
Pré-Publicações do Departamento de Matemática
Universidade de Coimbra
Preprint Number 08–27

A NEW RANKING PATH ALGORITHM FOR THE
MULTI-OBJECTIVE SHORTEST PATH PROBLEM

JOSÉ MANUEL PAIXÃO AND JOSÉ LUIS SANTOS

Abstract: In this paper, we present a new algorithm for solving the multi-objective
shortest path problem (MSPP) which consists of finding all the non-dominated paths
between two nodes s and t (ND s-t paths), on a network where a multiple criteria
function is defined over the set of arcs. The main feature of the algorithm is that,
contrarily to the previous most efficient approaches for the MSPP, not all of the
ND sub-paths on the network need to be found. Additionally, the algorithm fully
exploits the fact that ND s-t paths are generated at a very early stage of the rank-
ing procedure. The computational experience reported in the paper shows that, for
large size general type networks, the new algorithm clearly outperforms the labelling
approach.

Keywords: Multiple objective programming, combinatorial optimization, shortest
path problem, ranking algorithm, labelling algorithm, non-dominated path.
AMS Subject Classification (2000): 90B10, 90C27, 90C29, 90C35.

1. Introduction

The multi-objective shortest path problem (MSPP) is a generalization of
the shortest path problem where a k-dimensional vectorial cost (k ≥ 2) is
assigned to each arc of a network denoted by G = (N ; A; c), where N =
{1, . . . , n} is the set of nodes (or vertices) and A ⊂ N ×N is the set of arcs.
Hence, in the case of the MSPP, one deals with k criteria and aims to find a
path linking one node s (source) to another node t (sink), with the minimum
value for all of the criteria. However, in general, such an ideal solution does
not exist and solving the MSPP turns out to finding non-dominated paths
from s to t, i.e. paths for which it is not possible to improve one criterion
without worsening another one.

The MSPP was first proposed by Vincke [23] and, later, Hansen [10] proved
that, in the worst case, the number of non-dominated paths may increase
exponentially with the number of nodes. Some researchers have tried to

Received June 11, 2008.
This work was supported in part by FCT through POCTI - Research Units

Pluriannual Funding to CMUC (Centro de Matemática da Universidade de Coim-

bra) and CIO (Operations Research Center of the University of Lisbon), and grant
POCTI/MAT/139/2001 cofunded by the EU program FEDER.

1



2 J.M. PAIXÃO AND J.L. SANTOS

overcome this obstacle by defining a mono-criterion function that involves
all of the criteria as is the case of the weighted sum method (Mote et al.,
[14]) or the min-max utility function (Murthy and Her, [15]). A different
approach is proposed by Cĺımaco et al., [4], where an interactive searching
procedure is presented in order to capture the decision maker preferences.

A natural method for determining the complete set of non-dominated paths
consists of generalizing the labelling procedure that has proved to be quite
efficient for the mono-criterion shortest path problem. In fact, several algo-
rithms have been presented in the literature following this approach (Hansen
[10], Vincke [23], Martins [11], Paixão and Santos [12]).

Let us recall that, for the mono-criterion case, the labelling method con-
sists of assigning a label to each node i of the network with the cost of the
incumbent best path from the source s to i (Ahuja et al., [1]). Each iter-
ation, the labels are updated accordingly to one of two techniques known
as, respectively, label correcting and label setting. The latter corresponds to
scanning the labels in such way that at least one label becomes permanent
and the algorithm stops when the node t gains a permanent label. This
means that the shortest path from s to t may be obtained without requiring
the computation of the shortest path from s to all the other vertices of the
network. However, that is no longer true when this technique is adopted for
the multi-criteria case. Actually, finding the full set of non-dominated paths
from s to t requires the determining of all non-dominated sets from to s to
each node of the network.

