),
F(L) = Frm(L(R),S(L)) = c(S(L)).

Definition 5.2. An F ∈ F(L) will be called an arbitrary real function on L.
We shall say that F is:

(1) lower semicontinuous if F (r, —) is a closed sublocale for all r, i.e.
F (Lu(R)) ⊆ c(L).

(2) upper semicontinuous if F (—, r) is a closed sublocale for all r , i.e.
F (Ll(R)) ⊆ c(L).

(3) continuous if F (p, q) is a closed sublocale for all p, q, i.e. F (L(R)) ⊆
c(L).
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Notation 5.3. We denote by

LSC(L), USC(L) and C(L)

the collections of all lower semicontinuous, upper semicontinuous, and contin-
uous members of F (L). If we replace Lu(R), Ll(R), and L(R) by Lu(R), Ll(R),
and L(R) in, respectively, (1), (2), and (3) above, we get the collections

LSC(L), USC(L), and C(L)

of all extended lower semicontinuous, upper semicontinuous, and continuous
members of F(L). Of course, one has

C(L) = LSC(L) ∩ USC(L) and C(L) = LSC(L) ∩ USC(L).

All the above collections of morphisms are partially ordered according to
the definition of partial orderings in lsc(L), usc(L), and c(L) where L is
replaced by S(L). Thus, given F,G ∈ F(L), one has

F ≤ G ⇔ F (r, —) ≤ G(r, —) for all r ∈ Q
⇔ G(—, r) ≤ F (—, r) for all r ∈ Q.

Remark 5.4. In addition to the discussion in the introductory section, we
note that there also is a way of interpreting the above definitions from a
bitopological point of view. Indeed, as explained in [14], lsc(L) corresponds
bijectively to the biframe maps (L(R), Ll(R), Lu(R)) → (S(L), oL, cL) and,
dually, for usc(L). Therefore

lsc(L) ' BiFrm ((L(R), Ll(R), Lu(R)), (S(L), oL, cL)
⊆ BiFrm ((L(R), Ll(R), Lu(R)), (S(L),S(L),S(L))
' Frm(L(R),S(L)) = F(L)

and, dually,

usc(L) ' BiFrm ((L(R), Ll(R), Lu(R)), (S(L), c(L), oL)
⊆ BiFrm ((L(R), Ll(R), Lu(R)), (S(L),S(L),S(L))
' Frm(L(R),S(L)) = F(L).

Given a complemented sublocale S of L, we define the characteristic map
χS : L(R) → S(L) by

χS(r, —) =





1 if r < 0,

S∗ if 0 ≤ r < 1,

0 if r ≥ 1,

and χS(—, r) =





0 if r ≤ 0,

S if 0 < r ≤ 1,

1 if r > 1,
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for each r ∈ Q. Then, as in the classical context, we have:

(1) χS ∈ LSC(L) if and only if S is open,
(2) χS ∈ USC(L) if and only if S is closed,
(3) χS ∈ C(L) if and only if S is clopen.

6. Embedding of lsc(L) and usc(L) into F(L)

In this section, we consider order-embeddings of lsc(L), usc(L), and c(L)
into F(L). We begin with lower semicontinuity. Let f ∈ lsc(L). Then
{f(r, —) : r ∈ Q} is an antitone family and {c(f(r, —)) : r ∈ Q} is then an
extended scale in S(L) (cf. Remark 4.2). Thus, using Lemma 4.3, we can
define

Ψl : lsc(L) → LSC(L)

by the following two formulas:

Ψl(f)(r, —) =
∨
s>r

c(f(s, —)) and Ψl(f)(—, r) =
∨
s<r

c(f(s, —))∗.

We observe that Ψl(f)(r, —) = c(f(r, —)) ∈ c(L), so that Ψl(f) ∈ LSC(L)
indeed.

Dually, we define
Ψu : usc(L) → USC(L)

by
Ψu(f) = −Ψl(−f).

An easy calculation shows that

Ψu(f)(r, —) =
∨
s>r

c(f(—, s))∗ and Ψu(f)(—, r) =
∨
s<r

c(f(—, s)).

