DESCENT FOR COMPACT 0-DIMENSIONAL SPACES

GEORGE JANELIDZE AND MANUELA SOBRAL

Dedicated to Walter Tholen on the occasion of his 60th birthday

ABSTRACT: Using the reflection of the category C of compact 0-dimensional topological spaces into the category of Stone spaces we introduce a concept of a fibration in C. We show that: (i) effective descent morphisms in C are the same as the surjective fibrations; (ii) effective descent morphisms in C with respect to the fibrations are all surjections.

KEYWORDS: comma categories, effective descent, effective $\mathbb F\text{-descent}.$

AMS SUBJECT CLASSIFICATION (2000): 18B30, 18A25, 18A20.

0. Introduction

Our original intention was to describe effective descent morphisms in the category C of compact 0-dimensional topological spaces by combining the following well-known facts:

- A compact 0-dimensional space is nothing but a set equipped with a surjection into a Stone space (see Theorem 2.1 for the precise formulation).
- The effective descent morphisms in the categories of sets and of Stone spaces are just surjections.

It is still the main purpose of the paper, although it turned out that:

- Not all pullbacks exist in C. Therefore the definition of an effective descent morphism p in C should include the requirement: all pullbacks along p must exist (see Definition 3.2).
- When p is surjective, that requirement hold if and only if p is a fibration in a suitable sense (see Definition 2.2), which is very different from what is happening in the situations studied by H. Herrlich [1],

Received July 11, 2008.

The first named author was partially supported by South African NRF. The second named author was partially supported by FCT/Centro de Matemática da Universidade de Coimbra.

and which makes the descent problem much easier. In a somewhat different situation, this is made clear in [3].

- The surjectivity requirement does not create any problem since it is independently forced by the reflection of isomorphisms by the pullback functor along an effective descent morphism.
- Therefore the problem of describing effective descent morphisms in C has an easy solution: Theorem 3.3 says that they are the same as the surjective fibrations.
- However, this suggests a new question, namely, what are the effective descent morphisms with respect to fibrations? Fortunately there is a complete answer again: they are all surjections (Theorem 3.1).
- In particular, even though the spaces we consider are not necessarily Hausdorff spaces, which prevents their convergence relations to be maps, our characterization of their effective descent morphisms avoids using the Reiterman-Tholen characterization of effective descent morphisms in the category of all topological spaces [4].

Accordingly, the paper is organized as follows:

Section 1 contains preliminary categorical observations with no topology involved. The ground category \mathcal{C} there is constructed as a full subcategory in the comma category $(\mathcal{S} \downarrow U)$, where $U : \mathcal{X} \to \mathcal{S}$ is a pullback preserving functor between categories with pullbacks, using also a distinguished class \mathbb{E} of morphisms in \mathcal{S} . This class is also used to define what we call fibrations in \mathcal{C} . The sufficient conditions for a morphism to be an effective descent morphism (globally or with respect to the class of fibrations) given in Section 1 will become also necessary in the topological context of Sections 2 and 3.

Section 2 begins by recalling relevant topological concepts, presents the category of compact 0-dimensional spaces as a special case of C above, introduces fibrations of 0-dimendional spaces accordingly, and ends by proving that a surjective morphism in C admits all pullbacks along morphisms with the same codomain if and only if it is a fibration.

The purpose of Section 3 is to formulate and prove the two main results, namely the above mentioned Theorems 3.1 and 3.3.

1. Categorical framework

We fix the following data: categories S and \mathcal{X} with pullbacks, a pullback preserving functor $U : \mathcal{X} \to S$ and a class \mathbb{E} of morphisms in S that has the following properties:

- contains all isomorphisms;
- is pullback stable;
- is closed under composition;
- forms a *stack* (=coincides with its *localization*), which means that if

Let $\mathcal{C} = \mathcal{C}[\mathcal{X}, \mathcal{S}, U, \mathbb{E}]$ be the full subcategory in the comma category $(\mathcal{S} \downarrow U)$ with objects all triples $A = (A_1, e_A, A_0)$, in which $e_A : A_1 \to U(A_0)$ is in \mathbb{E} ; accordingly, a morphism $A \to B$ in \mathcal{C} is a pair $f = (f_1, f_0)$, in which $f_1 : A_1 \to B_1$ and $f_0 : A_0 \to B_0$ are morphisms in \mathcal{S} and \mathcal{X} respectively,

$$\begin{array}{ccc} A_1 & \stackrel{e_A}{\longrightarrow} U(A_0) \\ f_1 & & \downarrow U f_0 \\ B_1 & \stackrel{e_B}{\longrightarrow} U(B_0) \end{array}$$

such that $U(f_0)e_A = e_B f_1$.

