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THE ULTRAFILTER CLOSURE IN ZF

GONÇALO GUTIERRES

Abstract: It is well known that, in a topological space, the open sets can be
characterized using filter convergence. In ZF (Zermelo-Fraenkel set theory without

the Axiom of Choice), we cannot replace filters by ultrafilters. It is proven that the
ultrafilter convergence determines the open sets for every topological space if and
only if the Ultrafilter Theorem holds. More, we can also prove that the Ultrafilter
Theorem is equivalent to the fact that uX = kX for every topological space X,
where k is the usual Kuratowski Closure operator and u is the Ultrafilter Closure
with

uX(A) := {x ∈ X : (∃U ultrafilter in X)[U converges to x and A ∈ U ]}.

However, it is possible to built a topological space X for which uX 6= kX , but the
open sets are characterized by the ultrafilter convergence. To do so, it is proved
that if every set has a free ultrafilter then the Axiom of Countable Choice holds for
families of non-empty finite sets.

It is also investigated under which set theoretic conditions the equality u = k is
true in some subclasses of topological spaces, such as metric spaces, second countable
T0-spaces or {R}.
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1. Introduction
In a topological space, the closure is characterized by the limits of the

ultrafilters. Although, in the absence of the Axiom of Choice, this is not a
fact anymore. The first goal of this paper is to find out the set-theoretic
status of this theorem of ZFC, i.e., Zermelo-Fraenkel set theory including
the Axiom of Choice. It is also natural to ask if it is equivalent to define
the closure or the open sets via ultrafilter convergence. In other words, if
the following two theorems are equivalent in ZF, Zermelo-Fraenkel set theory
without the Axiom of Choice.
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Theorems 1.1 (ZFC).

(a) The point x ∈ X is in the closure of A ⊆ X if and only if there is an
ultrafilter U in X such that U converges to x and A ∈ U .

(b) The set A ⊆ X is open if and only if for every ultrafilter U in X

converging to x ∈ A, A belongs to U .

To better understand and study the problem, one consider the Ultrafilter
Closure operator u defined by limits of ultrafilters and its idempotent hull û.

Definitions 1.2. Let A be a subspace of the topological space X.

(a) uX(A) := {x ∈ X : (∃U ultrafilter in X)[U converges to x and A ∈
U ]}.

(b) ûX(A) :=
⋂

{B : A ⊆ B and uX(B) = B}.

Denoting by k the usual Kuratowski closure operator, it is easy to see
that in ZF for every A ⊆ X, uX(A) ⊆ ûX(A) ⊆ kX(A).

It is now possible to rewrite Theorems 1.1. The first theorem just says that
uX = kX for every topological space X. And the second says that ûX = kX

for every topological space X. As we will see in Theorem 3.1, both conditions
are equivalent to the Ultrafilter Theorem. So one can ask

1. Is there a topological space X for which ûX = kX but uX 6= kX?

We will also investigate in which conditions u = û, or equivalently ask

2. Is the Ultrafilter Closure idempotent?

It is not surprising that the answers to questions 1 and 2 are linked. That
is, they are the opposite as the next proposition shows.

Proposition 1.3 (ZF). The Ultrafilter Closure is idempotent for every topo-
logical space if and only if for every topological space (X, T ), ûX = kX implies
uX = kX.

Proof : If uX is idempotent, i.e. uX = ûX , and ûX = kX then uX = kX .
Let (X, T ) be a topological. Define now a topological space (Y,S) with

Y = X and S := {Y \A : uX(A) = A}. With these topologies, the equalities
uX = uY and ûY = kY hold. Since ûY = kY implies uY = kY , and kY is
idempotent, uX is also idempotent.

Note that in general ûX 6= kX , and then there was the need to use the
space Y .
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We will also study when each of the equalities u = k, û = k and u = û hold
in the classes of: topological spaces, Hausdorff spaces, first countable spaces,
metric spaces, spaces with countable topologies, second countable T0-spaces,
subspaces of R and {R}.

Let us notice that, in ZF, the situation with the spaces defined by the ultra-
filter convergence can be compared with the spaces defined by the sequential
convergence ([3]).

In order to work in the class of second countable T0-spaces, it is important
to recall the following result.