Since Ψu(f)(—, r) = c(f(—, r)) ∈ c(L), we indeed have Ψu(f) ∈ USC(L).
Observe that {c(f(—, r))∗ : r ∈ Q} is an extended scale and that, thus,

Ψu(f) is being generated by it (cf. Lemma 4.3 and note that c(f(−, r))∗∗ =
c(f(−, r))).

Finally, using Ψl and Ψu, we define

Ψ : c(L) → C(L)

by
Ψ(f)(p, q) = Ψl(f)(p, —) ∧Ψu(f)(—, q).
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Proposition 6.1. The following assertions hold:

(1) Ψl : lsc(L) → LSC(L) is a lattice isomorphism preserving arbitrary
nonempty joins.

(2) Ψu : usc(L) → USC(L) is a lattice isomorphism preserving arbitrary
nonempty meets.

(3) Ψ : c(L) → C(L) is a lattice isomorphism.
(4) The restrictions Ψl|lsc(L), Ψu|lsc(L), and Ψ|c(L) take values in LSC(L),

USC(L) and C(L), respectively, and have the corresponding properties.

Proof : To show (1), we first notice that Ψl is a bijection. Injectivity: if
Ψl(f) = Ψl(g), then c(f(r, —)) = c(g(r, —)) for all r ∈ Q, hence f(r, —) =
g(r, —), so that f = g. Surjectivity: for any F ∈ LSC(L), we have Ψl(f) = F
with f(r, —) =

∧
F (r, —) (i.e. f = c−1 ◦ F where c : L → c(L) is the frame

isomorphism sending a to c(a)). Also, we have

Ψl(f ∧ g)(r, —) = c((f ∧ g)(r, —))

= c(f(r, —) ∧ g(r, —))

= c(f(r, —)) ∧ c(g(r, —))

= Ψl(f)(r, —) ∧Ψl(g)(r, —)

and

Ψl(
∨F)(r, —) = c((

∨F)(r, —)) =
∨

f∈F
c(f(r, —)) =

∨
f∈F

Ψl(f)(r, —).

Assertion (2) follows from (1), while combining (1) and (2) yields (3). Now,
we move to the restriction Ψl|lsc(L). Assume f ∈ lsc(L). Then

∨
r∈Q

Ψl(f)(r, —) =
∨

r∈Q
c(f(r, —)) = c(1) = 1

and ∨
r∈Q

Ψl(f)(—, r) =
∨

r∈Q

∨
s<r

c(f(s, —))∗ =
∨

r∈Q
o(f(r, —)) = 1

(the latter equality is just the extra condition defining lower semicontinuity).
Thus Ψl(f) ∈ LSC(L). The remaining cases follow from what has just been
proved.

Due to the fact, that members of lsc(L) and usc(L) have different domains,
they have so far been compared in terms of the relations of minorization and
majorization. We shall now show that after embedding lsc(L) and usc(L) into
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F(L) those two relations become superfluous. We first recall that if f ∈ lsc(L)
and g ∈ usc(L), then one says that f minorizes g (written: f C g) iff

f(r, —) ∧ g(—, s) = 0 for all r > s in Q.

Clearly, f C g if and only if f(r, —) ≤ g(—, r)∗ for all r ∈ Q. Further, one
says that f majorizes g (written: f I g) iff

f(r, —) ∨ g(—, s) = 1 for all r < s in Q.

Proposition 6.2. Let f ∈ lsc(L) and g ∈ usc(L). Then the following hold:

(1) f C g if and only if Ψl(f) ≤ Ψu(g).
(2) f I g if and only if Ψl(f) ≥ Ψu(g).

Proof : (1) Recall that Ψl(f) and Ψu(g) are generated by the extended scales
{c(f(r, —) : r ∈ Q} and {c(g(—, r))∗ : r ∈ Q}. By the definition of C and
Lemma 2.2(1) we have f C g if and only if c(f(s, —)) ≤ c(g(—, r))∗ whenever
r > s, which on account of Lemma 4.4(2) is equivalent to the statement that
Ψl(f) ≤ Ψu(g).

(2) A similar argument applies except that the appeal to (1) of Lemma 2.2
is replaced by an application of Lemma 2.2(2).