The labelling algorithm was generalised for the MSPP by Hansen [10] (bi-
objective label correcting version), Vincke [23] (bi-objective label setting ver-
sion) and Martins [11] (label setting version for more than 2 criteria). Briefly,
the procedure assigns the zero label to the initial node and, iteratively, ex-
pands the search tree from all the outgoing arcs associated with a specific
label. This label is selected by following a pre-defined label/node policy and
accordingly to the adopted label correcting/setting version. As the number
of non-dominated paths is unknown beforehand, the algorithm stops when
the search tree cannot be expanded any further. In this case, one has com-
puted the set of non-dominated path from the initial node s to all the other
nodes of the network.

Recently, Paixão and Santos [12] proposed a new labelling algorithm based
on a deviation path procedure for selecting the label for ”expansion” at each



RANKING ALGORITHM FOR THE MSPP 3

iteration. That leads to the speeding-up of the generation of non-dominated
paths but the stopping condition for the algorithm could be not improved.

A different kind of algorithm was proposed by Martins [5, 6] for the bi-
objective shortest-path problem. Taking into account this specific case, paths
from s to t are enumerated by value for the first objective function until the
shortest path in the second criteria is obtained using the ranking procedure
described in Azevedo et al. [2]. Although for this case there is not the
requirement for computing the shortest paths from s to every vertex in the
network, the algorithm proved to be not competitive since the non-dominance
test was performed only at the terminal node t. A generalisation of this
technique for k > 2 was also done for acyclic networks by Azevedo and
Martins [3]. Later, Santos [20, 21] proposed a new upper bound for the stop
ranking condition, reducing the number of path to be determined. Deviation
path procedures (Martins et al. [13]) were also studied to rank paths for the
multi-objective shortest path problem, allowing performing the dominance
test on the intermediate nodes of the path ([22]).

In Section 3 of this paper, we describe a new algorithm for the general
multi-objective shortest path problem based on the label and deviation path
algorithm proposed in [12] and consisting of an enhancement on the algorithm
proposed in [22]. The definitions and notation required for the comprehen-
sion of the contents are given in Section 2 and the computational experience
results with the algorithm are shown in Section 4. Final remarks and con-
clusions are summarized in the last section of the paper.

2. Definitions and notation

A network is denoted by G = (N, A, c), where N = {1, . . . , n} is the set
of nodes (or vertices) and A ⊂ N × N is the set of arcs. Each arc a ∈ A,
a = (i, j), has a tail (tail(a) = i) and a head (head(a) = j) node. Let k

be the number of criteria with the corresponding k dimensional vector cost
assigned to each arc:

c : A −→ IRk

(i, j) 7−→ c(i, j) = ci,j = (c1
i,j, . . . , c

k
i,j).

A path p, from the vertex i to j, is an alternating sequence of nodes and
arcs of the form p = 〈v0, a1, v1, . . . , ar, vr〉, where:

• vℓ ∈ N , ∀ℓ ∈ {0, . . . , r};
• v0 = i and vr = j;



4 J.M. PAIXÃO AND J.L. SANTOS

• aℓ = (vℓ−1, vℓ) ∈ A, ∀ℓ ∈ {1, . . . , r}.

The set of all paths from i to j is denoted by Pi,j, and PG represents the
set of all paths in the network, that is PG =

⋃
i,j∈N Pi,j. A cycle is a path

with non repeated vertices except the initial and terminal ones which are
coincident, that is v0 = vr.

With no loss of generality, we consider that N has an initial node s and a
terminal node t such that:

• for any arc a ∈ A, tail(a) 6= t and head(a) 6= s;
• for any i ∈ N − {s, t}, Ps,i 6= ∅ and Pi,t 6= ∅.

In order to simplify the notation, P will be used instead of Ps,t. Multiple
arcs (arcs with the same pair of head and tail nodes) are not allowed. As a
consequence, a path p can be simply denoted by the sequence of its nodes,
〈v0, v1, . . . , vr〉. The vectorial objective function f is defined by

f : PG −→ IRk

p 7−→ f(p) = (f1(p), . . . , fk(p)),

where fℓ(p) =
∑

(i,j)∈p cℓ
i,j, ∀ℓ ∈ {1, . . . , k}.