Lemma 1.4.

(a) If (X, T ) is a second countable space, then |T | ≤ |R| = 2ℵ0.

(b) If (X, T ) is a second countable T0–space, then |X| ≤ |R| = 2ℵ0.

2. Consequences of the Axiom of Choice
In this section, we introduce some definitions and results related with con-

sequences of the Axiom of Choice which will be used in the other sections.
From this section, all definitions and results of this paper take place in ZFA.
ZFA is a weaker version of ZF which allows the presence of atoms.

The ZFC results of the first section can be proved using the Ultrafilter
Theorem which is known to be properly weaker then the Axiom of Choice
(Basic Cohen Model – M1 in [6]).

Definition 2.1 (Ultrafilter Theorem – UFT). Every filter over a set can be
extended to an ultrafilter.

This theorem is equivalent to the Boolean Prime Ideal Theorem, that is:
every non-trivial (0 6= 1) Boolean Algebra has a prime ideal. For details on
this subject, see [7, 2.3] or [4, 4.37].

We consider some weak forms of the Ultrafilter Theorem.

Definitions 2.2.

(a) ([5]) (Countable Ultrafilter Theorem – CUF) The Ultrafilter
Theorem holds for filters with a countable base.

(b) CUF(R) states that the Ultrafilter Theorem holds for filters in R
with a countable base.

Proposition 2.3. If the Axiom of Countable Choice (CC) holds and N has
a free ultrafilter, then CUF holds.
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Proof : Let (An)n be a base for a filter in a set X. One can consider that
An+1  An for every n. By CC we choose an element an of An \ An+1. By
hypothesis, N has a free ultrafilter and then the set {an : n ∈ N} has a free
ultrafilter U . The filter generated in X by U is an ultrafilter which contains
{An : n ∈ N}.

Corollary 2.4. The Ultrafilter Theorem is not equivalent to CUF.

In Pincus Model IX (M47(n, M) in [6]) the Ultrafilter Theorem does not
hold, but the Axiom of Countable Choice holds and there is a free ultrafilter
in N, and then CUF(R) holds too.

Proposition 2.5. If the Axiom of Choice holds for families of subsets of R
(AC(R)), then CUF(R) holds.

As in the proof of Proposition 2.3, if the Axiom of Countable Choice holds
for subsets of R (CC(R)) and N has a free ultrafilter, then CUF(R) holds.
Clearly AC(R) implies CC(R) and, since |R| = |2N|, AC(R) also implies
that every filter in N can be extended to an ultrafilter.

Corollary 2.6. CUF is not equivalent to CUF(R).

In The Second Fraenkel Model (N 2 in [6]) CUF does not hold, but the
Axiom of Choice holds in R, and then CUF holds too.

It is maybe surprising, but of importance in this context, that the existence
of a free ultrafilter in R implies the existence of a free ultrafilter in N.

Theorem 2.7 ([2]). R has a free ultrafilter if and only if N has a free ultra-
filter.

Proof : If N has a free ultrafilter, then that ultrafilter can be extended to an
ultrafilter in R.

Consider now U an ultrafilter in R. It is a theorem of ZFA that every
ultrafilter in R is either convergent or unbounded. Without loss of generality,
one supposes that U has no upper bound, that is, for every x ∈ R, (x, +∞) ∈
U . Let (Bn)n be the partition of R with B1 := (−∞, 1] and Bn := (n − 1, n]
for n ∈ N \ {1}.

The set U ′ := {A ⊆ N :
⋃

n∈A
Bn ∈ U} is a free ultrafilter in N.

This result allows us to better understand the existence of free ultrafilters in
R, since there are several known models of ZF where N has no free ultrafilters.
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For instance the Feferman’s Model – M2 in [6]. For more details, see Form
70 of [6].

The last result of this section will be useful to find a topological space
where the Ultrafilter Closure is not idempotent.

Theorem 2.8. If every set has a free ultrafilter, then the Axiom of Countable
Choice holds for families of finite sets.

Proof : Let (Xn)n∈N be a countable family of non-empty finite sets. For each

n, define Yn :=
n

∏

k=1

Xn and let Y :=
.