We close this section by providing relations that hold between the charac-
teristic functions la ∈ lsc(L) and ua ∈ usc(L), a ∈ L, defined as follows:

la(r, —) =





1 if r < 0,

a if 0 ≤ r < 1,

0 if r ≥ 1,

and ua(—, r) =





0 if r ≤ 0,

a if 0 < r ≤ 1,

1 if r > 1.

Properties 6.3. For each a ∈ L we have:

Ψl(la) = χo(a) and Ψu(ua) = χc(a).
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7. Semicontinuous regularizations of localic real func-
tions

We first recall from general topology that, given a topological space X and
an arbitrary not necessarily continuous function f : X → R one defines its
lower and upper regularizations (also called lower and upper limit functions,
respectively) as follows:

f∗(x) =
∨

U∈Ux

∧
f(U) and f ∗(x) =

∧
U∈Ux

∨
f(U)

for all x ∈ X where Ux is the system of all open neighbourhoods of x. Clearly,
f ∗ = −(−f)∗ and both f∗ and f ∗ may take values in R (see [1, 5, 21], as well as
[12] and [13] for the lattice-valued and the domain-valued cases, respectively).

In [10], the authors made some effort to define the corresponding concepts
in the context of frame real functions but with serious limitations. Now, in
our much wider framework we can overcome all those obstacles and have a
nice theory being quite analogous to the classical one. We have choosen to
use F ◦ and F− to denote the lower and upper regularizations of F rather
than the standard notation F∗ and F ∗. This is to avoid confusion with the
well established notation for morphisms in pointfree topology (cf. [15, p.
40]). As a matter of fact, our notation is even better than the standard one,
for it emphasises the analogy between lower and upper regularizations and
interior and closure operators (cf. Propositions 7.3 and 7.4 below as well as
Properties 7.10).

We begin with the following which is actually a repetition of Lemma 4.5
in the context of antitone subfamilies of S(L).

Lemma 7.1. Let {Sr : r ∈ Q} ⊆ S(L) be an antitone family. Then the
following assertions hold:

(1) {Sr : r ∈ Q} is an extended scale in S(L).
(2) If

∨
r∈Q Sr = 1 =

∨
r∈Q

(
Sr

)∗
, then it is a scale in S(L).

In particular, if F ∈ F(L), then the assignment r 7−→ F (r, —) is antitone
and we, thus, have an extended scale {F (r, —) : r ∈ Q}. Moreover, when
F ∈ F(L), then

∨
r∈Q

(
F (r, —)

)∗ ≥ ∨
r∈Q

F (r, —)∗ ≥ ∨
r∈Q

F (—, r) = 1.
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To motivate our concepts of lower and upper regularizations of an arbi-
trary localic real function, we recall from [12, Proposition 5.3] (also see [13,
Proposition 4.8]), that if f : X → R is an arbitrary function (where X is a
topological space) which is generated by an antitone family {Fr : r ∈ Q},
that is: f(x) = sup{r ∈ Q : x ∈ Fr}, then the lower (resp., upper) regu-
larization f∗ (resp., f ∗) of f is generated by the family {Fr : r ∈ Q} (resp.,
{Fr

◦ : r ∈ Q}). We now state the following:

Definition 7.2. The lower regularization F ◦ of F ∈ F(L) is defined by:

F ◦(r, —) =
∨
s>r

F (s, —) and F ◦(—, r) =
∨
s<r

(
F (s, —)

)∗
.

Dually, the upper regularization F− of F is defined by:

F− = −(−F )◦.

An easy calculation gives:

F−(r, —) =
∨
s>r

(
F (—, s)

)∗
and F−(—, r) =

∨
s<r

F (—, s).

The following proposition shows that (·)◦ : F(L) → LSC(L) is actually
an interior-like operator. In fact, the properties stated there resemble the
properties of the classical interior operator.

Proposition 7.3. The following hold for all F,G ∈ F(L):

(1) >◦ = >, where >(—, r) = 0 for all r ∈ Q,
(2) F ◦ ≤ F ,
(3) F ◦◦ = F ◦,
(4) (F ∧G)◦ = F ◦ ∧G◦.

