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COVARIANT DIFFERENTIATION UNDER ROLLING MAPS

FÁTIMA SILVA LEITE AND KRZYSZTOF ANDRZEJ KRAKOWSKI

Abstract: We study properties of covariant derivatives of vector fields along curves
on Riemannian manifolds mapped by rolling the manifolds without slip or twist. A
natural definition of Riemannian polynomials arises from these properties.

1. Introduction

By the Whitney’s Theorem [1] every Riemannian manifold can be embed-
ded in Euclidean space Rn, with large enough n. This paper studies two
manifolds embedded in the same Euclidean space, with one manifold rolling
on the other without slip or twist. The operation of rolling reveals geometric
properties of the embedded manifolds that have been successfully used in
deriving interpolating curves [3] and in optimal control problems [4]. Cases
of rolling symmetric spaces are studied in [3] and [2].

Here we assume the definition of a rolling map as in Sharpe [5] and derive
interesting properties of covariant derivatives of vector fields along rolling
curves. As a consequence, Riemannian polynomials are shown to be invariant
under the operation of rolling without twist or slip. This generalizes the well
known result that a rolling curve is a geodesic if and only if its development
is also a geodesic [5].

The paper is organized as follows. The definition of a rolling map, as in
Sharpe [5], appears in Section 2. Here we also unreveal some properties of
rolling without slip or twist and present the intuitive example of the unit
sphere rolling on a hyperplane. Main results related to covariant derivatives
are presented in Section 3. Section 4 concludes this note.

2. Rolling Manifolds

The operation of rolling manifolds is defined in [5] as an isometry in the
ambient Euclidean space. We shall confine ourselves with the case where the
rolling is an element of the Euclidean group, cf. [3].

Consider a manifold M1 rolling on a manifold M0, where both M1 and M0

are isometrically embedded in Rn, i.e., M1
ı
→֒ Rn with the pullback metric
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on M1 given by g
def
= ı∗ḡ, where ḡ is the standard Euclidean metric (and

similarly for M0). For the definition of rolling we consider one-parameter
families h : I → SE(n), where I ⊂ R is an interval of the real line and
h(t) : Rn → Rn is an action of the Euclidean group SE(n) = SO(n) ⋉ Rn

in the ambient space. The elements of SE(n) will be represented by pairs
(R, s), acting on points in Rn accordingly, i.e., (R, s) (p) = R p + s, with the
group operations

(R2, s2) ◦ (R1, s1)
def
= (R2R1, R2s1 + s2) and (R, s)−1 def

=
(

RT,−RTs
)

.

Definition 1. The map h : I → SE(n) is called a rolling of M1 on M0

without slip or twist if h satisfies the following properties:

rolling: there exists a piecewise smooth curve σ1 : I → M1 (called the
rolling curve) such that, for all t ∈ I,

(i) σ0(t)
def
= h(t)(σ1(t)) ∈ M0;

(ii) Th(t)(σ1(t)) (h(t)(M1)) = Th(t)(σ1(t))(M0).

The curve σ0 : I → M0 is called the development of σ1 on M0.

no-slip:
(

ḣ(t) h−1(t)
)

(σ0(t)) = 0, for all t ∈ I.

no-twist: a pair of conditions, for all t ∈ I,

(i) the tangential part
(

ḣ(t) h−1(t)
)

∗
(Tσ0(t)M0) ⊂

(

Tσ0(t)M0

)⊥
;

(ii) the normal part
(

ḣ(t) h−1(t)
)

∗
(Tσ0(t)M0)

⊥ ⊂ Tσ0(t)M0.

Remark 2. In the definition above, ḣ(t) h−1(t) is understood as a mapping

from R
n to R

n, mapping p to Ṙ(t) R−1(t) (p− s(t))+ ṡ(t), and
(

ḣ(t) h−1(t)
)

∗
is the corresponding push-forward mapping.