⋃

Yn be their disjoint union. For every

n ∈ N and k ≤ n, consider the kth projection pk : Yn → Xk. Since pk is

defined in Yn for every n ≥ k, pk is a function from Zk :=

∞
⋃

n=k

Yn to Xk.

There is an equivalence relation in Zk, for each k, with y ∼k y′ :⇐⇒
pk(y) = pk(y

′). The number of equivalence classes of the relation ∼k is equal
to the number of elements of Xk, which is finite.

Our assumption says that there is a free ultrafilter U in Y . Since all the
sets Yn are finite, the sets Y \Zk are finite and then Zk ∈ U . For each k ∈ N,
Zk is the finite union of the equivalence classes of the relation ∼k . By the
definition of ultrafilter one, and only one, of the classes belongs to U . Let us
call that class Ak.

Finally, we define xk := pk(y) for y ∈ Ak. The family (xn)n∈N induces the
desired choice function.

Remark. Recall that the Ultrafilter Theorem implies the Axiom of Choice for
families of finite sets, see for instance [4, 2.16].

3. Main results
In this section we investigate under which conditions the Theorems 1.1 and

the idempotency of the Ultrafilter Closure remain valid.

Theorem 3.1. The closure operators û and k coincide in the class of Haus-
dorff spaces if and only if the Ultrafilter Theorem(UFT) holds.

Proof : If UFT holds, then the usual proof works.
To prove the reverse implication, let F be a free filter in a set X and a

an element of X. One takes X with the topology generated by the basis
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B := {{x} : x ∈ X \{a}}∪{F ∪{a} : F ∈ F}. This topology is an Hausdorff
topology.

The filter F is free which implies that there is an element B in F such that
a 6∈ B. It is clear that kX(B) = B ∪ {a}. Since kX(B) = ûX(B) = B ∪ {a},
there is an ultrafilter U converging to a such that B ∈ U . To complete the
proof, one only has to show that F is contained in U .

For every set F in F , F ∪ {a} ∈ U since U converges to a. One also has
that B ∈ U , and then B ∩ (F ∪ {a}) = B ∩ F ∈ U , which means that F is
an element of U .

Corollary 3.2. The following conditions are equivalente to UFT:

(i) u = k in the class of topological spaces;
(ii) û = k in the class of topological spaces;
(iii) u = k in the class of Hausdorff spaces.

The conditions (i) and (ii) of this corollary are the Theorems 1.1.

We will now study the idempotency of the Ultrafilter Closure u, or equiva-
lently the equality u = û. However, in this case there is no definitive answer.

At this point one could believe that u and û coincide in the class of topo-
logical spaces if and only if the Ultrafilter Theorem holds. That is not the
case as we will see.

Lemma 3.3. For every topological space (X, T ) such that X has no free
ultrafilters and for all A ⊆ X:

uX(A) =
⋃

a∈A

kX({a}).

If (X, T ) is a T1-space, then uX(A) = A.

There are in fact models of ZF with sets which have no free ultrafilters or,
even more, with no free ultrafilters at all. A. Blass [1] built a model (M15
in [6]) where every ultrafilters are fixed. For details, see Forms 63 and 206
of [6].

Proposition 3.4. If every ultrafilter in X is fixed, then uX is idempotent.

Proof : Follow from Lemma 3.3.

Corollary 3.5. It is consistent with ZF that û = u in the class of the topo-
logical spaces and UFT does not hold.
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This conditions is true in the Feferman/Blass Model (M15 em [6]).

After seeing that the idempotency of the Ultrafilter Closure is not equiv-
alent to the Ultrafilter Theorem, our goal is to find out if it is a theorem of
ZFA.

Theorem 3.6. Let X, Y be sets such that X has a free ultrafilter and Y has
no free ultrafilters. If there is f : Y → X onto, then there is a topological
space for which the Ultrafilter Closure is not idempotent.

Proof : The existence of f : Y → X onto means that Y =
.

⋃

x∈X

Yx is the

disjoint union of a family of non-empty sets indexed by X. Suppose that X

and Y are disjoint and that ∞ 6∈ X ∪ Y .

Define Z := X∪Y ∪{∞} and T := {A ∪
⋃

x∈A

Yx ∪ {∞} : X \ A is finite }.