Proof : (1) We first notice that if s < r, >(s, —) ∨ >(—, r) = 1, so that
>(s, —) = 1 for all s. Thus, >◦(—, r) =

∨
s<r

(>(s, —)
)∗

= 1
∗

= 0 = >(—, r)
for all r.

(2) We have F ◦(r, —) =
∨

s>r F (s, —) ≤ ∨
s>r F (s, —) = F (r, —), hence F ◦ ≤

F .

(3) We only need to check that F ◦ ≤ F ◦◦. Given r > s we have

F (r, —) ≤ ∨
t>s

F (t, —) = F ◦(s, —),
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hence F (r, —) = F (r, —) ≤ F ◦(s, —). By recalling that {F (r, —) : r ∈ Q} and
{F ◦(r, —) : r ∈ Q} are scales that generate F ◦ and F ◦◦, respectively, we get
F ◦ ≤ F ◦◦ according to Lemma 4.4(2).

(4) Let us calculate

(F ◦ ∧G◦)(r, —) = F ◦(r, —) ∧G◦(r, —)

=
∨
s>r

F (s, —) ∧ ∨
s>r

G(s, —)

=
∨

s,t>r

(
F (s, —) ∧G(t, —)

)

=
∨

s,t>r
F (s, —) ∧G(t, —)

≤ ∨
s,t>r

F (s ∧ t, —) ∧G(s ∧ t, —)

=
∨
s>r

(F ∧G)(s, —)

= (F ∧G)◦(r, —),

while the reverse inequality is obvious.

As a corollary of Proposition 7.3 we have

LSC(L) = {F ∈ F(L) : F = F ◦}
and

F ◦ =
∨
{G ∈ LSC(L) : G ≤ F}.

For the sake of completeness we include the dual variant of Proposition
7.3 (showing that the operator (·)− : F(L) → USC(L) behaves like a closure
operator).

Proposition 7.4. The following hold for all F,G ∈ F(L):

(1) ⊥− = ⊥, where ⊥(r, —) = 1 for all r ∈ Q,
(2) F ≤ F−,
(3) F−− = F−,
(4) (F ∨G)− = F− ∨G−.

Also note that
USC(L) = {F ∈ F(L) : F = F−}
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and
F− =

∧
{G ∈ USC(L) : G ≤ F}.

Both (·)◦− and (·)−◦ are idempotent, i.e.

F ◦−◦− = F ◦− and F−◦−◦ = F−◦.

Now we are going to discuss the connections between the lower and upper
regularizations in the sense of [10] with those introduced above. Given g ∈
usc(L), we put ↓lsc (g) = {f ∈ lsc(L) : f C g}, and let

usc◦(L) = {g ∈ usc(L) :↓ lsc (g) 6= ∅},
lsc−(L) = {f ∈ lsc(L) : −f ∈ usc◦(L)}.

For each g, −f ∈ usc−(L), we define

g◦ =
∨

(↓lsc (g)) and f− = −(−f)◦.

Proposition 7.5. The following hold :

(1) Ψl(g◦) = Ψu(g)◦ for all g ∈ usc◦(L),
(2) Ψu(f−) = Ψl(f)− for all f ∈ lsc−(L).

Proof : To show (1), let g ∈ usc◦(L). By Propositions 6.1(1) and 6.2:

Ψl(g
◦) = Ψl(

∨
lsc(L)3hCg

h) =
∨

Ψl(h)≤Ψu(g)
Ψl(h) = Ψu(g)◦.

As always, (2) follows from (1) by duality.

Remark 7.6. In [10, Proposition 4.3] it is shown that, given g, −f ∈ usc◦(L),
one has:

g◦(r, —) =
∨
s>r

g(—, s)∗ and f−(—, r) =
∨
s<r

f(s, —)∗.

The above formulas make sense for arbitrary g, −f ∈ usc(L) and Proposition
7.5 continues to hold in this more general setting.