A straightforward calculation then shows that the no-slip condition has an
equivalent formulation as

Ṙ(t) R−1(t)(σ0(t) − s(t)) = −ṡ(t), (1)

and, similarly, the tangential and normal parts of the no-twist condition may
be rewritten, respectively, as

Ṙ(t) R−1(t)(Tσ0(t)M0) ⊂
(

Tσ0(t)M0

)⊥
; (2)
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Ṙ(t) R−1(t)(Tσ0(t)M0)
⊥ ⊂ Tσ0(t)M0. (3)

Remark 3. In physics, the term ”no-slip” is used in the context of rolling
surfaces as the property that both surfaces have the same velocity at the
point of contact. In our context, this translates as

σ̇0(t) = h(t)σ̇1(t).

Taking derivatives on both sides of the equality σ0(t) = h(t)(σ1(t)), it is easy
to conclude that

σ̇0(t) = h(t)σ̇1(t) ⇔
(

ḣ(t) h−1(t)
)

(σ0(t)) = 0,

which explains the name given to the last condition in the definition of rolling.

We end this section with two parcial results and an illustrative example,
the unit sphere Sn rolling on a hyperplane of Rn+1.

Lemma 4. If
(

Tσ0(t)M0

)⊥
is one dimensional, then the condition (ii) of the

no-twist is always satisfied.

Proof: Since R ∈ SO(n), A(t) = Ṙ(t) R−1(t) ∈ so(n), i.e., A(t) is skew-
symmetric. Consequently, 〈A(t)v, v〉 = 0, for any v in the normal subspace
(

Tσ0(t)M0

)⊥
. Hence A(t)v ∈ Tσ0(t)M0. Q.E.D.

Lemma 5. If h(t) = (R(t), s(t)) ∈ SE(n) satisfies h(t) p0 = p0, for some
p0 ∈ M1, and s(t) is orthogonal to p0, then s(t) = 0, R(t) p0 = p0, and,
consequently, h is not a rolling map.

Proof: Since h(t) fixes the point p0, we have

h(t) p0 = R(t) p0 + s(t) = p0, hence R(t) p0 = p0 − s(t).

Taking squares of both sides of the above equality and using the orthogonality
condition between s(t) and p0, it follows by the Pythagoras theorem that

‖p0‖
2 = ‖R(t) p0‖

2 = ‖p0 − s(t)‖2 = ‖p0‖
2 + ‖s(t)‖2

.

Consequently, s(t) = 0 and R(t) p0 = p0. Q.E.D.

Example 6 (the unit sphere). Consider the unit sphere Sn rolling on the
affine tangent space at a point p0 ∈ Sn, cf [3]. Now, M1 = Sn ⊂ Rn+1 and
M0 is defined as

M0 =
{

x ∈ R
n+1 : x = p0 + Ω p0 and Ω ∈ so(n + 1)

}

.
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Figure 1. Rolling the unit sphere

Let h = (R, s) be a rolling map satisfying h(0) = (I, 0) and σ1 the rolling
curve starting at point p0, i.e., σ1(0) = p0. (In Figure 1., α is the rolling
curve σ1 and αdev stands for its development σ0).

Rolling: Since h(t) sends the origin to 0+s(t), s(t) gives the coordinates
of the center of the sphere h(t)Sn which is tangent to M0 at the point
σ0(t) of the developed curve. This follows from condition ii) of rolling.
Consequently, σ0(t) = p0+s(t). If, in addition, we impose condition i)
of rolling, it follows that the rolling curve is given by σ1(t) = RT(t) p0.

No-slip: Also, since σ0(t) = p0 + s(t), the non-slip condition (1), for
the sphere, is equivalent to

Ṙ(t)RT(t) p0 = −ṡ(t). (4)

Note that A(t) = Ṙ(t)RT(t) ∈ so(n + 1).
It is convenient to change the basis with Q ∈ O(n + 1) such that

Q p0 = −en+1 (the south pole). Under this change of basis, the no-slip
condition A(t) p0 = −ṡ(t) is equivalent to Q A(t) QT en+1 = Q ṡ(t).
From here we can conclude that QA(t)QT has the following block
structure, for some n × n skew-symmetric matrix Ω.