Now, let us recall that, for the MSPP, one looks for the set of non-
dominated paths from s to t defined as follows:

Definition 1. : Let a and b be two elements of IRk. Then, a ≤IRk b (a is
less than or equal to b) if and only if

aℓ ≤ bℓ, ∀ℓ ∈ {1, . . . , k}.

Definition 2. : Let p and q be two paths of Pi,j. We say that p dominates q

or q is dominated by p (p <D q) if and only if

f(p) 6= f(q) and f(p) ≤IRk f(q).

Definition 3. : Let p be a path in Pi,j, i, j ∈ N . If there is no path
q ∈ Pi,j such that q <D p, then p is called a non-dominated (efficient or
Pareto optimal) path. The set of non-dominated paths from i to j is denoted

by D̄i,j and D̄ will be used for D̄s,t. We will use D̄s to denote
⋃

i∈N\{s} D̄s,i.

Note that ≤IRk is not a total order relation in IRk and, therefore, does not
allow the full ranking of the paths in the network. Nevertheless, this may be
achieved by considering a total order relation [9] as the following one:



RANKING ALGORITHM FOR THE MSPP 5

Definition 4. : Let a and b be two elements of IRk. Then, a is lexicograph-
ically less than or equal to b (a ≤lex b) if and only if

a = b or (∃x ∈ {1, . . . , k} : ax < bx and ay = by, ∀y < x).

Let us remark that ≤lex yields the setting up of preference levels amongst
the criteria. For instance, considering the lexicographic order means that top
preference is given the first objective; only in the case of a tie, the second
criterion is used for the ranking, and so forth. Also, note that a total of k!
lexicographic order relations can be defined by permuting the priority levels
with the corresponding of the paths defined as follows:

Definition 5. : Let a,b be two elements of IRk and ∆ = (δ1, . . . , δk) a
permutation of the elements in {1, . . . , k}, where δi indicates the i-th criterion
to be analyzed in the lexicographic order. Then, a is ∆-lexicographically less
than or equal to b (a ≤∆−lex b) if and only if

a = b or (∃x ∈ {1, . . . , k} : aδx
< bδx

and aδy
= bδy

, ∀y < x).

Definition 6. : Let p and q be two paths of Pi,j and ∆ = (δ1, . . . , δk) a
permutation of the elements in {1, . . . , k}. Then,

p ≤∆−lex q ⇔ f(p) ≤∆−lex f(q).

The following Lemma will be crucial for the correctness of the algorithm.

Lemma 1. : Let ∆ = (δ1, . . . , δk) be a permutation of the elements in
{1, . . . , k}. If p, q ∈ Pi,j and p <D q, then p ≤∆−lex q.

Proof: By definition of p <D q, f(p) 6= f(q) and fℓ(p) ≤ fℓ(q), ∀ℓ ∈ {1, . . . , k}. On the

other hand, considering a permutation ∆ and defining ℓ′ ∈ {1, . . . , k} as the first index for

which fδ
ℓ′
(p) 6= fδ

ℓ′
(q) we obtain fδ

ℓ′
(p) < fδ

ℓ′
(q). Consequently, p ≤∆−lex q. 2

Note that, the resulting sequence of paths obtained with a ranking pro-
cedure using an order ≤∆−lex is similar for permutations ∆ and ∆′ where
δ1 = δ′1. Thus, we define the lexicographic order in the r-th objective (≤lex,r)
as a ∆-lexicographic order where δ1 = r.

3. The new algorithm

As mentioned earlier in this paper, the weak point of the labelling algorithm
for the MSPP is related to the need of computing the full set D̄s in order to
know the set D̄ of the non-dominated paths from s to t. In a previous work,



6 J.M. PAIXÃO AND J.L. SANTOS

we show that a significant portion of D̄ may be found by ranking only a few
number of s-t paths. In this paper, we combine the ranking path and the
labelling strategies using the L&DP algorithm [12] for each criterion with a
stop ranking condition studied in [22].