Proposition 7.7. The following hold:

(1) Ψl(g◦) = Ψu(g)◦ for all g ∈ usc(L),
(2) Ψu(f−) = Ψl(f)− for all f ∈ lsc(L).
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Proof : To prove (1), we first observe that g(—, s)∗∧ g(—, s) = 0, which yields
c(g(—, s)∗) ≤ c(g(—, s))∗. Thus,

c(g◦(r, —)) = c(
∨
s>r

g(—, s)∗) =
∨
s>r

c(g(—, s)∗) ≤ ∨
s>r

c(g(—, s))∗.

Since c(g◦(r, —)) is closed, we get

c(g◦(r, —)) ≤ ∨
s>r

c(g(—, s))∗ = Ψu(g)(r, —).

The above inequality for scales gives

Ψl(g
◦) ≤ Ψu(g)◦.

To get the reverse inequality we shall show that Ψu(g)(r1, —) ≤ c(g◦(r2, —))
whenever r1 > r2 (cf. Lemma 4.4). We have

Ψu(g)(r1, —) =
∨

s>r1

c(g(—, s))∗

≤ c(g(—, r1))∗

= c(g(—, r1)
∗)

≤ ∨
s>r2

c(g(—, s)∗)

= c(
∨

s>r2

g(—, s)∗)

= c(g◦(r2, —)).

To have (2), given f ∈ lsc(L), put g = −f ∈ usc(L) into (1).

Proposition 7.8. Let F ∈ F(L). The following hold:

(1) If
∨

r∈Q F (r, —) = 1, then F ◦ ∈ LSC(L),

(2) If
∨

r∈Q F (—, r) = 1, then F− ∈ USC(L).

Proof : We only prove (1), because (2) follows from (1) by the duality. So, we
check that the conditions (r5) and (r6) hold for the extended scale {F (r, —) :
r ∈ Q}. For (r5) we have

∨
r∈Q

F ◦(r, —) =
∨

r∈Q

∨
r>s

F (s, —) =
∨

r∈Q
F (r, —) = 1,
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while for (r6):
∨

r∈Q
F ◦(—, r) =

∨
r∈Q

∨
r<s

(
F (s, —)

)∗

=
∨

r∈Q

(
F (r, —)

)∗

≥ ∨
r∈Q

F (r, —)∗

≥ ∨
r∈Q

F (—, r) = 1.

We also note the following:

Corollary 7.9. Let f, −g ∈ lsc(L). Then:

(1) f− ∈ usc(L) if and only if Ψl(f)− ∈ USC(L),
(2) g◦ ∈ lsc(L) if and only if Ψu(g)◦ ∈ LSC(L).

Proof : To show (1), let f− ∈ usc(L). Then Ψl(f)− = Ψu(f−) ∈ USC(L) by
Proposition 6.1(3). The reverse implication follows similarly, while (2) is a
consequence of (1) when applied to −g.

Properties 7.10. For each complemented sublocale S of L the following
hold:

(χS)− = χS and (χS)◦ = χS◦.

In particular,

(χc(a))
− = χc(a), (χo(a))

− = χc(a∗), (χo(a))
◦ = χo(a) and (χc(a))

◦ = χo(a∗)

for every a ∈ L.

8. Appendix: some insertion and extension theorems re-
visited

We close with a brief illustration of how the framework introduced here
provides nice formulations of the known important insertion and extension
theorems on semicontinuous real functions [9, 10, 11]. Up to now (cf. In-
troduction), lower and upper semicontinuous real functions had different do-
mains. With certain abuse of notation (related to the symbol ≤), we had,
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for instance, written f ≤ h ≤ g to denote the situation in which f ∈ lsc(L),
g ∈ usc(L), and h ∈ c(L) were such that f J g, f ≤ h|Ll(R), and h|Lu(R) ≤ g
(cf. [11]). Now, with F , G, and H being the images of f , g, and h under the
embeddings Ψl, Ψu, and Ψ, respectively, we just have F ≤ H ≤ G where all
the three morphisms act on the same domain L(R) and take values in the
frame S(L) and ≤ denotes the partial order in F(L) = Frm(L(R),S(L)).
The proofs of all the theorems which follow remain the same.