Q A(t) QT =









Ω(t) Q ṡ(t)

−(Q ṡ(t))T 0









.
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No-twist: Since (Tσ0(t)M0)
⊥ is spanned by p0, Lemma 4 applies and the

normal part is satisfied. Now, we show that the tangencial part holds
only if the skew-symmetric matrix A(t) = Ṙ(t)RT(t) is given by

A(t) = p0 (ṡ(t))T − ṡ(t) (p0)
T.

Under the above change of basis, the tangencial part of the no-
twist condition implies that the diagonal blocks of Q A(t) QT are zero
and, consequently the rank two matrix Q A(t) QT can be written as
(Q ṡ(t)) eT

n+1 − en+1 (Q ṡ(t))T. So,

Q A QT = Q ṡ eT
n+1 − en+1 (Q ṡ)T

= Q ṡ eT
n+1 Q QT − Q QT en+1 ṡT QT

= −Q ṡ pT
0 QT + Q p0 ṡT QT

= Q (p0 ṡT − ṡ pT
0 ) QT.

This is in accordance with what can be found in the vast literature
about the rolling sphere.

3. Covariant Differentiation and Rolling

In this section we consider a manifold M1 rolling on a hyperplane M0 ≃
Rm, with m = n − 1.∗ Both M1 and M0 are isometrically embedded in Rn,

i.e., M1
ı
→֒ Rn with the pullback metric on M1 given by g

def
= ı∗ḡ, where

ḡ is the standard Euclidean metric. Because the embedding is isometric
the covariant derivative ∇ on M1 satisfies ∇XY = π⊤

(

∇XY
)

, where ∇ is

the standard Euclidean connection defined by ∇X

(

Y j∂j

) def
=

(

XY j
)

∂j and

π⊤ : TpR
n → TpM1 is the orthogonal projection. The development curve σ0

on M0 is the image under the rolling without slip or twist of the rolling curve
σ1 on M1, i.e.,

σ0 : I → M0 and σ1 : I → M1, where h(t)(σ1(t)) = σ0(t).

Let v1 : I → T M1 be a vector field along σ1, where v1(t) ∈ Tσ1(t)M1. Then
there exists a corresponding vector field v0 along σ0, given by

v0(t) = h∗(t)(v1(t)) = R(t)(v1(t)). (5)

∗Note that the roles of M1 and M0 in [5, Proposition 3.7] are reversed but the above follows the
convention in the definition of rolling.
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Differentiating (5) with respect to t yields

v̇0(t) = Ṙ(t)(v1(t)) + R(t)(v̇1(t)) = Ṙ(t)
(

R−1(t)(v0(t))
)

+ R(t)(v̇1(t)). (6)

Since M0 ≃ Rm, then the covariant derivative ∇
0

in M0 is simply the usual
derivative, i.e.,

∇
0
σ̇0(t)v0(t) = v̇0(t).

Remark 7. We recall that, since the ambient space Rn may be decomposed
as a direct sum of a vector subspace and its orthogonal complement, then
for any manifold M embedded in R

n and any point p ∈ M the following
decomposition holds

R
n = TpM ⊕ (TpM)⊥.

We have the following three results related to covariant derivatives on M0

and M1 along the curves σ0 and σ1 respectively.

Lemma 8. Let v1 : I → Tσ1(t)M1 be a vector field along σ1 : I → M1 and v0

be the corresponding vector field along the development curve σ0 : I → M0.
Then, the covariant derivative of v1 (along σ1) is given by

∇σ̇1(t)v1(t) = R−1(t)(v̇0(t)) ∈ Tσ1(t)M1. (7)

Proof: By (6) it follows that R(t)(v̇1(t)) uniquely decomposes into the sum
of two orthogonal vectors in the ambient space R

n

R(t)(v̇1(t)) = v̇0(t) − Ṙ(t)
(

R−1(t)(v0(t))
)

,

where v̇0(t) ∈ Tσ0(t)M0 and Ṙ(t)
(

R−1(t)(v0(t))
)

∈
(

Tσ0(t)M0

)⊥
. Applying the

push-forward of the inverse of h(t) to both sides of the last equality yields

h−1
∗ (t) (R(t)(v̇1(t))) = v̇1(t) = R−1(t) (v̇0(t))−R−1(t)

(

Ṙ(t)
(

R−1(t)(v0(t))
)

)

.