The rationale for the new algorithm is the following: if p is a path from s to
t, then for every path q ∈ D̄ there exists at least one criterion i ∈ {1, 2, . . . , k}
such that fi(q) ≤ fi(p). Now, suppose that one ranks the s-t paths by the
corresponding value for criterion i. It is clear that the ranking procedure, for
that criterion, should stop whenever such value becomes greater than fi(p).

Hence, the stop ranking condition can be defined by a vector v ∈ IRk

where the vi component establishes an upper bound for the value of fi in the
ranking procedure for the i criterion. This vector may be computed before
carrying out the ranking procedure (sequential version) or can be dynamically
computed during the ranking (parallel version). Next, we describe both
versions where pi

j means the j-th s-t path found by the L&DP procedure

when ≤lex,i is used and W i denotes the set of ND paths from s to t computed
by the L&DP procedure (i ∈ {1, . . . , k}). In this work, we have used the
permutation ∆ = (r, 1, . . . , r − 1, r + 1, . . . , k) for the lexicographic order in
the r-th objective (i.e., ≤lex,i).

3.1. Sequential version. As said above, in this version, v is computed
before starting the ranking procedure as the objective value for a particular
ND s-t path. In this work, we use the path, denoted by p∗sum, that minimizes
∑k

i=1 fi(q) over P which can be easily computed by a mono-criteria shortest
path algorithm. Consequently, any s-t path p for which f(p) ∈ S = {w ∈
IRk : v ≤IRk w}\{v} is dominated by p∗sum. Therefore, we only need to
determine paths p where f(p) 6∈ S; i.e. for which fi(p) < vi, for some
i ∈ {1; . . . ; k}. Additionally, we also need to find path which f(p) = v, if one
aims to find all of the paths with a value less than or equal to f(p ∗ sum).

In Algorithm 1, we report the pseudocode for the sequential version of the
new algorithm for finding all the paths verifying fi(p) ≤ vi, for some i ∈
{1; . . . ; k}. Basically, the procedure iterates over the k criteria determining
for each one of them the set of paths W i. Note, now, that some ND dominated
paths can be found for more than one criterion. In order to avoid repetition
of those paths, the step 3.5 restricts the inclusion in D̄ to the paths p found
in the i-th ranking for which fℓ(p) > vℓ, ∀ℓ < i.



RANKING ALGORITHM FOR THE MSPP 7

step 1: set v ∈ IRk for the stop ranking condition
step 2: D̄ ←− ∅
step 3: for i = 1 to k do
step 3.1: j ←− 0
step 3.2: repeat
step 3.3: j ←− j + 1
step 3.4: Compute pi

j using ≤lex,i

until (fi(p
i
j) > vi)

step 3.5: D̄ ←− D̄ ∪ {p ∈ W i : fi(p) ≤ vi and fℓ(p) > vℓ, ∀ℓ < i}
endfor

Algorithm 1: sequential version of the new algorithm.

The next results validate the Algorithm 1 and show that v = f(p) for any
p ∈ D̄ is a feasible choice for the stop ranking condition set at step 1.

Lemma 2. : Let p be a path from s to t in G. Then, every path q ∈ D̄

verifies fr(q) ≤ fr(p) for some r ∈ {1, . . . , k}.

Proof: If the statement is not true, there will exist a path q ∈ D̄ such that fr(q) > fr(p)

at all criteria. Consequently, p <D q which contradicts the hypothesis. 2

Corollary 1. : At the end of the algorithm 1, D̄ =
⋃k

i=1 W i.

Proof: Let p be the path from s to t chosen by Algorithm 1 and let q ∈ D̄. Lemma 2

asserts that there is, at least, one r ∈ {1, . . . , k} for which fr(q) ≤ fr(p) and then q ∈ W r.