Definition 1.1. A morphism $f : A \to B$ in $(S \downarrow U)$ is said to be a fibration if the morphism

$$\langle f_1, e_A \rangle : A_1 \to B_1 \times_{U(B_0)} U(A_0)$$

is in \mathbb{E} .

Observation 1.2. If $f : A \to B$ is a fibration, and B is in C, then, since the class \mathbb{E} is pullback stable, A also is in C.

Proposition 1.3. Let

$$D \xrightarrow{q} A \tag{1.1}$$

$$g \downarrow \qquad \qquad \downarrow f$$

$$E \xrightarrow{p} B$$

be a pullback diagram in $(\mathcal{S} \downarrow U)$ with $p : E \to B$ in \mathcal{C} . Then:

(a) If f is a fibration, then so is g.

(b) If g is a fibration, and p_1 is an effective descent morphism, then f also is a fibration.

(c) If p is a fibration and A is in \mathcal{C} , then D is in \mathcal{C} .

(d) If \mathbb{E} has the (weak left) cancellation property (e', $e \cdot e' \in \mathbb{E} \Rightarrow e \in \mathbb{E}$) and p_1 and $U(p_0)$ are in \mathbb{E} and D is in \mathcal{C} , then A is in \mathcal{C} .

Proof: Consider the diagram

in which:

- the enveloping cube represents the diagram (1.1);
- $e_E s = U(g_0)s'$ and $e_B t = U(f_0)t'$ are pullbacks;
- $d = \langle g_1, e_D \rangle$, $a = \langle f_1, e_A \rangle$, and $h = p_1 \times U(q_0)$ are the suitable induced morphisms.

Since the front square $U(p_0)U(g_0) = U(f_0)U(q_0)$ and the quadrilaterals $e_{Es} = U(g_0)s'$ and $e_{Bt} = U(f_0)t'$ are pullbacks, so is the quadrilateral $p_1s = th$. Next, since $p_1g_1 = f_1q_1$ and $p_1s = th$ are pullbacks, so is $hd = aq_1$. This proves (a).

(b): Since p_1 is an effective descent morphism and $p_1s = th$ is a pullback, h also is an effective descent morphism ([5]). Since $hd = aq_1$ is a pullback, this proves (b).

(c') If f is a fibration and E is in \mathcal{C} , then D is in \mathcal{C} .

(d') If f_1 and $U(f_0)$ are in \mathbb{E} and D is in \mathcal{C} , then E is in \mathcal{C} .

Proof of (c'):

- Since f is a fibration, a is in \mathbb{E} .
- Since E is in C and $e_E s = U(g_0)s'$ is a pullback, s' is in \mathbb{E} .
- Since a and s' are in \mathbb{E} , so is e_D , i.e. D is in \mathcal{C} .

Proof of (d'):

- Since f_1 and $U(f_0)$ are in \mathbb{E} , so are g_1 and $U(g_0)$.
- Since $g_1, U(g_0)$ and e_D are in \mathbb{E} , the cancellation property of (d') implies that e_E is in \mathbb{E} , as desired.

From Observation 1.2 and Proposition 1.3(a) we obtain:

Corollary 1.4. The category C is closed in $(S \downarrow U)$ under pullbacks along fibrations; that is, if (1.1) is a pullback diagram in $(S \downarrow U)$ with f in C and p being a fibration in C, then it is a pullback diagram in C.

When S has coequalizers of equivalence relations, all effective descent morphisms in S are regular epimorphisms. Using this fact it is easy to show that if $p : E \to B$ is a morphism in $(S \downarrow U)$, for which p_0 and p_1 are effective descent morphisms in \mathcal{X} and in S respectively, then p itself is an effective descent morphism. After that, using Proposition 1.3 and Corollary 1.4 we obtain:

Proposition 1.5. If S has coequalizers of equivalence relations and $p: E \to B$ is a morphism in C, for which p_0 and p_1 are effective descent morphisms in X and in S respectively, then

(a) p is an effective \mathbb{F} -descent morphism in \mathcal{C} , where \mathbb{F} is the class of all fibrations (in \mathcal{C}).

(b) if p is a fibration, then it is an effective descent morphism in C.