We start with the pointfree version of the Katětov-Tong insertion theorem
which (after [17]) was the initial motivation for our research programme
started with [18] and [14]. We first need to recall some terminology.

Let

DL = {(a, b) ∈ L× L : a ∨ b = 1}.

Then L is called normal if there exists a function ∆ : DL → L such that
a ∨∆(a, b) = 1 = b ∨∆(a, b)∗ for all (a, b) ∈ DL. The operator ∆ is called a
normality operator.

Theorem 8.1. A frame L is normal if and only if, given an upper semicon-
tinuous G : L(R) → S(L) and a lower semicontinuous F : L(R) → S(L) with
G ≤ F , there exists a continuous H : L(R) → S(L) such that G ≤ H ≤ F .

Let a, b ∈ L with a ∨ b = 1. Then o(b) ≤ c(a). Therefore, χc(a) ≤ χo(b).
Applying Theorem 8.1, there exists a continuous H : L(R) → S(L) such that
χc(a) ≤ H ≤ χo(b). Hence (cf. [16]):

Corollary 8.2. A frame L is normal if and only if for every a, b ∈ L sat-
isfying a ∨ b = 1, there exists a continuous H : L(R) → S(L) such that
χc(a) ≤ H ≤ χo(b).

The existence of a continuous H : L(R) → S(L) such that χc(a) ≤ H ≤ χo(b)

means that there exists h : L(R) → L such that h((—, 0) ∨ (1, —)) = 0,
h(0, —) ≤ a and h(—, 1) ≤ b. Thus, the corollary above is precisely Urysohn’s
Lemma for frames [6] (cf. [2, Prop. 5]).

Let S be a sublocale of L and let cS : L → S with cS(x) =
∧{s ∈ S : x ≤ s}

be the corresponding frame quotient. We recall that an f ∈ c(S) has a
continuous extension to L if there exists an f̃ ∈ c(L) such that the following
diagram commutes



24 J. GUTIÉRREZ GARCÍA, T. KUBIAK AND J. PICADO

?
-´

´
´

´
´

´
3́

SL(R)

L

f

f̃ cS

i.e. cS ◦ f̃ = f . Recall (see [19, Proposition 2.4]) that cS ⊆ cL. On the other
hand, the frame quotient cS induces another frame quotient ccS : cL → cS
making the following diagram commutative

? ?

6 6

-

-

cScL

L S

ccS

cS

cc

i.e. ccS(c(a)) = c(cS(a)) for all a ∈ L.
We now say that F ∈ C(S) has a continuous extension to L if there exists

an F̃ ∈ C(L) such that the following diagram commutes

?
-´

´
´

´
´

´
3́

cSL(R)

cL

F

F̃ ccS

i.e. ccS ◦ F̃ = F . The next result provides the link between the old and the
new approach to the extension problem.

Proposition 8.3. Let S be a sublocale of L. Then f ∈ c(S) has a continuous
extension to L if and only if c ◦ f has a continuous extension to L.

Proof : Let f ∈ c(S) and f ∈ c(L) be such that cS ◦f = f . Then c◦f ∈ C(L)
and

ccS ◦ c ◦ f = c ◦ cS ◦ f = c ◦ f.

Conversely, let f ∈ c(S) and F ∈ C(L) be such that ccS ◦ F = c ◦ f . Then
c−1 ◦ F ∈ c(L) and

cS ◦ c−1 ◦ F = c−1 ◦ ccS ◦ F = c−1 ◦ c ◦ f = f.
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The pointfree variant of Tietze extension theorem can now be stated as
follows:

Theorem 8.4. A frame L is normal if and only if for every closed sublocale
S of L, each continuous F : L(R) → S(S) has a continuous extension F̃ :
L(R) → S(L) such that ccS ◦ F̃ = F .

We now move to insertion and extension theorems for monotonically normal
frames. Equip DL = {(a, b) ∈ L × L : a ∨ b = 1} with the componentwise
order inherited from Lop×L. Then L is called monotonically normal if there
exists a monotone normality operator. Further, the set

UL(L) = {(G,F ) ∈ USC(L)× LSC(L) : G ≤ F}
carries the componentwise order induced from F(L)op×F(L). The following
comes from [9, Theorem 5.4]. Even if the statements look similarly, this is a
good place to repeat again how advantageous is the approach of considering
S(L)-valued morphisms. The reader should consult [9] to see how much effort
is saved by moving from usc(L)× lsc(L) to USC(L)× LSC(L).