On the other hand, if there is a path p ∈W r, for some r ∈ {1, . . . , k}, such that p 6∈ D̄ then

there will be a path q dominating p. Therefore, fr(q) ≤ fr(p) and q should be found in the

ranking procedure using ≤lex,i contradicting the fact of p ∈W i. 2

3.2. Parallel version. In the parallel version, each component vi of v is
updated during the ranking procedure with the largest value of fi(p) over
the set of s-t paths that have been ranked up to that moment by the i-th
criterion. Consequently, v usually does not correspond to the f value for a
s-t path but, on the other hand, one has v ≤IRk f(p) for all unranked path.
That means that v is a lower bound in the space of the criteria for the value
of f over all s-t paths that have not been determined up to that instant.
Therefore, if at some step of the algorithm we find a ND s-t path q satisfying



8 J.M. PAIXÃO AND J.L. SANTOS

f(q) 6= v and f(q) ≤IRk v, then all the unranked path will be dominated
and the algorithm stops. This version of the new algorithm is summarised in
Algorithm 2. Here, steps 4 and 5 avoid the repetition of ND paths computed
on different rankings.

step 1: v ∈ 0IRk

step 2: j ←− 0
step 2: allNDfound ←− FALSE
step 3: repeat
step 3.1: j ←− j + 1
step 3.2: for i = 1 to k do
step 3.3: Compute pi

j using ≤lex,i

step 3.4: vi ←− fi(p
i
j)

step 3.5: if ∃q ∈ W i : f(q) 6= v and f(q) ≤IRk v

step 3.6: allNDfound ←− TRUE
endfor

until allNDfound = TRUE
step 4: D̄ ←− ∅
step 5: for i = 1 to k do
step 5.1: D̄ ←− D̄ ∪ {p ∈ W i : fi(p) ≤ vi and fℓ(p) > vℓ, ∀ℓ < i}

endfor
Algorithm 2: parallel version of the new algorithm.

The correctness of the Algorithm 2 is assured by the next results.

Lemma 3. : Let v be a vector of IRk for which the set S = {w ∈ IRk : v ≤IRk

w} contain the cost of all unranked s-t paths. If there is a s-t path p for which
f(p) dominates v then all ND s-t paths have be obtained by the algorithm.

Proof: Let p be a path from s to t for which f(p) dominates v. Then, f(p) 6= v and

f(p) ≤
IR

k v ≤
IR

k f(q) for all paths q verifying f(q) ∈ S. Consequently, p dominates all

unranked s-t paths. 2

Corollary 2. : At the end of the algorithm 2, D̄ =
⋃k

i=1 W i.

Proof: Let q be a ND s-t path. By lemma 3, at the end of the algorithm 2, q was

determined. Consequently, f(q) 6∈ S, i.e., there is, at least, one r ∈ {1, . . . , k} for which

fr(q) ≤ fr(p) and then q ∈ W r. On the other hand, similarly as was proved in Corollary 1,
⋃k

i=1
W i ⊆ D̄. 2



RANKING ALGORITHM FOR THE MSPP 9

Finally, let us mention that the L&DP algorithm was carried out with other
orders different from the lexicographic one obtaining a better performance
[12]. However, it can be proved that only the lexicographic order is able to
define an upper bound for the ranking procedure [22].

4. Computational experience

In this section, we report the computational experiments carried out in or-
der to assess the performance of the new algorithm proposed in this work. As
benchmark code, we used the public version of the label correcting algorithm
(with fifo data structure) available at [19]. The most efficient versions for the
labelling algorithm [16] were also considered for the assessment of the new
method. The computational results were obtained by running the codes on a
Intel(R) Pentium(R) 4 CPU 3.00GHz personal computer with 512 MB RAM
and 1 MB cache size at the Laboratory for Computational Mathematics of
Centre for Mathematics of the University of Coimbra. The codes are written
in C language and compiled using the ”cc” compiler of Linux system (Suse
9.3 version) without any optimization option.