2. The category of compact 0-dimensional spaces

For a topological space A, we shall write Open(A) for the set of open subsets in A and Clopen(A) for the set of those subsets in A that are *clopen*, i.e. closed and open at the same time. Let us recall the definitions of the following full subcategories of the category $\mathcal{T}op$ of topological spaces:

- $\mathcal{T}op_0$, the category of T_0 -spaces; a space A is a T_0 -space if, for every two distinct points a and a' in A, either there exists $U \in Open(A)$ with $a \in U$ and $a' \notin U$, or there exists $U \in Open(A)$ with $a' \in U$ and $a \notin U$. Note that $\mathcal{T}op_0$ is a reflective subcategory in $\mathcal{T}op$, with the reflection given by

$$A \mapsto A_0 = A/\sim$$
, where $a \sim a' \Leftrightarrow \forall_{U \in Open(A)} (a \in U \Leftrightarrow a' \in U)$. (2.1)

-0-DimTop, the category of 0-dimensional spaces; a space is 0-dimensional, if it has a basis of clopen subsets, i.e. if every open subset in it can be presented as a union of clopen subsets.

- The category of compact 0-dimensional spaces, which is the category of interest in this paper, will be simply denoted by C; hence

$$\mathcal{C} = \mathcal{C}omp\mathcal{T}op \cap 0 - \mathcal{D}im\mathcal{T}op$$

where CompTop is the category of compact spaces.

- *Stone*, the category of Stone spaces = spaces that occur as Stone spaces of Boolean algebras = spaces that occur as limits of finite discrete spaces = compact Hausdorff 0-dimensional spaces = compact spaces A, such that for every two distinct points a and a' in A, there exists $U \in Clopen(A)$ with $a \in U$ and $a' \notin U$. The T_0 -reflection (2.1) of course induces a reflection

$$\mathcal{C} \mapsto \mathcal{S}tone, A \mapsto A_0 \tag{2.2}$$

The following theorem is a reformulation of well-known results (see also Example 3.3 in [2] for the same result for arbitrary topological spaces, which, together with other similar results was mentioned already in [1]):

Theorem 2.1. The category C of compact 0-dimensional spaces is equivalent to the category $C[X, S, U, \mathbb{E}]$ (see Section 1), for X = Stone, S = Set, $U : Stone \rightarrow Set$ (Set being the usual forgetful functor into the category of sets, and \mathbb{E} being the class of all surjective maps. Under this equivalence a space A corresponds to the triple (A_1, e_A, A_0) , in which A_1 is the underlying set of A, A_0 is the T_0 -reflection of A, and $e_A : A_1 \rightarrow U(A_0)$ is the canonical map (and we write again $A = (A_1, e_A, A_0)$).

According to this theorem and Definition 1.1, we introduce:

Definition 2.2. A morphism $f : A \to B$ in C is said to be a fibration if so is the corresponding morphism in $C[\mathcal{X}, \mathcal{S}, U, \mathbb{E}]$ of Theorem 2.1, i.e. if for every a in A and b in B with $f(a) \sim b$ there exists a' in A with $a' \sim a$ and f(a') = b.

After that Proposition 1.3 helps to prove:

Theorem 2.3. Let $p : E \to B$ be a morphism in C. If p is surjective, then the following conditions are equivalent:

(a) every morphism $f : A \to B$ in \mathcal{C} admits pullback along p;

(b) p is a fibration.

Proof: (a) \Rightarrow (b): Suppose p is not a fibration. This means that there are e in E and b in B with

$$p(e) \sim b$$
 and $(x \in p^{-1}(b) \Rightarrow \exists_{U_x \in Clopen(E)} (x \in U_x \text{ and } e \notin U_x)).$ (2.3)

We choose U_x as in (2.3) for each x in $p^{-1}(b)$, and consider two cases: Case 1. There exists a finite subset Y in X, for which

$$p^{-1}(b) \subseteq \bigcup_{x \in Y} U_x.$$

Case 2. There is no such Y.

In *Case 1* we take

$$V = \cap_{x \in Y} (E \setminus U_x),$$

and observe that since Y is finite, V is clopen; and of course V contains e and has empty intersection with $p^{-1}(b)$. After that we take

$$A = \{n^{-1} | n = 1, 2, 3, \dots\} \cup \{0\}$$

with the topology induced from the real line, and define $f : A \to B$ by $f(n^{-1}) = b$ and f(0) = p(e). Suppose the pullback of p and f does exist, and let us write it as the diagram (1.1). Using the universal property of this pullback with respect to maps from a one-point space, we easily conclude that it is preserved by the forgetful functor into the category of sets. In particular, since V contains e and has empty intersection with $p^{-1}(b)$, we have

$$q(g^{-1}(E \setminus V)) = \{n^{-1} | n = 1, 2, 3, \cdots \}.$$

This is a contradiction since $g^{-1}(E \setminus V)$ being clopen in D must be compact in it, while $\{n^{-1} | n = 1, 2, 3, \dots\}$ is not compact in A. In Case 2 we take $A = \{a\}$ to be a one-point space, and define $f : A \to B$ by f(a) = b. Then, using (1.1) as above, we observe that $g(D) = p^{-1}(b)$ -which is again a contradiction because now $p^{-1}(b)$ is not compact.