Theorem 8.5. A frame L is monotonically normal if and only if there exists
a monotone function Λ : UL(L) → C(L) such that G ≤ Λ(G,F ) ≤ F for all
(G,F ) ∈ UL(L).

Given a sublocale S of L, a function Φ : C(S) → C(L) is called an extender
if Φ(F ) extends F for all F ∈ C(S). Let S be a closed sublocale of L and
F ∈ C(S). We define F l ∈ LSC(L) and F u ∈ USC(L) as follows:

F l(r, —) =





1 if r < 0,

F (r, —) if 0 ≤ r < 1,

0 if r ≥ 1,

F l(—, r) =





0 if r ≤ 0,∨
s<r F (s, —)∗ if 0 < r ≤ 1,

1 if r > 1,

F u(r, —) =





1 if r < 0,∨
s>r F (—, s)∗ if 0 ≤ r < 1,

0 if r ≥ 1,
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F u(—, r) =





0 if r ≤ 0,

F (—, r) if 0 < r ≤ 1,

1 if r > 1.

It is easy to check that F u ≤ F l, i.e. (F u, F l) ∈ UL(L). The following
is the reformulation of an extension theorem of [9, Theorem 6.4] in our new
setting:

Theorem 8.6. For L a frame the following are equivalent:

(1) L is monotonically normal.
(2) For each closed sublocale S of L there exists an extender Φ : C(S) →

C(L) such that for every closed sublocales S1 and S2 of L and Fi ∈
C(Si) (i = 1, 2) with (F u

1 , F l
1) ≤ (F u

2 , F l
2) one has Φ(F1) ≤ Φ(F2).

Recall that a frame L is called extremally disconnected if a∗ ∨ a∗∗ = 1 for
all a ∈ L. We have the following (cf. [10]):

Theorem 8.7. For L a frame the following are equivalent:

(1) L is extremally disconnected.
(2) Given lower semicontinuous F : L(R) → S(L) and upper semicon-

tinuous G : L(R) → S(L) with F ≤ G, there exists a continuous
H : L(R) → S(L) such that F ≤ H ≤ G.

(3) For every open sublocale S of L, each continuous F : L(R) → S(S)
has a continuous extension F̃ : L(R) → S(L) such that ccS ◦ F̃ = F .

Let F ∈ F(L). We write F ≥ 0 if F (—, 0) = 0. Similarly, F ≤ 1 means
that F (1, —) = 0. Also, we write F > 0 whenever F (0, —) = 1. The following
two results come from [11]. We recall that a frame L is perfectly normal if
for each a ∈ L there is a countable subset B ⊆ L such that a =

∨
B and

a ∨ b∗ = 1 for all b ∈ B.

Theorem 8.8. For L a frame the following are equivalent:

(1) L is perfectly normal.
(2) L is normal and for each lower semicontinuous F : L(R) → S(L)

with 0 ≤ F ≤ 1 there exists a continuous H : L(R) → S(L) such that
0 < H ≤ F and H(0, —) = F (0, —).
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(3) For every closed sublocale S of L, each continuous F : L(R) → S(S)
with 0 ≤ F ≤ 1 has a continuous extension F̃ ∈ C(L) such that
F̃ (0, 1) ≥ S.

Finally, recall that a frame L is countably paracompact [7] if for every subset
{an : n ∈ N} ⊆ L with

∨
n an = 1 there exists a subset {bn : n ∈ N} ⊆ L

such that
∨

n bn = 1 and an∨ b∗n = 1 for all n. As the last example we restate
from [11] the following:

Theorem 8.9. For a normal frame L, the following are equivalent:

(1) L is countably paracompact.
(2) For each lower semicontinuous F : L(R) → S(L) satisfying 0 < F ≤ 1

there exists a continuous H : L(R) → S(L) such that 0 < H < F .
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