Since R preserves the metric ḡ of the ambient space and the metric g on M1

is induced by ḡ, orthogonality of vectors is also preserved by R. From the
“rolling” condition we have Tσ0(t)M0 = Th(t)(σ1(t))(h(t)M1). Therefore, the
above equality is the unique decomposition of v̇1(t) into the sum of the two
orthogonal vectors at σ1(t) in R

n, namely

R−1(t) (v̇0(t)) ∈ Tσ1(t)M1 and R−1(t)
(

Ṙ(t)
(

R−1(t)(v0(t))
)

)

∈
(

Tσ1(t)M1

)⊥
.

Finally, because ∇σ̇1(t)v1(t) = π⊤
σ1(t)

(v̇1(t)), the result follows. (The notation

π⊤
σ1(t)

stands for the orthogonal projection onto Tσ1(t)M1. Q.E.D.
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Theorem 9. Let v1 : I → Tσ1(t)M1 be a vector field along the rolling curve
σ1 : I → M1 and v0 be the corresponding vector field along the development
curve σ0 : I → M0. Then, for any k ≥ 1, the following holds:

∇k
σ̇1(t)

v1(t) = R−1(t)
(

v
(k)
0 (t)

)

∈ Tσ1(t)M1. (8)

Proof: Induction. When k = 1 the statement is true by Lemma 8. Suppose
that (8) holds for k. We prove the theorem by showing that (8) holds also
for k + 1.

∇k+1
σ̇1(t)

v1(t) = π⊤
σ1(t)

(

d

dt

(

∇k
σ̇1(t)

v1(t)
)

)

= π⊤
σ1(t)

(

d

dt

(

R−1(t)
(

v
(k)
0 (t)

))

)

= π⊤
σ1(t)

(

Ṙ−1(t)
(

v
(k)
0 (t)

)

+ R−1(t)
(

v
(k+1)
0 (t)

))

= π⊤
σ1(t)

(

−
(

R−1(t) Ṙ(t) R−1(t)
)(

v
(k)
0 (t)

)

+ R−1(t)
(

v
(k+1)
0 (t)

))

= R−1(t)
(

v
(k+1)
0 (t)

)

,

where we used the fact that R(t) ∈ SO(n) and
(

R−1(t) Ṙ(t) R−1(t)
)(

v
(k)
0 (t)

)

=
(

ḣ(t) h−1(t)
)

∗

(

v
(k)
0 (t)

)

∈
(

Tσ1(t)M1

)⊥
.

Q.E.D.

It is well known that σ0 is a geodesic in M0 if and only if σ1 is a geodesic in
M1 (see, for instance, [5]). As a consequence of the previous theorem we can
now compare polynomial curves in Euclidean spaces with their counterparts
on any manifold M , also generalizing what has already been done for some
particular manifolds in [3]. We first define Riemannian polynomials of degree
k on M as curves t 7→ σ(t) which satisfy

∇k
σ̇(t)σ̇(t) = 0.

Corollary 10. The developed curve σ0 is a polynomial of degree k in M0 if
and only if the rolling curve σ1 is a Riemannian polynomial of degree k in
M1.

Proof: This follows from the theorem if assuming that v1 is the velocity
vector field along σ1 and, consequently, v0 is the velocity vector field along
σ0. The identity in the theorem may now be written as

∇k
σ̇(t)σ̇(t) = R−1(t)

(

σ
(k+1)
0 (t)

)
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and the result is proved. Q.E.D.

4. Conclusion

The operation of rolling manifolds studied in [5] and [3] gives an insight
into geometric properties of the manifolds involved. In particular, we have
shown the relationship between covariant derivative along a curve in one
manifold and covariant derivative along the development curve in another
manifold. As a consequence, a natural definition of Riemannian polynomial
curves on manifolds arises. In this paper, we extend to general Riemannian
manifolds some of the results presented in [3] for the spheres, rotation groups
and Grassmann manifolds.
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