The two versions of the new algorithm (newP - parallel version, newS -
sequential version) were implemented using a heap [1] and a Dial [7, 8] data
structure. For the label setting algorithm, we ran the codes reported in [12]
as having a better performance: the labelling and deviation path algorithm
(L&DP) and the label setting algorithm (LS), both using a heap and Dial
data structure. We also considered the classical versions of the label correct-
ing (LC) algorithm - with deque [17, 18] and fifo [1] data structures - with a
better performance based on the results presented in [12, 16].

As summarised in the Table 1, a total number of 11 codes were tested for
a set of large size instances for three different types of network (random,
complete and grid) with the costs for the arcs randomly generated in the
interval [1,1000] using a uniform distribution. Table 2 reports the main
features for each class of problem defined by the type of network and the
corresponding dimensions - number of vertices (n), density (d=ratio between
the number of arcs and the number of nodes) and number of criteria (k).
Note that we tried out 50 instances for each class of problems and columns
ND (number of non dominated paths) and rotND (number of non dominated
labels) show average values for those indicators. Also, the average CPU time
(in seconds of a ) consumed by the public code for solving each instance
within each class of problem, is shown in the last column of Table 2. The



10 J.M. PAIXÃO AND J.L. SANTOS

newP newS L&DP LS LC public
heap X X X X — —
Dial X X X X — —

deque — — — — X —
fifo — — — — X X

Table 1. Description of codes used in the computational experience.

name instances n d k ND rotND CPU (sec)
RandN 50 15000 6 6 84.80 1308608.7 59.23
RandD 50 5000 10 6 153.04 814576.7 87.45
RandK 50 5000 6 10 191.52 969339.6 82.15
CompN 50 120 119 6 951.82 107122.7 116.31
CompK 50 100 99 8 1790.24 183120.9 312.61
GridN 50 144 4 6 11702.90 141228.3 34.59
GridK 50 100 4 10 20797.18 141412.7 77.69
Table 2. Description of the set of instances solved. The last
column corresponds to the CPU running time for the public code.

instances tested in this work are the largest ones considered in [12] and
available on-line at [19].

Now, let us remark that we were able to solve all of the instances with
all of codes but the parallel version of the new algorithm. Actually, due to
exceeding a time limit of 600 secs or to producing more than 2× 106 labels,
newP could not produce a solution for almost half of the test instances for
classes CompK and GridK, and for a much more reduced percentage (10%)
of the class GridN instances.

Table 3 reports, for each code, the ratio relatively to the public code,
in terms of computing time required for solving the instances. This ratio
indicates how many times a code is faster (ratio < 1) or slower (ratio > 1)
than the public code. From that table one can conclude that the parallel
version of the new algorithm is not competitive with the sequential one. In
addition, the sequential version of the new algorithm is much faster than the
labelling ones - 20 to 50 folds faster than the public code for the random type
networks; 4 to 5 folds faster for the complete networks. On the other hand,



RANKING ALGORITHM FOR THE MSPP 11

newP newS L&DP LS LC
name heap Dial heap Dial heap Dial heap Dial deque fifo

RandN 0.05 0.05 0.02 0.02 0.93 1.14 0.95 0.87 0.86 0.86
RandD 0.20 0.19 0.04 0.04 1.03 1.23 0.95 0.92 1.00 0.99
RandK 0.07 0.07 0.01 0.01 0.92 0.89 0.94 0.90 0.88 0.88
CompN 3.73 3.07 0.20 0.21 0.97 1.18 0.90 0.87 0.87 0.87
CompK 2.31 2.29 0.17 0.18 0.88 1.03 0.99 0.97 0.86 0.84
GridN 10.46 10.38 3.22 3.31 3.46 2.55 2.46 2.36 1.21 0.86
GridK 8.56 8.37 2.01 2.04 2.46 1.94 1.88 1.83 0.98 0.87

Table 3. Average CPU time ratio for each algorithm relatively
to the public code.

newP newS L&DP LS LC

name heap Dial heap Dial heap Dial heap Dial deque fifo

RandN 361363.9 361363.9 92682.7 92682.7 1373296.3 2350161.6 1317932.7 1317942.8 1326010.4 1334770.2