The pair (Z, T ) is a topological space. Since the ultrafilters in Y are fixed,
uZ(Y ) = X∪Y . On the other side, the set X has a free ultrafilter U . If A ⊆ X

and X\A is finite, then A ∈ U . This fact implies that the ultrafilter generated
in Z by U converges to ∞. It is now clear that u2

Z
(Y ) = Z 6= uZ(Y ), and

one concludes that uZ is not idempotent.

Remark. In this prove, one can replace T by the T0 topology

T ′ := T ∪ {{x} ∪ Yx : x ∈ X} ∪ {{y} : y ∈ Y }.

The proof works in the same way. From Lemma 3.3 is clear that the same
construction cannot be done if the topology is T1.

Corollary 3.7. If for every topological space, the Ultrafilter Closure is idem-
potent, then either the Axiom of Countable Choice holds for families of finite
sets (CC(fin)) or there are no free ultrafilters in N.

Proof : Let (Xn)n be a countable family of non-empty finite sets. Consider
the set Y as in the proof of Theorem 2.8. By the way Y was builded, there is a
surjective function from Y to N. Since the Ultrafilter Closure is idempotent,
the Theorem 3.6 implies that either there are no free ultrafilters in N or there
is a free ultrafilter in Y . As in the proof of Theorem 2.8, the fact that Y

has a free ultrafilter implies that there is a choice in (Xn)n, that is CC(fin)
holds.
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Corollary 3.8. It is consistent with ZFA that there is a first countable T0-
space Z such that uZ 6= u2

Z
.

In The Second Fraenkel Model (N2 in [6]) CC(fin) fails and N has a free
ultrafilter. Then the space Z of the proof of Theorem 3.6, with X = N and
T ′ as in the remark after the theorem, is a first countable space T0-space and
uZ 6= u2

Z
. If we drop the condition of being T0, it is clear from the proof of

Theorem 3.6 that the topology might be countable.

We arrive to the conclusion that the answers to the two questions of the
Introduction are affirmative and negative, respectively.

4. The real numbers
We look now to the restriction of the conditions we have been studied to

certain classes of topological spaces. Among them, it is curious to see what
is the situation in the topological space R with the Euclidian Topology.

Proposition 4.1. The following conditions are equivalente to CUF:

(i) u = k in the class of first countable spaces;
(ii) û = k in the class of first countable spaces;
(iii) u = k in the class of metric spaces;
(iv) û = k in the class of metric spaces.

Proof : The implications (i)⇒(ii)⇒(iv) and (i)⇒(iii)⇒(iv) are obvious. It is
enough to show that CUF⇒(i) and (iv)⇒CUF.

CUF⇒(i) Let X be a first countable space, A ⊆ X and x ∈ kX(A). The
space X is first countable, which means that x has countable neighborhood
base (Vn)n. The set {Vn ∩ A : n ∈ N} is a base for a filter in A. This filter
converges to x, since x ∈ kX(A).

Finally, by hypothesis, every filter with countable base can be extended
to an ultrafilter. This ultrafilter contains A and converges to x, that is
x ∈ uX(A).

(iv)⇒CUF Let (An)n be a base for a free filter in X. Without lost of
generality, one consider An+1 ⊆ An for every n and A1 6= X. Let a ∈ X \ A1

and redefine A1 := X \ {a}. The family (An)n is still a base for the same
filter.

Define the sets Bn := An \ An+1, for each n ∈ N. Since the filter is free,

X \ {a} =
⋃

n

Bn.
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One has the following metric on X:

d(x, y) :=























0 if x = y

1
n

if (x = a and y ∈ Bn) or (x ∈ Bn and y = a)

1
n

+ 1
m

if x ∈ Bn and y ∈ Bm.

The element a is in the closure of A1 and then A1 is not closed. By (iv),
there is an ultrafilter U in X such that A1 ∈ U and U converges to an element
not belonging to A1. Since X \ A1 = {a}, U converges to a.

For every n, the sets An ∪ {a} are neighborhoods of a, which implies that
they are in U . Consequently, for every n, An = (An ∪ {a}) ∩ A1 ∈ U , which
means that U extends the filter generated by (An).