That is, whenever p is not a fibration, there exists a morphism $f : A \to B$ in \mathcal{C} that has no pullback along p.

(b) \Rightarrow (a) follows from Corollary 1.4 and Theorem 2.1.

3. \mathbb{F} -Descent and global descent

Let \mathcal{C} be as in Section 2.

Theorem 3.1. The following conditions on a morphism $p : E \to B$ in C are equivalent:

(a) p is an effective \mathbb{F} -descent morphism in \mathcal{C} ;

(b) p is a surjective map.

Proof: (a) \Rightarrow (b): Suppose p is not surjective, and choose $b \in B \setminus p(E)$. Let A be the equivalence class of b with respect to the equivalence relation \sim (see (2.1)). We take

$$A' = (A \setminus \{b\}) \cup \{b\} \times \{1, 2\}$$

equipped with indiscrete topology, and define $\alpha : A' \to A$ by $\alpha(a) = a$, for $a \in A$, and $\alpha(b, 1) = b = \alpha(b, 2)$; then α becomes a morphism $(A', \alpha f) \to (A, f)$, where $f : A \to B$ is the inclusion map, in the category $\mathbb{F}(B)$ of fibrations over B (in \mathcal{C}). Since the image of this morphism under the pullback functor $p*: F(B) \to F(E)$ is an isomorphism, p cannot be effective \mathbb{F} -descent morphism in \mathcal{C} .

(b) \Rightarrow (a): Let (p_1, p_0) : $(E_1, e_E, E_0) \rightarrow (B_1, e_B, B_0)$ be the morphism in $\mathcal{C}[\mathcal{X}, \mathcal{S}, U, \mathbb{E}]$ corresponding to p under the category equivalence of Theorem 2.1, where $X = Stone, \mathcal{S} = Set, U : Stone \rightarrow Set$ being the usual forgetful functor into the category of sets, and \mathbb{E} being the class of all surjective maps. Then p_1 is surjective and this makes p_0 surjective too. Since in both *Stone* and *Set* surjections are effective descent morphisms, this makes p an effective \mathbb{F} -descent morphism by Proposition 1.5(a).

Since \mathcal{C} does not admit some pullbacks, we define effective (global-)descent morphisms in \mathcal{C} as follows:

Definition 3.2. A morphism $p : E \to B$ in C is said to be an effective descent morphism if every morphism $f : A \to B$ in C admits pullback along

p, and the pullback functor

$$p*: (\mathcal{C} \downarrow B) \to (\mathcal{C} \downarrow E)$$

is monadic.

Theorem 3.3. The following conditions on a morphism $p: E \to B$ in C are equivalent:

- (a) p is an effective descent morphism;
- (b) p is a surjective fibration.

Proof: (a)⇒(b): Surjectivity can be proved in the same way as in the proof of Theorem 3.1 (or even much simpler by considering the empty and one-point space instead of A' and A there). The fact that p must be a fibration follows from the implication (a)⇒(b) of Theorem 2.3.

 $(b)\Rightarrow(a)$ can be deduced from Proposition 1.5(b) and Theorem 2.1 with the same arguments as in the proof of Theorem $3.1(b)\Rightarrow(a)$.

References

- [1] H. Herrlich, Topological functors, General Topology and Appl. 4 (1974) 125–142.
- [2] G. Janelidze, Light morphisms for generalized T_0 -reflections, to appear.
- [3] G. Janelidze and M. Sobral, Finite preorders and topological descent I, J. Pure Appl. Algebra 175(1-3)(2001) 187–205.
- [4] J. Reiterman and W. Tholen, Effective descent maps of topological spaces, *Topology Appl.* 57 (1994) 53–69.
- [5] M. Sobral and W. Tholen, Effective descent morphisms and effective equivalence relations, in: *Category theory 1991* (Montreal, PQ, 1991), 421–433, CMS Conf. Proc., 13, Amer. Math. Soc., Providence, RI, 1992.

GEORGE JANELIDZE DEPT. OF MATH. AND APPL. MATH., UNIVERSITY OF CAPE TOWN, RONDEBOSH 7701, CAPE TOWN, SOUTH AFRICA *E-mail address*: janelidg@maths.uct.ac.za

Manuela Sobral

CMUC, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF COIMBRA, 3001-454 COIMBRA, PORTUGAL *E-mail address*: sobral@mat.uc.pt