RandD 823155.0 823155.0 246796.8 246796.8 867450.2 1296013.3 822790.9 822801.4 828686.8 835634.7

RandK 510287.4 510287.4 99344.2 99344.2 987788.8 1420508.5 970385.9 970387.8 970263.4 970795.8

CompN 526561.7 526561.7 234800.3 234800.3 120366.5 112856.8 109665.8 109670.2 111887.6 113597.8

CompK 861422.1 860323.2 349303.4 349303.4 192938.3 189921.3 184245.2 184247.2 185417.3 186155.3

GridN 569576.3 569576.3 392115.9 392115.9 162467.1 156671.2 143655.8 143656.1 149337.2 155554.9

GridK 815283.5 806314.8 503787.9 503787.9 149309.0 146340.7 142065.2 142065.3 144417.7 147013.9

Table 4. Average number of labels computed.

the new algorithm is slower than the labelling one (2 to 3 times slower than
the public code) for the grid network instances.

Finally, Table 4 shows the average number of labels determined by each
code to solve the instances proposed. From there, one may conclude that
the stop ranking condition in the new algorithm is more effective for the
sequential version than for the parallel one (reflecting the higher performance
of the sequential version). Moreover, we can also see that the stop ranking
condition allows to avoid the computation of a large number of labels that
have to be determined by the labelling algorithm, when dealing with random
or complete networks. On the other hand, the opposite scenario occurs on
grid networks.

It should be noted that all versions of the labelling algorithm are very
effective in the computation of D̄s. In fact, more than 90% of the total
number of labels generated by the labelling algorithm are ND ones (confront
Table 4 with the rotND column in Table 2). However, as the number of ND
s-t paths is unknown beforehand the labelling algorithm has to determine
the whole set D̄s to make sure that D̄ is obtained.



12 J.M. PAIXÃO AND J.L. SANTOS

Figure 1. Conversion factor on the CPU time for each algo-
rithm relatively to the public code.

Figure 2. Conversion factor from rotND to the number of labels
computed by each algorithm.



RANKING ALGORITHM FOR THE MSPP 13

5. Conclusion

In this paper, we propose a new algorithm for finding the set of ND s-
t paths based on ranking paths procedure. The algorithm makes use of a
stop ranking condition which allows to determine the entire set of ND s-t
paths (D̄) without requiring that all the ND paths starting at the initial
node s (D̄s) have to be computed. Two versions of the new algorithm were
analyzed: sequential and parallel. However, the last one was not competitive
when confronted with the sequential version.

The sequential version of the new algorithm showed to be much faster
than the several versions for the labelling algorithm (L&DP, LS and LC),
for solving random and complete network instances. In fact, as exhibited in
Figure 1, the average reduction factor on the CPU is quite impressive for
the class of randomly generated problems with a larger number of criteria
(RandK). Even for the complete network instances the average reduction
factor on the CPU time is circa 5.

The improvements obtained for the randomly generated networks are clearly
explained by the effectiveness of the stop ranking condition producing, as
shown in Figure 2, a considerable reduction on the number of labels deter-
mined by the new algorithm. Concerning to the complete network instances,
the new algorithm benefits from the well identified drawback for the labelling
procedures which comes from the need of computing all of the non-dominated
paths from s to every vertex in the network. For the grid network instances,
the labelling algorithm proved to be the best procedure with particular ad-
vantage for the label correcting version.

References
[1] R.K. Ahuja, T. L. Magnanti, and J.B. Orlin. Network Flows – theory, algorithms, and appli-

cations. Prentice-Hall, Inc., New Jersey, 1993.
[2] J.A. Azevedo, J.J. Madeira, E.Q. Martins, and F.M. Pires. A computational improvement for

a shortest paths ranking algorithm. European Journal of Operational Research, 73:188–191,
1994.

[3] J.A. Azevedo and E.Q. Martins. An algorithm for the multiobjective shortest path problem
on acyclic networks. Investigação Operacional, 11 (1):52–69, 1991.