Proposition 4.2. The following conditions are equivalent to CUF:

(i) u = k in the class of spaces with countable topologies;
(ii) û = k in the class of spaces with countable topologies.

Proof : After Proposition 4.1, only remains to be proved that (ii)⇒CUF .
Let (An)n, a and X be as in the proof of Proposition 4.1. We give a

countable topology on X,

T := {An ∪ {a} : n ∈ N}.

From this point, the proof follows as in the proof of 4.1.

Theorem 4.3. The closure operators u and k coincide in R if and only if
CUF(R) does hold.

Proof : In Proposition 4.1, it was shown that if CUF holds, then for every
first countable space X, uX = kX . From that proof, it is clear that it is only
necessary to apply CUF in X. One can conclude that CUF(R) suffices to
prove that uR = kR.

Let F be a free ultrafilter in R with a countable base. One can consider a
base (An)n of F such that An+1 ⊆ An for every n. Define Bn := An \ An+1.
There are bijective functions, in ZFA, fn : R −→ ( 1

n+1,
1
n
) for every n ∈ N.

Define also Cn := fn(Bn) ⊆ ( 1
n+1,

1
n
) and D :=

⋃

n
Cn. The filter F is free,

which implies that 0 ∈ kR(D). Since uR = kR, 0 ∈ uR(D) and then there is
a free ultrafilter U converging to 0 such that D ∈ U .

Let U ′ be the restriction of U to D. The function t : D −→ A1 with
t(x) = f−1

n (y) if x ∈ Cn is well-defined and it is bijective due to the way the
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functions fn and the sets Cn and D were defined. One can conclude that
t(U ′) is an ultrafilter in A1.

Since U converges to 0, (− 1
n
, 1

n
) ∈ U for every n ∈ N and then

⋃∞
k=n

Ck =

D ∩ (− 1
n
, 1

n
) ∈ U ′.

Finally, we have that

An =

∞
⋃

k=n

Bk =

∞
⋃

k=n

f−1
n (Ck) =

∞
⋃

k=n

t(Ck) = t(

∞
⋃

k=n

Ck) ∈ t(U ′)

and the ultrafilter generated in R by t(U ′) contains F .

Corollary 4.4. The following conditions are equivalente to CUF(R):

(i) u = k in the class of the second countable T0-spaces;
(ii) û = k in the class of the second countable T0-spaces;
(iii) u = k for subspaces of R;
(iv) û = k for subspaces of R.

Proof : It is clear that (i)⇒(ii)⇒(iv) and (i)⇒(iii)⇒(iv).
CUF(R)⇒(i) By Lemma 1.4, if X is a T0 space with a countable base,

then |X| ≤ |R|. Since it is enough to apply CUF in X, CUF(R) suffices to
show that uX = kX .

(iv)⇒CUF(R) The proof is identical to the proof of Theorem 4.3. Let
D be a set constructed as in proof of Theorem 4.3 and X := D ∪ {0} be
a subspace of the reals. One has that 0 ∈ kX(D), and then, by (iv), one
also has that 0 ∈ ûX(D). Since X \ D = {0}, 0 ∈ uX(D) e consequently
0 ∈ uR(D). From now on, the proof follows as in the proof of Theorem
4.3.

Proposition 4.5. If R has no free ultrafilters, then ûR 6= kR.

This proposition is straightforward after Lemma 3.3. R is a T1-space, and
then uR is discrete if R has no free ultrafilters.

From this proposition, one concludes that ûR = kR is not a theorem of ZF.
There are models of ZF where R has no free ultrafilters, but other sets

have. The Feferman’s Model is an example of that.
I do not know if the equality ûR = kR is properly weaker than CUF(R).

As in the general case, the situation of the idempotency of u is different
from the other equalities. The following results are just additions to the
corollaries 3.5 and 3.8.
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Proposition 4.6. The following sentences are consistent with ZF0.

(a) û = u in the class of first countable spaces and CUF does not hold.
(b) ûR = uR and CUF(R) does not hold.
(c) û 6= u in the class of spaces with countable topologies.

Similar conclusions could be written for other classes.
Another interesting question is to find out if uR is idempotent in ZFA.

Clearly, if uR is idempotent, then ûR = kR is equivalent to CUF(R), by
Theorem 4.3.
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