[4] J.N. Cĺımaco, C.H. Antunes, and M.J. Alves. Interactive decision support for multiobjective
transportation problems. European Journal of Operational Research, 65/1:58–67, 1993.

[5] J.N. Cĺımaco and E.Q. Martins. On the determination of the nondominated paths in a mul-
tiobjective network problem. Proceedings of V Sympösium über Operations Research, Köln,
(1980), in Methods in Operations Research, 40, (Anton Hain, Königstein, 1981), 255–258.

[6] J.N. Cĺımaco and E.Q. Martins. A bicriterion shortest path algorithm. European Journal of

Operational Research, 11:399–404, 1982.



14 J.M. PAIXÃO AND J.L. SANTOS

[7] R. Dial. Algorithm 360. shortest path forest with topological ordering. Communications of

ACM, 12:632–633, 1969.
[8] R. Dial, G. Glover, D. Karney, and D. Klingman. A computational analysis of alternative

algorithms and labelling techniques for finding shortest path trees. Networks, 9:215–348, 1979.
[9] M. Ehrgott. Multiple Criteria Optimization – Classification and Methodology. Shaker Verlag,

Aachen, 1997.
[10] P. Hansen. Bicriterion path problems. in Multiple Criteria Decision Making: Theory and

Application, editors: G. Fandel and T. Gal, Lectures Notes in Economics and Mathematical
Systems, 177, 109-127, Springer Heidelberg, 1980.

[11] E.Q. Martins. On a multicriteria shortest path problem. European Journal of Operational

Research, 16:236–245, 1984.
[12] E.Q. Martins, J.P. Paixão, M.S. Rosa, and J.L. Santos. Ranking multiobjective shortest paths.

Working Paper 07-11, CMUC and submitted for publication., 2007.
[13] E.Q. Martins, M.M. Pascoal, and J.L. Santos. Deviation algorithms for ranking shortest paths.

International Journal of Foundations of Computer Science, 10 (3):247–261, 1999.
[14] J. Mote, I. Murthy, and D.L. Olson. A parametric approach to solving bicriterion shortest

path problems. European Journal of Operational Research, 53:81–92, 1991.
[15] I. Murthy and S.S. Her. Solving min-max shortest-path problems on a network. Naval Research

Logistics, 39:669–683, 1992.
[16] J.P. Paixão, M.S. Rosa, and J.L. Santos. Labelling methods for the general case of the multi-

objective shortest path problem - a computational study. Working Paper 07-xx, CMUC and
submitted for publication., 2007.

[17] U. Pape. Implementation and efficiency of moore-algorithms for the shortest route problem.
Mathematical Programming, 7:212–222, 1974.

[18] U. Pape. Algorithm 562: Shortest paths lengths. ACM Transactions on Mathematical Soft-

ware, 6:450–455, 1980.
[19] J.L. Santos. Multiobjective shortest path problem.

(http://www.mat.uc.pt/∼zeluis/INVESTIG/MSPP/mspp.htm).
[20] J.L. Santos. O problema do trajecto óptimo multiobjectivo, 1997. (Master degree dissertation;

Mathematics Department; University of Coimbra).
[21] J.L. Santos. Uma abordagem ao problema do trajecto óptimo multiobjectivo. Investigação

Operacional, 19:211–226, 1999.
[22] J.L. Santos. Optimização vectorial em redes. PhD thesis, Departamento de Matemática, Uni-

versidade de Coimbra, 2003.
[23] P. Vincke. Problèmes multicritères. Cahiers du Centre d’Études de Recherche Opérationelle,

16:425–439, 1974.

José Manuel Paixão

Operations Research Center, Department of Statistics and Operations Research, Uni-

versity of Lisbon

E-mail address : jpaixao@fc.ul.pt

José Luis Santos

Centre for Mathematics of the University of Coimbra, Department of Mathematics,

University of Coimbra

E-mail address : zeluis@mat.uc.pt
URL: http://www.mat.uc.pt/∼zeluis


